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The classical Talbot method for the computation of the inverse Laplace transform is improved for the case where the trans-
form is analytic in the complex plane except for the negative real axis. First, by using a truncated Talbot contour rather than
the classical contour that goes to infinity in the left half-plane, faster convergence is achieved. Second, a control mechanism
for improving numerical stability is introduced. These two features are incorporated into a software code, whose perfor-
mance is assessed on transforms from tables as well as from actual applications. It is shown that even when the transform
has singularities off the negative real axis, rapid convergence can still be achieved in many cases.
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1. INTRODUCTION

Let f(¢) be real-valued and piecewise continuous on [0, o) and of exponential order f = O(e"),
t — oo, for some real constant yo. Then the Laplace transform of f(¢) is defined by

F(z) = fm e U f(1)dt, Rez > yp.
0

This paper deals with the numerical solution of the inverse problem, i.e., given F(z), compute f(#)
at a specified value of ¢. The function F(z) is analytic in the half-plane Re z > v, and if it can be
evaluated in the complex plane (as opposed to just on the real axis), this analyticity can and should
be exploited by good numerical methods. One such method is numerical quadrature applied to the
inverse formula

1 y+ico
flr)=— f “F(z) dz, Rey > o, (1)
270 Jy—ioo
known as the Bromwich integral. Two effective quadrature rules are the simple trapezoidal and
midpoint rules, used in combination with contour deformation.

The purpose of the contour deformation is to exploit the exponential factor in (1). In particular,
assume the path of integration in (1) can be deformed to a Hankel contour, i.e., a contour whose
real part begins at negative infinity in the third quadrant, then winds around all singularities and
terminates with the real part again going to negative infinity in the second quadrant. Examples are
shown in Figure 1 below. On such contours the exponential factor causes a rapid decay, which
makes the integral particularly suitable for approximation by the trapezoidal or midpoint rules. The
contour deformation can be justified by Cauchy’s theorem, provided the contour remains in the
domain of analyticity of F(z). Some mild restrictions on the decay of F(z) in the left half-plane are
also required; for sufficient conditions, see [Talbot 1979; Trefethen et al. 2006].

Suppose such a Hankel contour can be parameterized by

C: z=7z(0), -1<0<n, )

where Re z(+m) = —oco. Then

£() = — fc PG dz = —— [ O F((0))7 (0) db. 3)
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We approximate the latter integral by the N-panel midpoint rule with uniform spacing h = 27/N,
which yields

I (2(00)) (B). b= -m+ (k- %)h (4)

uMz

If the contour (2) is symmetric with respect to the real axis, and if F(z) = F(z) (which is the
case for f (t) real-valued), then half of the transform evaluations can be saved. That is, one needs
to consider only quadrature nodes in the upper (or lower) half-plane. When comparing numerical
results it is important to keep this point in mind as several other papers, including [Duffy 1993;
Weideman 2006; Weideman and Trefethen 2007], considered quadrature rules with a total of 2N
nodes.

Popular contours C are the parabola [Butcher 1957; Gavrilyuk and Makarov 2005] and the hy-
perbola [Sheen et al. 2003; Lopez-Fernandez and Palencia 2004; Gavrilyuk and Makarov 2005], as
well as the cotangent contour introduced in [Talbot 1979]. Here we consider the Talbot contour in
the form

2(0) = gg(e), {(0) = -0 +pbcot(ab) +vio, -nm<O<m, )

where o, u, v and « are constants to be specified by the user. In the original Talbot contour the
parameter « did not appear, i.e., @ = 1. For reasons outlined below, the modification we propose is
to consider 0 < @ < 1. The scaling factor N/t was introduced in the original paper [Talbot 1979]
and also proposed in [Weideman 2006]. Assuming a fixed value of , this is the appropriate scaling
for maximizing the convergence rate in the trapezoidal/midpoint approximation as N — oo.

In the original Talbot contour (@ = 1), it follows that Re z(+r) = —oo. If the trapezoidal rule
is used, this means the point at infinity is a quadrature node and the corresponding function value
is set to zero in the sum (4). As this seems wasteful, we recommend the use of the midpoint rule
instead.

The practical issue addressed in this paper is the choice of the parameters o, i, v and « in (5). The
main considerations are summarized in Figure 1. The best contour has to strike a balance between
passing too close to the singularities, or too far from them in which case the exponential factor in
(3) becomes too large. The quadrature nodes on the best contour should also extend just far enough
into the left half-plane to reach the desired accuracy but their contributions should not be negligibly
small.

In the case @ = 1, suggestions for parameter values were made in the original paper [Talbot
1979]. These were implemented in ACM TOMS Algorithm 682 [Murli and Rizzardi 1990]. The
performance of this algorithm on a set of challenging test problems was assessed in [Duffy 1993].
In Section 4 we show that the modified contour (5) with the parameter choices proposed here can
produce the same accuracy but often with significantly fewer terms in the sum (4).

It is unrealistic to try and find optimal contours for all possible transforms F(z). That is why we
limit the analysis here to the situation that seems to occur most frequently in applications, namely
the case where all singularities of F(z) are located on the negative real axis. We shall see, however,
that the contour parameters derived here also work reasonably well when singularities are off the
real axis (but not too far, depending on the value of ).

In the case @ = 1, an optimized set of parameters o, u, v was proposed in [Weideman 2006].
When all singularities of F(z) are located on the negative real axis, the achievable convergence rate
is O(e709%N) ag N — oo for fixed ¢ > 0. Because Re z(+7) = —co in the original Talbot method,
however, too many nodes end up far out in the left half-plane where they make no contribution to
the midpoint sum (4). We acknowledge [Trefethen 2006] for this observation, and the suggestion
to consider a truncated Talbot contour instead, with 0 < @ < 1. In this case we refer to (5) as the
modified Talbot contour.
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Fig. 1. Three possible Talbot contours (5), each shown with N = 24 nodes in the midpoint rule. The middle contour is
close to optimal, in the case where = 1 and the singularities of F(z) are located on the negative real axis. Its outermost
conjugate pair of nodes reaches right up to the dash-dot curve, where the magnitude of the exponential factor in (3) becomes
less than the desired accuracy (here taken to be machine precision, € ~ 2.2 x 107'6). The inner contour is suboptimal because
(a) its outermost two nodes do not reach quite up to the dash-dot curve and (b) it passes too close to the singularities. The
outer contour is suboptimal because (a) the contributions of the outermost pair of nodes are less than the desired accuracy
and therefore wasteful, and (b) the exponential factor in (3) is too large in the right half-plane.

Optimal parameters o, i, v and « for the modified contour were derived by one of the authors of
the present paper, and reported in [Trefethen et al. 2006], later to be included in text books such
as [Strang 2007, Sect. 5.3]. Details of the derivation have not been published, however. Having
simplified and improved the derivation recently, we now present the details here.

The freedom that the parameter a offers means that the convergence rate O(e~"*4*N) for the case
a = 1 can be improved to O(e™!33N) N — oo, ¢ fixed. This is assuming singularities of F(z)
on the negative real axis. By comparison, with the same assumption on the singularity location,
the convergence rates achievable by the parabola and hyperbola are, respectively, 0(6—1.047N ) and
O(e~1176N); see [Weideman and Trefethen 2007].

It should be noted that the scaling factor N /7 in (5) has a few negative consequences. First,
because the nodes z(6) depend on N, function values cannot be re-used as N is increased. The
increased convergence rate compensates for this, however. Second, for fixed ¢ the contour can move
far into the right half-plane as N is increased. Because of the exponential factor in (1), the terms in
the summation can become large and hence suffer from floating-point cancelation errors. We address
this issue in Section 3. Third, because the quadrature nodes depend on ¢ as well, the same contour
cannot be used for two or more distinct values of ¢. In this case the method would be inefficient
when the transform F(z) is expensive to evaluate. We shall not address the latter issue here, but note
that for the case @ = 1 it was considered in [Rizzardi 1995] and for the parabolic and hyperbolic
contours it was considered in [Weideman and Trefethen 2007].

The outline of the paper is as follows: In Section 2 we present the main error analysis that leads to
the proposed values of o, i, v and . The analysis is similar to the one given in [Weideman 2006]. It
is slightly more intricate because of the additional parameter «, but at the same time we have made
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some improvements that simplify the analysis. A strategy for improving numerical stability for large
N is discussed in Section 3. For now it only makes provision for roundoff error control when the
singularities of F(z) are located on the negative real axis. Section 4 contains the numerical tests,
where we compare the results of the modified contour (5) with parameters proposed here, with
Algorithm 682 [Murli and Rizzardi 1990]. Further tests and the details of a code, that implements
the proposed method are discussed in Section 5. The code, written in MATLAB [MATLAB 2012],
is publicly available for download from the web site [Dingfelder and Weideman 2013].

2. ERROR ESTIMATES

Our basic error estimate is a well-known contour integral formula for the error in the trapezoidal rule
approximation of functions that are analytic, periodic, and real-valued; see for example [Kress 1998,
Thm. 9.28]. We retain the property of analyticity but extend the theorem as follows: (A) we consider
non-periodicity, (B) we consider complex-valued functions, and (C) we consider the midpoint rule
rather than the trapezoidal rule. (A) is necessary because the integrand in (3) is not periodic. (B)
is necessary because the integrand is complex-valued, and has very different analytic properties in
the upper and lower half-planes. (C) is not really necessary, only a matter of convenience. All three
of these modifications can be readily incorporated into the proof given in [Kress 1998, Thm. 9.28],
which is an elementary application of the residue theorem. We omit the details.

THEOREM 2.1. Let 6y be defined as in (4). If g : D — C is analytic in the strip D = {6 € C :
—-n<ReO<mand —d <Im 0 < c} where c,d > 0, then

fg(e) 0= Zﬁﬂ > 8(0) = E1(y) +E-(5).

g k=1

b ) %(I:+iy+£:z+f;y)(1+itan($))g(e) a6

o Y[ oo

forall0 <y <c¢, 0<d<dand N € N.

The contours of integration for computing the error integrals E.y (y) and E_(6) are shown in the

Here

and

left diagram of Figure 2. We remark that if g(6) is real-valued on the real axis, then g(0) = g(0)
and d and c can be taken to be equal. When it is moreover 2r-periodic, the contributions on the sides
Re § = £ cancel. In that case, if we define E(y) = E4 (y) + E_(y), then

E) =Re [ (1 +itan(¥))g(6) .
—n+iy 2

By analyzing the behavior of the tangent function in the complex plane, this can be bounded by
[Kress 1998, Thm. 9.28]

dnM
[E(y)l < N1’

where M is a bound on the magnitude of g in the strip D. For a given value of N, two quantities
control the size of the error: ¢, which is the width of the strip of analyticity, and M, which is governed
by the growth of g in the complex plane.

Here we apply the error formula of Theorem 2.1 to the case

8(0) = 5= V' F((0)(0), -m<ésm ©)
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Fig. 2. Left: Rectangular contour in the complex 6-plane for evaluating the error integrals E; (y) and E_(8) of Thm. 2.1.
Right: Deformed contour, along which the magnitudes of the integrands of E (y) and E_(6) are approximately constant.
The dash-dot curve in both diagrams shows a possible image of the negative real axis of the z-plane, where singularities
might be located.

where F(z) is the transform to be inverted. This is not a real-valued function, which is why the
rectangle of integration in Figure 2 is not shown symmetric with respect to the real axis. As we shall
see (and similar observations were made in [Weideman 2006; Weideman and Trefethen 2007]), in
the upper half-plane the width of the strip is restricted by the singularities of F(z(6)), while in the
lower half-plane the restriction is the size of )

To keep the analysis tractable, we limit our discussion primarily to the model transform

F(z) = (z+ )7, >0, (7

i.e., singularities on the negative real axis only. In Section 4 we shall consider a matrix version of
this transform when considering applications to PDEs.

For (7) and similar transforms, we can estimate the error using Theorem 2.1 and the rectangular
contour shown on the left in Figure 2. For a better estimate, one can try and deform the contour as
shown on the right in Figure 2.

To explain how this can be done, consider the error integrals in Theorem 2.1. Ignoring the con-
stant factors 1/2 in those integrals, as well as the factor 1/(2xi) in (6), the error formulas can be
expressed as

E+—j;i MO do, ha(6) = £(6) + N7 (tog (1 itan( ) + log F(<(6)) + log < (6))

where C4 and C_ refer to contours in the upper and lower half-planes, respectively. Our strategy is
now as follows: suppose it is possible to deform the rectangle on the left in Figure 2 to a contour
along which Re h..(6) = —c for some positive constant c. Then

Ci: Rehu(0) =—c =  |Es|=0(e V), (8)

and the value of ¢ can be maximized by picking the best among all such contours C..

The function A, (6) defined above is too complicated to analyze in this manner, and we make a few
approximations in the case N > 1. First, we drop the terms involving F(z(6)) and z’(6). This means
F(z(0)) should not be zero nor exponentially small on any part of the contours C., and likewise
Z(0) # 0. Regarding the term involving the tangent function in /4. (6), we shall approximate it for
N > 1 as follows. By converting the tangent function to exponentials one obtains, with 8 = x + iy,

2 pFINY pE3iNx

N
1+itan(— iy)) = .
! an(2 (x+ly)) e—%Nye%iNx+e%Nye—%iNx



A6 B. Dingfelder and J.A.C. Weideman

Taking the logarithm yields
NO
log 1 iitan(T)) ~FNy, N> o, 9)

valid for fixed, nonzero y. The upper and lower sign choices correspond to y > 0 and y < 0,
respectively. Accordingly, we approximate the contour Re h.(6) = —c in (8) by

Ci: Rel(x+iy)Fy=-c (10)

First, consider the upper half of the #-plane. As mentioned above, the error contour C is re-
stricted by the location of the singularities of F(z(#)) in the upper half of the §-plane. For now,
consider the model problem (7). Its pole is located at z = —A4, or { = —At/N. In keeping with the
limit N — oo, t fixed, we consider therefore { = 0. The same argument will apply if there is a
branch-cut on the negative real z-axis, for in practice we need to consider only a finite section of the
branch-cut (e.g., the section between the origin and the dashed line in Figure 1).

We therefore need to examine the zeros of £(9), i.e.,

—o+pbcot(ab) +vio = 0.

It is no easy task to examine the complex roots of this equation for all possible parameter values, so
we resorted to numerical experimentation, restricting searches to the strip —r < Re 6 < &, which is
of interest here. For certain parameter choices there are roots in the lower half of the #-plane. For
other parameter choices the roots are in the upper half-plane, located symmetrically with respect to
the imaginary #-axis. For yet other parameter values the roots are located precisely on the imaginary
0-axis, with the one closest to the real axis the critical one that limits the contour C. .

Another limiting case is the fact that £’(6) may not be 0, as remarked below (8). By numerical
experiments, we came to the same conclusion as [Weideman 2006], namely the configuration that
gives the widest domain of analyticity in the upper half-plane occurs when these two critical points
coincide precisely on the positive imaginary 6-axis. (This is the point marked P in Figure 2.) This
leads to the two equations £(iy) = 0,’(iy) = 0 for some y > 0. By considering (10), we conclude

that y = c. If we further let § — + 7 on the contour C, we get {(+r) = —c, which is by symmetry
just one equation, not two. In summary, in the upper half-plane we require that
Ci: ((ic) =0, ' (ic) =0, {(m) = —c. (11)
By using these three equations, it is possible to solve for (o, u, v) in terms of (a, ¢), namely
o =2ac*B,  u=2sinh*(ac)B, v = (sinh(2ac) - 2ac)B, (12)
where
csin’(an)

 2ac?sin?(an) — nsin(2ar) sinh?(ac)

It remains to fix the parameters a and c. For this, we consider the lower half of the 6-plane. Here
the contour C_ is not restricted by analyticity but by the size of the exponential factor in (3). Again
numerical experimentation confirmed the findings of [Weideman 2006], namely that there are two
saddle points in the lower half of the #-plane that are critical. (These are the points marked S and
S’ in Figure 2.) By making C_ pass through these saddle points, we can enclose a region as big as
possible.

Denote the saddle point locations by 8 = x; + iys. By inserting this into (10), and taking partial
derivatives, yields

C-: Rel(xs+iys) +ys=—c, Rel'(xs+iys) =0, Im (x5 +iys) = 1. (13)

We insert the expressions for o, u and v from (12) and fix a value of @. Assuming a solution exists,
the three equations (13) can then be solved numerically for the unknowns x;, y,, and c. By varying
«, the value of ¢ can thus be maximized.
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Fig. 3. Three possible deformations of the rectangle of Figure 2. The middle one maximizes c, which is both the value of
the intersection on the positive imaginary axis and the decay rate in the error estimate E = O(e™V).

We made no attempt to establish theoretical existence of a solution of the equations (13), but
direct numerical computation indicates that such a solution exists for « in the interval [0.51,0.82],
roughly. Some of these configurations are shown in Figure 3, with the middle one corresponding
to the maximum value of c. We computed this value of ¢ using a univariate optimization code, and
found

a = 0.6407; ¢ = 1.3580. (14)

Substitution of these two values into (12) yields the modified Talbot contour
N
2(0) = 7( ~0.6122 +0.5017 9 cot(0.6407 6) + 0.2645i6), -w <O <, (15)

as reported in [Trefethen et al. 2006]. For completeness, we record that the corresponding saddle
points are located at x; + iy, = +3.4208 — 2.3438 i, correct to all digits shown.

An alternative contour in which the cotangent is replaced by a rational function was respectively
suggested and analyzed in [Talbot 1979] and [Weideman 2006]. Applying the same strategy as
outlined above, we derived

3.0232 6%
62 — 3.0767 n2

This rational contour is virtually as good as the cotangent contour, as it gives a convergence rate
of O(e~!31N) compared to the O(e™1338V) of (15). With either contour, an accuracy of close to
machine precision € ~ 2.2 X 107! can be reached for values of N around 26 or 28, i.e., about 13 to
14 transform evaluations.

We emphasize that we have assumed here that all singularities of F(z) are located on the negative
real axis, and F(z) is not exponentially small as discussed below (8). In Section 4 below, we test
how well the contour (15) works when these assumptions are violated. But first, we address the
issue of roundoff error that can contaminate the solution when N is too large.

N
2(0) = 7(0.1446 + +02339i60), -r<f<m (16)

3. ROUNDOFF ERROR CONTROL

When N gets large, the contours (15) and (16) move too far into the right half-plane. The exponential
factor in (4) gets too big, and there is loss of precision in the summation. Using the same arguments
as presented in [Weideman 2010] for the parabolic contour, we model this error by

R= O(e ez(o)’) = O(e eNéV(O)), (17

where € is the unit roundoff.
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Let the implied constants in (8) and (17) be denoted by k; and k», respectively. Then the roundoft
error becomes significant when

ke = kyeeM0)  — ¢4 £(0) + N log(e/ko) = 0, (1%

where we defined ko = k1 /k;.

To check the accuracy of (18), consider € ~ 2.2 X 1071 and assume for the moment that ko ~ 1.
With the values of the contour parameters as defined by (12) and (14), a numerical solution of (18)
yields N ~ 24 (25 in the case of the rational contour (16)). An examination of the convergence
curves shown in Section 4 will confirm that N = 24 is often close to the critical value where
roundoff errors start to dominate.

When kg is not O(1), this critical value of N may be larger, say N = N,. The value of N, can
be estimated by analyzing the convergence behavior. For example, we assume that for N < N, the
error behaves like £ () — fiy (t) = k1N, where fy(t) denotes the approximation (4). By computing
fn(t) for a range of values of N, it is straightforward to detect at what value of N the convergence
turns from exponential decay to exponential growth. By inserting this value of N, into (18), and
using the values of the contour parameters defined by (12) and (14), it is possible to compute an
approximate value of k.

We use this value of kg to compute new contour parameters for values of N > N.. Note that
£(0) = —o + p/a, which depends on ¢ and @ via (12). This means the equation in (18) has two
unknowns, so we fix @ at the value (14). Hence ¢ can be solved by applying a univaritate rootfinding
routine to equation on the right in (18), and following that the new contour parameters are computed
from (12).

We can justify this approach by looking at the asymptotic behavior of the parameters. Letting
N — oo in (18) yields

c = —log(e/ko)N"'+ 0N,  £(0) = 0O(N7).

Substitution of these two expressions into the error estimates (8) and (17), respectively, shows that
both reduce to O(€). Hence errors can be expected to remain at the roundoff level for large N.

Because £(0) = O(N~3), the contour is not only prevented from moving too far into the right
half-plane, it actually moves back to the left (and becomes narrower) when N > N.. For this reason
this roundoff control strategy only works when the singularities of F(z) are strictly on the negative
real axis. In the next section, we investigate how well it works in practice.

We remark that roundoff control for the parabola and hyperbola was proposed in [Weideman
2010] and [Lépez-Fernandez et al. 2006], respectively. An entirely different strategy was developed
by one of the authors of the present paper, based on methods that automatically compute a contour
of optimal stability for (1). Details can be found in [Dingfelder 2012] and a forthcoming publication
on this topic.

4. APPLICATIONS AND COMPARISONS

In this section we verify the theoretical results of the previous sections by applying the method to
various model problems. These include a matrix transform that can be used for the time integration
of parabolic PDEs, as well as some scalar transforms. The latter include four of the transforms
considered in [Duffy 1993], all of which were taken from actual applications. In all these cases the
inverses of the transforms are explicitly known as integrals or series, which enabled us to compute
errors. Some of these transforms have singularities exclusively located on the negative real axis. The
other problems deal with singularities on the imaginary axis and on the positive real axis as well as
with various branch cuts in the complex plane. We shall see that good convergence is still possible
for these cases, despite the fact that the parameter analysis of Section 2 assumed singularities strictly
on the negative real axis.

In all figures, the relative error is plotted against the number of nodes, N, in the midpoint ap;s)rox-
imation (4). For reference, we also plot the theoretically predicted convergence rate O(e‘l'3 8N ),
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as a dash-dot curve. We also remind the reader about the N vs. 2N convention mentioned below
(4). When compared to the error curves in [Duffy 1993; Weideman and Trefethen 2007; Weideman
2010], for example, the values of N on the horizontal axes of the graphs below should therefore be
halved.

4.1. Singularities on the negative real axis
We start with the model problem (7) and its matrix analogue

Fi(zd)=(z+4)7",  Fi(zA) = @+4)7" (19)

Here A > 0 and A is a symmetric positive definite matrix, with 7 the identity matrix of the same size.

The matrix version arises, for example, when semi-discretizations of parabolic PDEs are solved
by Laplace transform techniques [Sheen et al. 2003; Lépez-Fernandez and Palencia 2004; Gavrilyuk
and Makarov 2005]. Consider

w+Au=0 = zU(z7)-u+AU(z)=0 = U(z)=Fi(zA)u,

where A is an M X M matrix representation of the negative Laplacian, u(t) an M X 1 vector of
unknowns with U(z) its Laplace transform, and ug the initial condition. The inverse formula (1)
yields

u(t) = exp(-Ar)uo = 5 fc I(F1(5A) w) dz 20)

In this case the singularities of the transform are the negatives of the eigenvalues A of A, which are
located on the negative real axis because of the assumptions on A. The right-hand side is approxi-
mated by the midpoint sum (4), where each quadrature node requires the solution of a linear system

with coefficient matrix (z(@k)l + A) and right-hand side uo.

Our test example is the heat equation u, — 0.01V?u = 0 on [0, 1] x [0, 1], supplemented with
homogeneous Dirichlet boundary conditions. We take A as the familiar block-tridiagonal matrix
based on the 5-point finite difference approximation to the negative of the Laplacian, which is known
to be positive definite. The right-hand side uy is taken to be random, and the reference solution u(r)
was computed using the spectral decomposition of A, which is explicitly known.

The results for this example are shown in Figure 4. Note that we have plotted the error here in
the computed value of exp(—Ar) ug, i.e., only the temporal error. The error in the actual solution
of the PDE is not shown but it would not reach such small values unless a super accurate space
discretization is used.

Figure 4 confirms that (a) the modified Talbot contour converges as predicted by the error analysis
of Section 2, namely O(e‘1'358N ), and (b) the roundoff control strategy described in the previous
section works well in practice. Ten digit accuracy is reached with N = 16 or fewer nodes, i.e.,
no more than 8 transform evaluations are required (each of which involves the solution of a sparse
linear system). Almost full accuracy is reached for all N > 24.

The remaining transforms in this section are scalar problems from actual applications, as collected
in [Duffy 1993]. As an example of a transform with a series of poles on the negative real axis we
consider

(100z — 1) sinh(§ vz)
z(zsinh(vz) + vzcosh(4z))"

This is Test 2 in [Dufty 1993], where it was noted that the apparent square root singularity can be
removed by expanding the hyperbolic functions. We also consider Test 3 in [Dufty 1993], namely

Fa(z) =

zZ(1+2z)
1+4+cz

), r>0, c>0.
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Fig. 4. Relative errors in the co-norm when exp(—Ar)uy is approximated by applying the midpoint sum (4) to the contour
integral (20). For smaller values of N the contour (15) was used, while for larger N the roundoff control procedure of
Section 3 was used. The three columns correspond to three sizes of A, while the two rows correspond to two values of 7. The

dashed line represents the theoretical predicted convergence rate O(e~!338V),
This transform has a pole at z = 0, an essential singularity z = —1/c as well as branch point
singularities at z = 0 and z = —1. With appropriate definition of the branch cuts, this transform is

analytic everywhere off the negative real axis.

Numerical results for transforms F»(z) and F3(z) are presented in Figures 5 and 6, respectively.
Again we see empirical confirmation of the theoretical O(e~!338V) convergence rate and the effec-
tiveness of the roundoft control strategy. A comparison with the results presented in [Duffy 1993]
shows a faster rate of convergence here, which reduces the total number of nodes in the midpoint
sum (4) required for, say, ten-digit accuracy at t = 1, from about 26 and 36 for F» and F3, to 18 for
both transforms.

Note that F3(z) is an example for which the error analysis of Section 2 can fail. The reason is
its rapid decay as z — oo, particularly if r > 1; recall the discussion below (8). Nevertheless,
for 0 < r < 1 we get error curves of similar accuracy to those shown in Figure 6 for all values of ¢
considered.

4.2. Singularities on the positive real axis
When the singularities are located on the positive real axis, the frequency shift formula

1

e () = - j;e”F(z—l— s)dz, (21)
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Fig. 5. Relative error in the inversion of transform F(z). For smaller values of N the contour (15) was used, while for
larger N the roundoff control procedure of Section 3 was implemented.

can be considered. The real shift s should be sufficiently large such that all the singularities are on the
negative real axis. One may lose accuracy if s and ¢ are large because roundoff errors are amplified
by the factor e*, but in our experiments this did not appear to be a major factor. In addition, for
sufficiently large values of sz, overflow can occur in the evaluation of the exponential factor.

To demonstrate this shifting formula, we examine the transform F (z; —5) as defined in (19) with
pole at z = 5. Applying the method to the unshifted transform fails, but by shifting the singularity
to 0 we obtain the expected high rate of convergence, as shown in Figure 7.

4.3. Singularities off the real axis

The theoretical predicted convergence rate of O(e™!338V) is often observed even for moderate val-

ues of N when the transform has singularities off the real axis. For these calculations, however, the
roundoff error control discussed in Section 3 does not apply and we have omitted it in the results
presented in this section.

The first transform of this type is Test 4 given in [Duffy 1993],

1
Fy(z) = - oxp —2arcosh( V1422 + Z4/16)),

which we have simplified to
_ 1
Z(N2+A/16+ 1+ 22 +24/16)2

F4(z)
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Fig. 6. Same as Figure 5 but the transform is F3(z), with ¢ = 0.4 and r = 0.5.

There is a pole at z = 0 and six branch points on the imaginary axis, the outermost two of which
are z = +4i. The results for this transform are shown in Figure 8.
We also consider Test 5 given in [Duffy 1993], namely

B 72— V2 -c?
VIVZ =2 X2 -2

with ¢ = (1 -X)/X and X < 1. This transform has branch point singularities on the positive

Fs(z)

real axis at ¢ as well as on the imaginary axis at £cX/ VX2 — 1. To deal with the singularity on the
positive real axis we shifted the transform by a distance c¢. If X = %, then ¢ = 1 and the singularities

are at 1 and +i/ V3 before the shift, and at 0 and —1 + i/ V3 thereafter. With proper attention to the
branch cuts in the coding, this leads to the results shown in Figure 9.

Despite both transforms F4(z) and Fs(z) having singularities off the real axis, we see that the
modified Talbot method still shows a high order of convergence, asymptotically similar to the the-
oretical O(e™!338N). The implied constant is large, however, and increases with 7. In the case of
F4(z) the contour used here was not successful for large 7. For this example the contour parameters
of [Duffy 1993; Murli and Rizzardi 1990] are better, because they adjust for singularities off the
negative real axis.

For F5(z) we observe good convergence in Figure 9, except for the roundoff error issue. Note
that in [Duffy 1993] it is mentioned that Talbot’s method “does rather poorly” for this example.
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control).
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t =4

Fig. 9. Same as Figure 8, but for the transform Fs(z), ¢ = 1. The frequency shift formula (21) was used, with s = c.

This might be due to not shifting the transform or perhaps a branch-cut transgression. The results
shown Figure 9 reach ten-digit precision with 24 nodes (i.e., 12 transform evaluations).

Finally, we remark that in the case of singularities in the right half-plane off the real axis, the
frequency shift formula (21) can also be used to shift singularities to the left half-plane.

5. SOFTWARE

We have created a MATLAB function, ModifiedTalbot, which can be downloaded from the web
site [Dingfelder and Weideman 2013]. It implements the method (4) on the contour (15). In its basic
form the function takes as input the scalar transform F(z) and a single value of . It outputs an
approximation to (), and an estimated relative error. In addition, the user can

— specify a relative accuracy (ten-digit accuracy is the default),

— increase the maximum value of N (100 is the default),

— specify whether the roundoff error control strategy of Section 3 should be employed (recom-
mended only when the singularities of the transform are on the negative real axis),

—include a frequency shift (based on formula (21)),

— turn on or off a graphical output of the convergence history, and
— specify an exact value for f(¢) (if known), for testing purposes.

More details on these options are given in the help lines of ModifiedTalbot.
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The algorithm starts with a small value of N, and then increases its value in steps of 2 until an
estimated error drops below the specified accuracy. The default stopping test is

(1) = fna(t)
In(t)

where fy (1) represents the approximation computed with N nodes in the midpoint sum (4). The left
hand side is a reasonable estimate for the actual relative error when the convergence is exponential,
as in f(t) — fy(t) = O(e™N). In the ideal case (singularities on the negative real axis, F(z) not
exponentially small) the largest value of N required for this accuracy is typically around 20.

The strategy of increasing N until the desired accuracy is reached is somewhat inefficient, as
transform values computed for fy_»(¢) cannot be re-used in the computation of fy(z). If F(z) is
not too expensive to evaluate this is not a major drawback, however. Relatedly, keep in mind that
this code does not require any information on the singularities, unless the frequency shift formula
(21) is used. By contrast, software like [Murli and Rizzardi 1990] requires the user to specify the
locations and type of some of the singularities of the transform. We consider the additional transform
evaluations a relatively small price to pay for the convenience of not having to deal with a singularity
analysis of the given transform.

The following MATLAB code snippet shows the usage of ModifiedTalbot. We chose test
F3(z), in order to demonstrate the correct coding so that the branch-cut is located on the negative
real axis. Also note the dot-multiplication and -division in the definition of the transform because
the code in ModifiedTalbot is vectorized.

<1070,

>t =1; F =0z (1./z2).%exp(-0.5*sqrt(z).*sqrt(1+z)./sqart(1+0.4%z));
>> [f,err] = ModifiedTalbot(F,t)

>> £ = 0.722835907109632

>> err = 5.043215570091767e-012

For this example the exact value is f (1) = 0.7228359071, rounded to ten digits, so the default
accuracy has been achieved. The actual relative error is about 1.8 x 10713, so ModifiedTalbot
overestimates it by less than an order of magnitude.

In Table I we present a comparison of ModifiedTalbot with the results from [Murli and Rizzardi
1990]. The table shows the total number of nodes, N, in the quadrature sum (4), to reach an error
of 1070, In [Murli and Rizzardi 1990] this error was defined as the relative error if the reference
value is greater than one, and absolute error otherwise. Note that the numbers in parentheses shown
in Table I are double the numbers shown in Tables I and II of [Murli and Rizzardi 1990], because of
the N vs. 2N convention mentioned below (4).

The first three transforms in Table I have singularities on the negative real axis. For each of
these transforms the value of N required by ModifiedTalbot is significantly less than the number
required by the algorithm of [Murli and Rizzardi 1990]; in one instance the value of N is more than
halved. The last three transforms in Table I have singularities in the complex plane. The last one
of these has a singularity in the right half-plane, which we have shifted to the imaginary axis by
choosing s = 1 in (21). For these three cases ModifiedTalbot yields reasonable results for small
values of 7. As ¢ increases, however, the contour (15) moves closer to these singularities and the
number of nodes has to be increased accordingly. For the cases marked (a) in Table I no convergence
to the desired accuracy was achieved for NV less than the default value of 100. In many of these cases,
no convergence could be obtained even when this default value was increased. In these situations
the algorithm of [Murli and Rizzardi 1990] is superior, but it too needs large numbers of transform
evaluations to reach the accuracy goal. For these cases it is probably wise to consider alternatives to
Talbot’s method.

For additional performance tests, this time with a smaller error tolerance 10_10, we offer six
more transforms in Table II. The inverses can be looked up in tables such as [Abramowitz and
Stegun 1970, Sect. 29]. The first five of these transforms have a combination of poles, branch-cuts
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Table I. Comparison of the code ModifiedTalbot with the numerical results of [Murli
and Rizzardi 1990]. The numbers without (resp. inside) the parentheses are the values
of N used by ModifiedTalbot (resp. the algorithm of [Murli and Rizzardi 1990]) to
reach a specified error of 107°. Cases where ModifiedTalbot could not reach this
accuracy for N less than the default value of 100 are marked by (a).

Transform t=10"" | r=100 | r=10" | r=10> | r=103
72 18 (22) | 18(22) | 16(22) | 16(22) | 16(22)
log(z)/z 14(22) | 18(22) | 14(22) | 14(22) | 14(22)
exp(—4+Z) | 16(22) | 14(22) | 12(22) | 12(22) | 10(22)
arctan(1/z) | 16 (22) | 20 (22) | 46 (38) | (a) (140) | (a) (1050)
log(ﬁii) 18 (22) | 22(22) | 78 (46) | (a) (224) | (a) (5284)
2(Z+8)7" | 18(22) | 26(22) | 80 (46) | (a) (304) | (a) (2224)

or essential singularities on the real axis, while the last one has a branch-cut on the imaginary axis.
In those cases where the singularities are located on the positive real axis, a shift equal to the largest
real singularity was implemented.

In most of these cases ModifiedTalbot performs reliably, providing the default ten-digit accu-
racy with around 18 to 24 nodes in the quadrature sum (4). The cases of non-convergence for N
less than the default value 100 are marked either (a) the singularities are too far off the negative real
axis and 7 is too large, or (b) the transform decays too rapidly for z in the right half-plane and ¢ is
too small. (Note that (a) was already encountered in Table I.) Whenever one of these exceptional
situations occur, the graphical display of the convergence history offered by ModifiedTalbot is
useful for identifying that something is wrong and that other methods should be used instead.

Considering the results of Tables I and II, we conclude that in the ideal case (F(z) with singu-
larities on the negative real-axis and not exponentially small) the code ModifiedTalbot performs
reliably. In other cases it can still perform well, unless one encounters one or more of the exceptions
(a) and (b) listed above. We emphasize that the main advantages of ModifiedTalbot are rapid
convergence and the fact that minimal singularity information has to be specified by the user.

Table 1. Performance of ModifiedTalbot on six other transforms. The value of N to reach a specified
relative accuracy of 10~ is tabulated. Unsuccessful cases are denoted by (a) or (b), as discussed in the
penultimate paragraph of Section 5.

Transform Parameters t=102 | r=10"" | r=1|r=10" | r =102
exp(—kvz)/z k=1 40 24 22 20 20
k=5 (b) (b) 26 22 20
exp(—k/z)/z k=1 20 22 24 28 44
k=5 22 22 28 38 70
Vz/(z-a?) a=1 20 20 20 20 20
a=>5 20 20 20 20 (©)
(VeftaveFb)™ |a=-3,b=4 | 20 18 20 20 20
Veta-Vi+b |a=-5b=1] 18 20 22 22 24
(V22 +a2)7! a=1 20 22 28 64 (a)
a=2 20 22 34 (a) (a)
a=10 22 28 64 (a) (a)
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