
Numerical Integration of Periodic Functions:
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1. A TEXTBOOK PROBLEM. In one of the more popular calculus textbooks the
following problem appears [13, p. 466]:

This exercise deals with approximations to the integral

I ( f ) =
∫ 2π

0
f (x) dx, where f (x) = ecos x . (1)

(a) Use a graph to get a good upper bound for | f ′′(x)|.
(b) Use M10 to approximate I .

(c) Use part (a) to estimate the error in part (b).

(d) Use the built-in numerical integration capability of your CAS1 to approximate I .

(e) How does the actual error compare with the error estimate in part (c)?

The notation M10 in part (b) refers to the 10-panel midpoint rule for numerical inte-
gration. This is nothing but a Riemann sum in which the midpoint of each subinterval
determines the height of the rectangle. That is, we partition the interval [0, 2π] into N
subintervals with uniform width h = 2π/N by defining2

x j = jh, j = 0, . . . , N .

The midpoint rule MN ( f ) and its standard error estimate (to be used in part (c)) are
then given as in Stewart [13, pp. 458–460] by

MN ( f ) = h
N−1∑
j=0

f
(
x j + 1

2 h
)
, |I ( f ) − MN ( f )| ≤ π3

3

K

N 2
. (2)

The assumption is that f (x) is at least twice continuously differentiable on [0, 2π] and
K is any bound on the magnitude of the second derivative, i.e.,

| f ′′(x)| ≤ K , 0 ≤ x ≤ 2π.

We also state the trapezoidal rule TN ( f ), with its error estimate3

TN ( f ) = h

(
1
2 f (0) +

N−1∑
j=1

f (x j) + 1
2 f (2π)

)
, |I ( f ) − TN ( f )| ≤ 2π3

3

K

N 2
. (3)

The constant K has the same meaning as above.

1CAS = Computer Algebra System.
2The interval [0, 2π] is for convenience only. Everything we say can easily be extended to an arbitrary

interval [a, b].
3One notices that the error bound for the midpoint rule is one half that of the trapezoidal rule; compare (2)

with (3). For a pretty geometrical explanation of why one can expect the midpoint rule to be better by about a
factor of two, the reader is referred to Stewart [13, p. 460].
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Starting with part (a) of the textbook problem, we dutifully turn to our CASs, com-
pute the second derivative (only the brave do this by hand), plot it on [0, 2π], and
observe that the maximum magnitude is reached at both x = 0 and x = 2π . We con-
clude that, if f (x) = ecos x , then

| f ′′(x)| ≤ e (= 2.718 . . .),

which we record for use in part (c).
As for parts (b) and (d), we compute I ( f ) and M10( f ) as

I ( f ) ≈ 7.954926521, M10( f ) ≈ 7.954926518,

rounded to ten significant digits. (In Section 6 we compute I ( f ) explicitly in terms of
a special function.) The error is

I ( f ) − M10( f ) ≈ 3 × 10−9, (4)

which is spectacularly small considering the relatively small value of N .
The excitement turns to disappointment when we continue to parts (c) and (e). To

work part (c) we use the error bound (2). We have established that the best bound for
the second derivative is K = e, and with N = 10 we get

|I ( f ) − M10( f )| ≤ π3

3

e

102
≈ 0.28. (5)

True but useless, this bound overestimates the actual error (4) by a factor of about 108.
It’s like saying the distance between New York and London is less than 1011 miles
(about a million times the circumference of the earth!).

At this point many teaching assistants and even a few professors find themselves at a
loss for words to explain this spectacular failure of the error bound (2). The exceptions
are the numerical analysts, who would be quick to point out that the midpoint rule
(as well as the trapezoidal rule) is more accurate than usual when applied to integrate
smooth periodic functions over one period. For such functions the convergence is so
quick that the standard error estimate becomes irrelevant. This is illustrated in the
following table.

N I ( f ) − MN ( f ) Error bound (2)

4 3.4 × 10−2 1.8 × 100

8 1.3 × 10−6 4.4 × 10−1

12 6.5 × 10−12 2.0 × 10−1

One of the things we intend to show here is that the actual error decays like4

I ( f ) − MN ( f ) ∼ 2

(
2π

N

)1/2 ( e

2N

)N
, (6)

which yields the estimates 3.3 × 10−2, 1.2 × 10−6, 6.4 × 10−12 when N = 4, 8, 12,
respectively. These numbers compare favorably with the values listed in the middle
column of the table, despite the fact that N is not particularly large.

4We use the notation aN ∼ bN to denote that limN→∞ aN /bN = 1.
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2. PRELIMINARIES. A general analysis of the speed of convergence of the mid-
point and trapezoidal rules for smooth periodic functions requires a good dose of ad-
vanced calculus. In the literature one finds three approaches: (a) Fourier series [7,
p. 155], (b) residue calculus [9, p. 211], and (c) the Euler-Maclaurin summation for-
mula [2, p. 285].

All three of these approaches require background that the typical first-year calculus
student lacks. For that matter, it cannot be taken for granted that a numerical anal-
ysis student at the junior or senior level will know much about these topics either.
This leaves the instructor with only one recourse to explain the observed discrepancy
between the actual error and the theoretical error bound: hand-waving.

The author’s own effort goes something like this: “Interpret the integral as the area
under the graph of f (x), and consider the trapezoidal rule. In those regions where
the graph is concave up (respectively, down) the trapezoids overestimate (respectively,
underestimate) the true area. When the function is periodic and one integrates over
one full period, there are about as many sections of the graph that are concave up as
concave down, so the errors cancel. This leaves one with a much better approximation
than would have been the case had the function been monotonic.”

This explanation satisfies most students, and they go on their way to more inter-
esting things. Thankfully, however, there are some students who would like to know
more, and this note was written for them.

We shall present a series of examples, almost all of which have the property that
the error in the trapezoidal and midpoint rules can be computed explicitly. These ex-
amples were selected to illustrate a variety of convergence behaviors, most of them
quicker than the typical 1/N 2 given by (2) and (3). We shall see algebraic convergence
like 1/N 4, geometric convergence like r N (with 0 < r < 1), as well as the superfast
convergence described by (6). A complete list of examples, arranged in increasing or-
der of speed of convergence, is given in Table 1. (All integrals are defined on [0, 2π],
and N is the number of subintervals in the integration rule.)

TABLE 1. Examples

Essential
Example convergence rate Section

f2(x) = sin(x/2) 1/N 2 4
f7(x) = e−x2

1/N 2 8
f3(x) = sin3(x/2) 1/N 4 4
f6(x) = e(cos x−1)/(cos x+1) e−(3/2)N2/3

7
f4(x) = 1/(a − cos x), a > 1 r N (0 < r < 1) 5
f5(x) = ea cos x 1/N N 6
f1(x) = cos kx , k an integer exact (N > k) 3

Our principal aim was to write this paper in such a way that it may serve as sup-
plementary reading for the first courses in integral calculus or numerical analysis. For
this reason we shall present the examples in increasing order of mathematical sophis-
tication (as opposed to increasing speed of convergence).

To read Sections 2–5 the student requires nothing more than familiarity with geo-
metric series, partial fractions, and Euler’s formula eiθ = cos θ + i sin θ . The strategy
we follow in Section 5 is based on Fourier series, but we shall assume no previous
exposure to this technique. Termwise integration of such series will be used, and this
we will have to ask the first-year student to accept on good faith.
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The examples of Sections 6 and 7 have a more advanced flavor, in that they assume
some familiarity with special functions. Section 6, in which the textbook example (1)
will be analyzed, requires a passing acquaintance with Bessel functions. In Section 7
we shall encounter Meijer’s G-function. The author tried his best to demonstrate the
peculiar convergence behavior of Section 7 using more familiar functions, but was
unsuccessful. This section is therefore strictly for the aficionado.

The secondary aim of this article was to provide examples to researchers and ad-
vanced students to supplement the material in [11]. The authors of that paper made
a commendable effort to give a characterization of the speed of convergence of the
trapezoidal rule for different classes of functions, but they did not provide many ex-
amples.

The main formulas in what follows come from considering the integrals

I (eikx) =
∫ 2π

0
eikx dx,

where k is an integer and i2 = −1.
Suppose first that k �= 0. By using the fact that e2π ik = 1, we obtain

∫ 2π

0
eikx dx = 1

ik
eikx

∣∣∣∣
2π

0

= 1

ik

(
e2π ik − 1

) = 0.

When k = 0 the integral simplifies to
∫ 2π

0 1 dx = 2π . We therefore conclude that

I (eikx) =
{

2π for k = 0,

0 for k = ±1,±2, . . . .
(7)

Let us now also compute numerical approximations to these integrals. Applying the
trapezoidal rule yields

TN (eikx) = h

(
1
2 +

N−1∑
j=1

eikx j + 1
2 e2π ik

)
= h

N−1∑
j=0

e2π ik j/N . (8)

The sum on the right is a finite geometric series, with common ratio e2π ik/N . We can
evaluate it explicitly to obtain

TN (eikx) = h
1 − e2π ik

1 − e2π ik/N
.

Since k is an integer, the numerator is always zero. The denominator may also be zero:
this occurs whenever k is an integer multiple of N . In the latter case, the trapezoidal
sum simplifies to TN (eikx) = h

∑N−1
j=0 1 = hN = 2π . We infer that

TN (eikx) =
{

2π for k = 
N (
 = 0,±1,±2, . . .),

0 otherwise. (9)

Turning to the midpoint rule, we note that

MN (eikx) = eikh/2TN (eikx). (10)
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Since eikh/2 = eiπ
 = (−1)
 when k = 
N , we conclude that

MN (eikx) =
{

2π(−1)
 for k = 
N (
 = 0,±1,±2, . . .),

0 otherwise. (11)

We are ready for our first example.

3. EXAMPLE 1 (Perfect Convergence). For each numerical integration rule there
exists a class of functions with the property that the rule integrates all functions in this
class exactly.5 All these functions would, of course, provide examples of “faster than
average” convergence.

For the trapezoidal and midpoint rules this class of functions includes the linear
functions f (x) = mx + c. It also includes any function that is antisymmetric with
respect to the line x = π , i.e., functions f for which f (x) = − f (2π − x). For such
functions both the trapezoidal and midpoint rules yield the correct value of zero.

Important special cases are the functions sin kx , where k is any integer. The symme-
try argument of the previous paragraph may be invoked to show that sin kx is integrated
exactly for each k. Another important special case comprises the functions given for
integral values of k by

f1(x) = cos kx, 0 ≤ x ≤ 2π.

If k = 0 the function reduces to the constant 1, which is integrated exactly, so we
consider only integers k ≥ 1. We note that TN ( f + g) = TN ( f ) + TN (g). Hence

cos kx = 1
2

(
eikx + e−ikx

) �⇒ TN ( f1) = 1
2

(
TN (eikx) + TN (e−ikx)

)
.

By using the formula (9) one concludes that the exact value I ( f1) = 0 is obtained
when k is not an integral multiple of N ; in particular, this happens when N > k. Sim-
ilar arguments apply to the midpoint rule.

On the basis of these examples one might conjecture that for a function to be in the
“perfect convergence” class, symmetry is necessary. This appears not to be the case.
In [11, p. 124] a function is cited that has no apparent symmetry properties, yet is
integrated exactly by the trapezoidal rule. Involving the Möbius function of number
theory, it is one of those fractal-like functions that are continuous but not absolutely
continuous.

4. EXAMPLES 2 AND 3 (Algebraic Convergence). From perfect convergence we
move to the rather slow 1/N 2 type of convergence that is typical for both the midpoint
and trapezoidal rules.

Consider

f2(x) = sin(x/2), 0 ≤ x ≤ 2π. (12)

The function sin(x/2) has period 4π , not 2π . We obtain 2π-periodicity by thinking
of (12) as the restriction of the function | sin(x/2)| to the interval [0, 2π].

Proceeding as in the previous section, we observe that

sin kx = 1
2i

(
eikx − e−ikx

) �⇒ TN ( f2) = 1
2i

(
TN (eikx) − TN (e−ikx)

)
. (13)

5We disregard, of course, the effects of roundoff error.
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Each of the trapezoidal sums in parentheses is essentially a finite geometric series that
we compute in a manner similar to the calculation that leads from (8) to (9). By using
the fact that eπ i = −1, we obtain

TN (ei x/2) = h

(
1
2 +

N−1∑
j=1

ei x j /2 + 1
2 eπ i

)
= h

N−1∑
j=1

eπ i j/N .

Applying geometric series formulas to the sum on the right yields

N−1∑
j=1

eπ i j/N = 1 + eπ i/N

1 − eπ i/N
= e−π i/(2N ) + eπ i/(2N )

e−π i/(2N ) − eπ i/(2N )
= i cot

π

2N
.

The trapezoidal sum TN (e−i x/2) can be handled similarly. We conclude that

TN (e±i x/2) = ±hi cot
π

2N
.

Substituting these formulas into (13), we obtain an explicit formula for the trapezoidal
sum, namely,

TN ( f2) = 2π

N
cot

π

2N
.

We compute the true value of the integral directly as I ( f2) = 4 and arrive at an exact
expression for the error:

I ( f2) − TN ( f2) = 4 − 2π

N
cot

π

2N
.

The magnitude of this error can be determined by using the Taylor expansion

cot x − 1

x
= − x

3
− x3

45
− · · · , 0 < |x | < π (14)

(see Abramowitz and Stegun [1, p. 75]). We conclude that

I ( f2) − TN ( f2) ∼ π2

3

1

N 2
.

This estimate improves slightly on the standard estimate (3), which yields the bound
π3/(6N 2) when K = 1/4. But both predict essentially a convergence rate of 1/N 2,
which is the typical situation.

Faster convergence is obtained, however, when we turn to the function

f3(x) = sin3(x/2), 0 ≤ x ≤ 2π. (15)

We again interpret this as the restriction to [0, 2π] of the 2π-periodic function
| sin(x/2)|3. (The reader may wonder why we chose to jump from the function
sin(x/2) to the function sin3(x/2), skipping the function sin2(x/2). Well, sin2(x/2) =
(1 − cos x)/2 and according to Section 3 both the trapezoidal and midpoint rules are
able to integrate this exactly when N ≥ 2.)
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Using the left side of (13), here with k = 1/2, we compute

sin3(x/2) = i

8

(
e3i x/2 − 3ei x/2 + 3e−i x/2 − e−3i x/2

)
.

Proceeding in the same manner as earlier, we get

TN ( f3) = i

8

(
TN (e3i x/2) − 3TN (ei x/2) + 3TN (e−i x/2) − TN (e−3i x/2)

)
= π

2N

(
3 cot

π

2N
− cot

3π

2N

)
.

Direct integration gives I ( f3) = 8/3, and an appeal to (14) shows that

I ( f3) − TN ( f3) ∼ −π4

30

1

N 4
.

The factor 1/N 4 confirms that the convergence is faster than typical. The standard
error bound is of limited use, as the following table shows (computed with K = 3/4).

N |I ( f3) − TN ( f3)| Error bound (3)

10 3.3 × 10−4 1.6 × 10−1

20 2.0 × 10−5 3.9 × 10−2

40 1.3 × 10−6 9.7 × 10−3

The reader will want to know what causes the different convergence rates in these
two examples. We shall postpone such general discussions until Section 7, but for now
we note that the 2π-periodic functions | sin(x/2)| and | sin(x/2)|3 have jump discon-
tinuities in, respectively, their first and third derivatives (at x = 0 and x = 2π). The
respective convergence rates are 1/N 2 and 1/N 4. The more continuous derivatives, the
quicker the convergence.

To conclude this section we remark that we have focussed here on the trapezoidal
rule, but explicit error formulas can also be obtained for the midpoint rule. By us-
ing the connection between the two rules summarized by (10), one deduces that each
cotangent in the trapezoidal rule formulas should be replaced by the cosecant for the
midpoint rule. Using the Taylor series of csc x − x−1 (as in [1, p. 75]), the asymptotic
error behavior is found to be

I ( f2) − MN ( f2) ∼ −π2

6

1

N 2
, I ( f3) − MN ( f3) ∼ 7π4

240

1

N 4
.

In the next section we shall see an example of much quicker convergence.

5. EXAMPLE 4 (Geometric Convergence). Let a be a constant and consider

f4(x) = 1

a − cos x
, 0 ≤ x ≤ 2π.

To avoid singular integrals, we only treat the case where a > 1.
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Like the textbook example (1), this function is 2π-periodic and smooth, and there-
fore one expects high accuracy. This is confirmed by the following table (computed
with a = 2, I ( f4) = 2π/

√
3, K = 1).

N I ( f4) − MN ( f4) Error bound (2)

4 3.7 × 10−2 6.5 × 10−1

8 1.9 × 10−4 1.6 × 10−1

16 5.1 × 10−9 4.0 × 10−2

What we intend to do is to derive an explicit formula for the errors in the middle
column. This will show that the error decreases at essentially a geometric rate r N for
some positive r < 1 that we shall determine.

To this end, we express f4(x) as

f4(x) = 1

a − (ei x + e−i x)/2
= −2

ei x

(ei x − r)(ei x − 1/r)
, (16)

where r satisfies

r 2 − 2ar + 1 = 0.

We may choose to work with either root of this quadratic, so we pick

r = a −
√

a2 − 1, (17)

which satisfies 0 < r < 1.
Consider the final expression in (16) as a rational function in the variable z = ei x ,

and expand it in partial fractions

f4(x) = 2
r

r 2 − 1

[
1

1 − rei x
+ 1

1 − re−i x
− 1

]
.

Since |re±i x | = |r | < 1 for each real value of x , the first two terms inside the square
brackets may be expanded as geometric series

1

1 − re±i x
=

∞∑
k=0

rke±ikx .

Finally, we obtain

f4(x) = 2
r

1 − r 2

[
1 +

∞∑
k=1

rkeikx +
∞∑

k=1

rke−ikx

]
. (18)

Students who have had a course in advanced calculus or analysis will recognize
in the right-hand side of (18) the Fourier series of the function f4(x).6 We shall not
make any use of the properties of Fourier series, except to note that it is in fact valid
to integrate this particular series termwise with respect to x . Doing so yields, as an

6The function f4(x) is related to the Poisson kernel that appears in the solution of boundary value problems
defined on the circle.
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unexpected payoff, the exact value of the integral, namely,∫ 2π

0
f4(x) dx = 4π

r

1 − r 2
(r = a −

√
a2 − 1), (19)

where we have used (7).
One may likewise apply the midpoint formula (11) termwise to (18) to obtain

MN ( f4) = 4π
r

1 − r 2

[
1 + 2

∞∑

=1

(−1)
r 
N

]
.

Subtracting this expression from (19) yields an explicit formula for the error

I ( f4) − MN ( f4) = −8π
r

1 − r 2

∞∑

=1

(−1)
r 
N = 8π
r

1 − r 2

r N

1 + r N
. (20)

The formula for the trapezoidal rule is similar, except for the factor (−1)
, i.e.,

I ( f4) − TN ( f4) = −8π
r

1 − r 2

r N

1 − r N
. (21)

A similar result was obtained in [5], but there the authors used complex contour inte-
gration in their derivation.

For large N we may use the approximation 1 ± r N ∼ 1 to conclude that both the
midpoint and the trapezoidal rule converge at essentially the exponential rate r N . The
smaller r (or the larger a), the quicker the convergence.

When a � 1 (respectively, a ≈ 1) the integral assumes small (respectively, large)
values and it is more meaningful to look at the relative (or percentage) error, which is

|I ( f4) − MN ( f4)|
|I ( f4)| = 2

r N

1 + r N
.

The relative error and the number d of correct significant digits are roughly related
by [2, p. 18]

2
r N

1 + r N
≈ 1

2
× 10−d .

For large N this yields

d ≈ (− log10 r)N .

By doubling N the number of correct significant digits approximately doubles, which
affirms the quick convergence.

6. EXAMPLE 5 (Super-geometric Convergence). Here we increase the required
background a notch, by requiring some familiarity with Bessel functions.

Let a be a positive constant, and consider the function

f5(x) = ea cos x , 0 ≤ x ≤ 2π.

It includes the textbook example (1) as a special case.
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We may also represent this function as a series of the form (18). Our point of depar-
ture is the generating formula for the modified Bessel functions of the first kind, In(x),
defined in [1, p. 376] by

ex(t+t−1)/2 =
∞∑

k=−∞
Ik(x)t k.

From the substitutions x �→ a and t �→ ei x follows

ea cos x = I0(a) +
∞∑

k=1

Ik(a)eikx +
∞∑

k=1

Ik(a)e−ikx . (22)

We have used the fact that Ik(x) = I−k(x), k = 1, 2, . . . .

Integrating term-by-term yields the true value of the integral as7

∫ 2π

0
ea cos x dx = 2π I0(a). (23)

Summing (22) term-by-term yields the midpoint approximation to this integral as

MN ( f5) = 2π I0(a) + 4π

∞∑

=1

(−1)
 I
N (a),

for which the error is

I ( f5) − MN ( f5) = −4π

∞∑

=1

(−1)
 I
N (a). (24)

The error formula for the trapezoidal rule is identical except for the factor (−1)
.
The Bessel functions Ik(x) decay rapidly for fixed x as k → ∞; namely, from [1,

pp. 365 and 375] we learn that

Ik(x) ∼ 1√
2πk

(ex

2k

)k
.

This means that we may retain only the first term in (24), i.e.,

I ( f5) − MN ( f5) ∼ 4π IN (a)

∼ 2

(
2π

N

)1/2 ( ea

2N

)N
,

which is how we arrived at the estimate (6).
The convergence rate is essentially of the form r N , with r = (ea)/(2N ). Since

r → 0 as N → ∞, the convergence rate is often referred to as super-geometric (see
Boyd [3, p. 32]).

7. EXAMPLE 6 (Sub-geometric Convergence). Mainly of academic interest, our fi-
nal example assumes particular knowledge of Fourier series and special functions.

7The result (23) is not to be sneered at. Only one of the three CASs we tried was able to carry out this
integration in symbolic form, even when we put a = 1.
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Consider

f6(x) =
{

e(cos x−1)/(cos x+1) 0 ≤ x ≤ 2π, x �= π,

0 x = π.
(25)

This function is 2π-periodic and, as can be checked without great difficulty, is in-
finitely differentiable. High accuracy is to be expected when its integral is approxi-
mated by the trapezoidal or midpoint rules, and that this is indeed the case may be
seen in the table following relation (30). (To compute the error, we have used a CAS to
establish that I ( f6) = 2eπ(1 − erf 1) = 2.68658684 . . . , where erf is the error func-
tion defined in [1, p. 297].)

An explicit formula for the error may be derived by assuming a Fourier series ex-
pansion of the form

f6(x) =
∞∑

k=−∞
ckeikx , (26)

where the Fourier coefficients are given by

ck = 1

2π

∫ 2π

0
f (x)e−ikx dx . (27)

Through repeated integration by parts, it can be deduced from (27) that the Fourier
coefficients satisfy ck = O(|k|−
) for each integer 
.

Integrating and then summing both sides of (26) leads to

I ( f6) = 2πc0, TN ( f6) = 2πc0 + 2π

∞∑

=−∞

�=0

c
N ,

where we have used (7) and (9). The error is

I ( f6) − TN ( f6) = −2π

∞∑

=−∞

�=0

c
N . (28)

The midpoint error is similar, except for the usual (−1)
 factor.
The Fourier coefficients of the function f6(x) can in fact be computed explicitly in

terms of Meijer’s G-function. We omit the details but refer the reader to [15, p. 1501]
and [16, pp. 125–126]. The result is

ck = e√
π

G30
23

(
1
∣∣∣ 1 − k, 1 + k

1, 1
2 , 0

)
, k = 0,±1,±2, . . . .

Since these coefficients decay quite rapidly (recall the remark that follows (27)), we
retain only the two terms corresponding to 
 = ±1 in (28) to estimate the error as8

I ( f6) − TN ( f6) ∼ −4 e
√

π G30
23

(
1
∣∣∣ 1 − N , 1 + N

1, 1
2 , 0

)
. (29)

An asymptotic estimate of the function on the right has been carried out by the author
in [15, pp. 1501–1510], and the result is

8The G-function in the error estimate (29) may be computed in Maple by

MeijerG([ ], [ ], [1-N, 1+N], [1, 1/2, 0], [ ], 0).
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I ( f6) − TN ( f6) ∼ (−1)N+18(π/3)1/2e2/3 N−2/3

× cos
(

33/2

2 N 2/3 + π

3

)
exp

(− 3
2 N 2/3

)
. (30)

These estimates are sharp, even for relatively small N :

N |I ( f ) − TN ( f )| |Estimate (29)| |Estimate (30)|
10 2.8 × 10−3 2.8 × 10−3 2.8 × 10−3

20 7.7 × 10−6 7.6 × 10−6 7.8 × 10−6

40 3.3 × 10−8 3.3 × 10−8 3.3 × 10−8

The speed of convergence is essentially determined by the exponential term
e−(3/2)N2/3

in (30). It indicates a convergence rate quicker than the algebraic con-
vergence of Section 4, but not quite as fast as the geometric convergence of Section 5.
This is often referred to as sub-geometric convergence (see Boyd [3, p. 32]).

Note also the oscillatory cosine term in (30). It may assume values close to zero,
which would imply high accuracy. The zeros of the cosine term occur where

N =
[

2π

33/2

(
6k − 5

6

)]3/2

, k = 1, 2, 3, . . . .

By taking the nearest integer one obtains a sequence of values, namely,

N = 2, 4, 7, 11, 16, 20, 26, 31, 37, 43, 50, 56, 64, 71, 79, . . . ,

that should yield particularly small errors. For example, with N = 31 one gets I ( f6) −
T31( f6) ≈ 7.5 × 10−9. Increasing the number of subintervals to N = 33 yields the
significantly larger error I ( f6) − T33( f6) ≈ −2.7 × 10−7. The author knows of no
other class of functions that exhibits this nonmonotonic pattern of convergence.

8. GENERAL ERROR FORMULAS. The examples presented in the previous sec-
tions were special in that we were able to derive, in most cases, explicit formulas for
the error.9 For general integrals the best one could hope to do is estimate the error. To
learn more about such error estimates the student is encouraged to consult the literature
(for example [2], [7], or [9]).

One of those references, Gautschi [7, p. 155], uses the Fourier series as basis for
a convergence analysis of the trapezoidal rule. This is essentially the approach we
followed in Sections 5–7. When the Fourier coefficients decay to zero quickly, as
they do for functions f4(x), f5(x), and f6(x), then the formula (28) provides a good
estimate for the error. On the other hand, when the ck approaches zero only alge-
braically, like 1/|k|
, then (28) should not be used as it stands. To see why not, con-
sider for example the function f (x) = e−x defined on [0, 2π]. Its Fourier coefficients
are ck = (1/2π)(1 − e−2π)/(1 + k i), which decay like 1/k. As a result, the series
in (28) does not converge. Yet both the midpoint and trapezoidal rule approximations
converge according to the standard 1/N 2. (The situation can be remedied by consider-
ing only the cosine-part of the Fourier expansion, as in [7, p. 155].)

An alternative for functions of relatively low continuity is the Euler-Maclaurin sum-
mation formula, which we state here for a function f (x) that is not necessarily peri-
odic. The proof may be found in Atkinson [2, p. 285].

9If one thinks about it, an explicit formula for the error means one can obtain the value of the integral
exactly, and numerical integration would not be necessary in the first place!
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Theorem 1. Let m ≥ 0, N ≥ 1, and define h = 2π/N, x j = jh for j = 0, 1, . . . , N.
Further assume that f (x) is 2m + 2 times continuously differentiable on [0, 2π] for
some m ≥ 0. Then, for the error in the trapezoidal rule defined by (3),

I ( f ) − TN ( f ) = −
m∑

k=1

B2k

(2k)!h
2k
[

f (2k−1)(2π) − f (2k−1)(0)
]

(31)

− 2πh2m+2 B2m+2

(2m + 2)! f (2m+2)(ξ)

for some ξ in [0, 2π]. The Bk are the Bernoulli numbers [1, p. 804].

The typical case corresponds to m = 0, in which the sum in (31) is void. Using the
fact that B2 = 1/6, the formula reduces to

I ( f ) − TN ( f ) = −h2 π

6
f (2)(ξ),

which leads to the standard error bound (3). Note, however, that if the odd derivatives
of f (x) at x = 0 and at x = 2π are equal, the terms in the sum in (31) cancel, and the
convergence may be quicker than usual.

This was the situation for the function f3(x) = sin3(x/2). Since f ′
3(0) = f ′

3(2π),
but f ′′′

3 (0) �= f ′′′
3 (2π), one may take m = 1 in the Euler-Maclaurin formula, which

then predicts a convergence rate of order h4 or 1/N 4. By contrast, the function f2(x) =
sin(x/2) does not have equal first derivatives at the endpoints of the interval [0, 2π],
and the regular convergence rate of 1/N 2 is obtained.

The Euler-Maclaurin formula raises the interesting possibility of certain functions
posing as “pseudo-periodic” functions, at least in finite precision arithmetic. Consider,
for example, the nonperiodic function

f7(x) = e−x2
, 0 ≤ x ≤ 2π. (32)

Approximations by the trapezoidal rule yield the errors listed in the following table
(once again in comparison with the standard error bound (3), with K = 2):

N |I ( f ) − TN ( f7)| Error bound (3)

6 2.2 × 10−4 1.1 × 100

8 2.0 × 10−7 6.5 × 10−1

10 2.5 × 10−11 4.1 × 10−1

The function (32) does not satisfy f ′
7(0) = f ′

7(2π), and therefore one expects the
typical convergence rate 1/N 2. The numerical results in the table, however, seem to
indicate much quicker convergence. To see why, note that all odd derivatives at x = 0
vanish, while at x = 2π many of them are negligible: f ′

7(2π) ≈ 10−16, f ′′′
7 (2π) ≈

10−14, f ′′′′′
7 (2π) ≈ 10−12, etc. When working to about sixteen significant digits, as we

did here, the derivative terms in the Euler-Maclaurin formula cancel for all practical
purposes and the numerical results indicate a convergence rate much faster than the
expected 1/N 2. It should be kept in mind, however, that the numbers in the middle
column represent transient behavior. If the computations were done to higher precision
and for larger values of N , the convergence would eventually settle into the standard
1/N 2 rate.
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The argument of the previous paragraph shows why spectacular accuracy may be
achieved when the trapezoidal rule is applied to integrals of the form

I =
∫ ∞

−∞
e−x2

f (x) dx .

This observation dates back at least half a century to a paper of E.T. Goodwin [8],
which was inspired by a paper of Alan Turing [10, p. 214]. In turn, these developments
inspired Frank Stenger to develop the powerful machinery of sinc functions [12].

For periodic functions that are infinitely differentiable, like our functions f4(x),
f5(x), and f6(x), the Euler-Maclaurin formula predicts a convergence rate faster than
any power of h (or 1/N ). On the other hand, the formula is not sufficiently powerful
to determine the rate precisely. For this one has to go to methods based on analytic
function theory. Using residue calculus, for example, the following theorem may be
proved [9, p. 211].

Theorem 2. Let f : R −→ R be analytic and 2π-periodic. Then there exists a strip
D = R × (−c, c) ⊂ C with c > 0 such that f can be extended to a bounded holomor-
phic and 2π-periodic function f : D −→ C. The error for the trapezoidal rule can be
estimated by

|I ( f ) − TN ( f )| ≤ 4π
M

ecN − 1
, (33)

where M denotes a bound for the holomorphic function f on D.

This theorem says that if the 2π-periodic function f (z) is analytic in a strip
|Im(z)| < c, then geometric convergence of the form r N , with r = e−c < 1, is as-
sured. The wider the strip of analyticity, the quicker the convergence.

The functions of Sections 5 and 6 are in this class. Consider f4(z) = 1/(a − cos z),
a > 1, which has simple poles at points where cos z = a, i.e., at

zk = 2kπ ± γ i, k = 0,±1,±2, . . . ,

with γ = log(a + √
a2 − 1). The strip of analyticity is therefore determined by c < γ .

This means that the convergence rate is essentially of the form e−cN = 1/(a +√
a2 − 1)N = (a − √

a2 − 1)N , which is consistent with our exact expression for
the error (see (21)).

The textbook function f (z) = ecos z is entire; i.e., it has no singularities in the finite
complex plane. One cannot take the strip |Im(z)| < c infinitely wide, however, as M
grows unboundedly as c → ∞. In fact, a quick calculation shows that the least upper
bound for f (z) in the strip |Im(z)| < c is M = ecosh c, and substitution into (33) yields

|I ( f ) − TN ( f )| ≤ 4π
ecosh c

ecN − 1
.

A minimization argument shows that to make the right-hand side a tight bound for each
(large) value of N , a choice like c = sinh−1 N or cosh−1 N should be made. Choosing
the latter gives

|I ( f ) − TN ( f )| ≤ 4π
eN

eN cosh−1 N − 1
.
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As N → ∞ the bound on the right decreases like 4π(e/2N )N . Aside from a factor√
2π N , this is identical to the super-geometric convergence defined by (6).
The function f6(x) studied in Section 7 was a pathological case squeezed between

Theorems 1 and 2 (and that is why we chose to include it). Since f6(x) is infinitely dif-
ferentiable on [0, 2π], the Euler-Maclaurin formula predicts a convergence rate more
rapid than 1/N 
 for any 
 > 0. However, because this function has an essential singu-
larity at x = π , it is not analytic in any strip |Im(z)| < c with c > 0. This means that
the error estimate (33) cannot be applied to this situation to establish geometric conver-
gence. Indeed, the convergence rate of e−(3/2)N2/3

derived in Section 6 falls somewhere
between algebraic and geometric convergence.

Perhaps the most comprehensive attempt at classifying the speed of convergence
of the trapezoidal rule was given by Rahman and Schmeisser in [11]. They made a
convincing point that functions can be catalogued into different smoothness classes on
the basis of the speed of convergence of the trapezoidal rule.

9. CONCLUSIONS. The main theme of this essay is that, when the integrand is
smooth and periodic, the midpoint and trapezoidal rules are very efficient. Using more
sophisticated rules may not be worth the effort. One such rule is Simpson’s rule,
which normally converges at a rate 1/N 4. Typically derived by computing the area
under piecewise quadratic approximations of the function, Simpson’s rule may also be
viewed as a weighted average of the midpoint and trapezoidal rules

SN ( f ) = 2
3 MN/2( f ) + 1

3 TN/2( f ).

When this rule is applied to the function f4(x) = 1/(a − cos x), for example, the er-
ror estimates (20) and (21) show that the rate of convergence is roughly r N/2 (with
r defined by (17)). This is faster convergence than the 1/N 4 rate that is typical for
Simpson’s rule. Nevertheless, one would need about twice as many points to achieve
the same accuracy as either the midpoint or the trapezoidal rule.

One should not conclude from this, however, that the midpoint or the trapezoidal
rule beat all-comers hands down when the integrand is smooth and periodic. For
f4(x) = 1/(a − cos x), with a = 1 + ε and 0 < ε � 1, the powerful Gauss-Legendre
rule is superior, although this superiority disappears as a increases (see Davis [4,
p. 54]). If one changes the minus sign in the denominator into a plus (so that the peak
of the graph is in the middle of the interval rather than at the endpoints), then the mid-
point and trapezoidal rules remain the clear winners, as demonstrated in [5]. Numerical
results have also indicated that both the midpoint and trapezoidal rules integrate the
functions f5(x) and f6(x) better than the Gauss-Legendre rule does.

The rapid speed of convergence may be exploited in various ways. First, it may
be useful for the computation of special functions (see Luke [10, chapter 15]). The
application of these rules to the integral (23), for instance, represents a respectable
tool for computing I0(x), provided x is not too large.

Second, consider an integral for which the typical rate of convergence is the stan-
dard 1/N 2. One may attempt to improve the accuracy by a change of variables, with
the aim of making the integrand “more periodic.” Such transformation methods are
discussed in [6, pp. 107–135] and [9, p. 220].

Third, there is the Fourier spectral method. Based on the differentiation of trun-
cated Fourier series such as (26), this is a powerful method for solving differential
equations [3], [14]. When the underlying function is smooth and periodic, the rate of
convergence of the Fourier spectral method is similar to the rate of convergence of the
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trapezoidal/midpoint rules. Indeed, several of our examples can be used to quantify the
convergence curves of the spectral method displayed in [14, p. 36].

Fourth, and perhaps most importantly, is the computation of Fourier coefficients.
Applying the trapezoidal rule to the integral (27) and assuming f (0) = f (2π) yields

ck ≈ 1

N

N−1∑
j=0

f (x j)e
2π i jk/N .

Not only has our discussion shown that this is the “right” way to approximate the
integral, but the sum may be evaluated efficiently with the Fast Fourier Transform (see
Atkinson [2, p. 181] or Kress [9, p. 167]). This is an algorithm that approximates N
of the coefficients ck in asymptotically O(N log N ) algebraic operations. By contrast,
direct summation requires O(N 2) operations. The FFT has revolutionized approaches
to applications such as signal processing and digital imaging.
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