Graph Cut Segmentation
of Range Images into Planar Regions

Simon Muller and Willie Brink
Applied Mathematics
Department of Mathematical Sciences
University of Stellenbosch, South Africa
Email: {samuller, wbrink} @sun.ac.za

Abstract—We present a method for segmenting range images
into separate planar surfaces, through a novel use of graph cuts.
Our method attempts to assign an element from a discrete set
of normal vectors to every pixel in the image, in an optimal way
that considers the observed data as well as a smoothness prior.
We show results from executing our method on a standard range
image dataset and evaluate performance quantitatively. We find
that our method’s accuracy compares well with other existing
methods. Moreover, sensitivity to the single parameter that needs
to be specified appears to be quite low.

I. INTRODUCTION

Image segmentation is a common problem in the field of
computer vision. If successfully achieved, the segments can
be used as symbols in higher-level description or interpre-
tation tasks. Unfortunately the segmentation problem can be
extremely difficult, partially because successful (or accurate)
segmentation is not a well-defined concept and may have
more than one “correct” answer for a given image. The
significance of this issue is substantiated by the large variations
found when humans are tasked to segment images manually
[1]. In the case of range images the problem becomes one
of segmenting geometry instead of intensities and, as such,
becomes somewhat less subjective.

Range images, also referred to as depth images, are images
in which every pixel’s value represents the distance between
the sensor and a 3D object or scene point. Fig. 1(a) shows an
example, where distances are depicted as greyscale intensities.
We can regard range images to be much less ambiguous than
colour images, since the colour of a pixel can be influenced
by an intricate combination of lighting conditions, texture
and reflection properties of surfaces, the viewing angle, etc.
Common methods for creating non-synthetic range images
include stereo vision, time-of-flight and structured light. Range
imaging has also become more accessible with the recent
development of the Kinect (an inexpensive, consumer grade,
real-time structured light sensor).

A typical approach to segmentation is to identify object
boundaries, or edges. In range images surface edges are
commonly categorized into two types: jump edges and crease
edges [2]. Jump edges occur at depth discontinuities in the
range data. Crease edges occur where differently orientated
surfaces meet, and are harder to identify because the surfaces
have the same depth along such an edge. The only way to

identify crease edges is to consider change in surface normals,
which can be problematic due to small amounts of noise in the
range image translating to more extreme noise in the normals.

Range image segmentation has the goal of segmenting the
discrete points in a range image into regions of points that
belong to the same surface. Current approaches seem to either
use region growing and clustering, or focus on edge detection
[3]. A notable exception is the work by Han et al. [4].
Although they also incorporate edge detection, it is used only
to improve execution time. Similar to our work, they set up and
minimize an energy function that describes how correct a given
segmentation seems. Where we use graph cuts to optimize,
they employ simulated annealing.

An automated framework for quantitatively evaluating re-
sults from range image segmentation algorithms was devel-
oped by Hoover et al. [2], [5]. It provides a methodology
for comparing results against ground truth by defining and
measuring five performance metrics. A dataset of range images
captured by different methods is also provided. All of these
images contain scenes that consist only of polyhedral shapes
and should therefore segment into planar surfaces (the image
in Fig. 1(a) comes from this set). Some follow-up papers build
upon their work by doing the same for images containing
curved surfaces [6], [7].

The segmentation method we propose in this paper works by
labelling every pixel with one of a number of normal vectors.

(a) input range image

(b) our segmentation

Fig. 1. A range image visualized as a greyscale image, where lighter values
represent larger depths, and a result from applying our proposed segmentation
algorithm on this image.

We use graph cuts to find a (near) optimal labelling, in an
attempt to simultaneously remain close to the observed normal
vectors and enforce smooth label transition between neigh-
bouring pixels. A key contribution is our way of incorporating
jump edges in the pixel neighbourhood structure. Finally we
segment, by essentially searching for connected components
in the labelling.

Brief background on graph cut optimization is provided in
section II, followed by a description of our method in section
III. Results obtained by our algorithm, also evaluated using
the framework mentioned above, are given in section IV and
we conclude in section V.

II. GRAPH CUT OPTIMIZATION

Graph cuts as a technique for optimization originated as a
method for finding optimal binary segmentations of images,
and has since been extended for multi-label optimization in a
wide variety of computer vision problems ranging from image
restoration to stereo correspondence. We chose to utilize graph
cuts in our range image segmentation method. Our work is
based on the theory and implementation developed by Veksler,
Boykov, Zabih and Kolmogorov [8], [9], [10].

A. The labelling problem

Many computer vision problems, including image restora-
tion, stereo correspondence, segmentation and multiview re-
construction, can be stated as labelling problems. For a set of
sites (usually pixels) P = {1,2,...,n} and a set of labels
L ={t,..., 0}, the labelling problem is that of assigning a
label from L to every site in the set P. This mapping from P
to L is called a labelling, or configuration, and is denoted by
f=Af1,..., fn} where f, € L for every p € P. The set F
consists of all k™ possible configurations.

An energy function E(f) can be used to evaluate a particu-
lar labelling f, such that the problem of finding some optimal
labelling then becomes one of minimizing the energy function
over F.

B. Energy functions

Energy functions of the form

E(f) = Edata(f) +A- Eprior(f) (1)

are popular for computer vision problems. The terms encode
information about how closely a configuration matches the
observed data, and how closely it matches prior assumptions
about the dependency between sites. The constant A allows for
the adjustment of relative importance carried by each term.

The minimization of E requires a global optimization
which, as it stands, is a significant problem for such a general
formula. Moreover, due to the nature of P and L, the search
space is typically extremely large and high dimensional. While
using a more specific function limits its possible uses, it
may enable the use of efficient methods for finding a global
minimum (or “good” local minimum).

C. Minimization by graph cuts

Graph cut optimization involves setting up a graph structure
whose minimum cut (a subset of the edges, with minimum
total edge weight, that if removed splits the graph into two
disjoint components) coincides with the global minimum of
a specific energy function [11]. The real strength of this
approach lies in the fact that the minimum cut problem can
be solved fast and efficiently, by solving a dual maximum
flow problem, hence the minimization of the energy function
becomes practically feasible.

A single cut optimizes a binary labelling. When L consists
of more than two labels it becomes necessary to perform
multiple graph cuts iteratively, traversing the solution space in
some way, and global optima are no longer guaranteed. How-
ever the work of Veksler [8] assures that provably good local
optima, with respect to large label swap or expansion moves,
are attainable with a relatively small number of iterations.

The graph cuts framework we are using considers energy
functions of the form

E(f)=Y D)+ >, Vipgy(Fforfs) @

peP {p,aYeN

We assume here that A is included in the second term. D, (f,)
determines the data cost for how much the assigning of label
fp to pixel p disagrees with the observed data. The prior term
assumes that the structure of the scene has some uniformity
or smoothness so that Vi, 1 (fp, f;) is now a smoothness
cost determined for pairs of neighbouring pixels, as defined
by the neighbourhood system A. If the smoothness cost is a
semi-metric function, a-G swap moves can be performed in
attempting to optimize the energy function. If the smoothness
cost is strictly metric, the more efficient a-expansion move,
with better optimality properties, can be used [8].

III. OUR METHOD

The essence of our range image segmentation method con-
sists of a multi-label optimization by graph cuts. The energy
function E is set up specifically such that its minimum is
attained at a configuration that will segment the image into
planar surfaces. The set of labels will be a discretization
of possible surface normals. For each pixel in the range
image we calculate a normal vector from the depth data, in
order to define the data term in E. With the assumption that
neighbouring pixels are likely to be on the same planar surface,
and the fact that points on a plane have the same normal vector,
we can set up the smoothness term accordingly.

The energy function thus specified enables us to segment
the range image by surface normals, making our algorithm
theoretically capable of handling all crease edges as well
as jump edges between surfaces with different orientations.
In order to also include jump edges between surfaces with
approximately the same orientation, but at different depths,
we modify the neighbourhood structure A that will be used
in the graph cut optimization.

We proceed with a more detailed explanation of the various
components of our method.

A. Calculating surface normals from the data

We calculate the local surface normal at each pixel of the
range image in a simple way. A pixel’s 4-connected neighbours
are used to create two vectors, and their normalized cross
product gives a normal vector associated with that pixel. If
necessary we flip the vector to ensure that all normal vectors
have the same sign along the depth axis (i.e. they all point
towards, or they all point away from, the sensor). Note that
here we need to use metric 3D coordinates associated with the
pixels which should be available under the assumption that the
range sensor is properly calibrated.

While more complex and noise resistant methods can be
used, such as fitting least squares planes over larger neigh-
bourhoods, we found that it is not necessary. The graph cut
optimization step should be able to handle noise in the data
quite well and, in fact, fitting normal vectors to larger neigh-
bourhoods may lead to excessive and unwanted smoothing
particularly around edges in the data.

B. Discretizing normal vectors and defining labels

In our case the labelling problem becomes one of assigning
a normal vector to every pixel. This idea presents two problems
within the framework of graph cuts. Firstly, the continuous
space of possible normal vectors needs to be discretized so
that it can be mapped to a finite number of labels. Secondly,
every label should be associated with a single index so that
we can write the label set as {{1, ..., {;}, however the space
of possible normal vectors, in our case points on the unit
semi-sphere, is described by two parameters (e.g. elevation
and azimuth angles).

The first of these problems is dealt with by distributing
k points on the surface of the semi-sphere. There are many
different existing ways in which this distribution can be
performed [12]. For the purposes of illustration we opt for
a simple distribution that is regular in the elevation-azimuth
parameter space. Fig. 2 illustrates. Note that our core method
permits any discretization of the normal vector space (some
may be more sensible than others) and not specifically the one
mentioned and used here.

Fig. 2. A possible distribution of points on the semi-sphere is to space them
regularly in the elevation (6) and azimuth (¢) domain. Normal vectors, which
will serve as labels, are described by (6, ¢) pairs.

It should also be noted that some normal vectors may be
more likely to occur in range data than others. Our elevation-
azimuth discretization produces vectors more closely spaced at
0 ~ /2, which may be desirable. We also realize that surface
normals perpendicular to the principal axis of the range sensor
will be difficult, if not impossible, to measure and we may
therefore omit normal vectors for which 6 = 0 from further
consideration.

It remains to define an ordering of the discrete set of normal
vectors. In our implementation we decided to resolve ¢, which
can be an element of [0, 27), into 32 equally spaced nodes and
6, which can be in [0, 7/2], into 8. At § = /2 we need only
one vector (not 32) so that we end up with 8 x 32 — 31 = 225
normal vectors. We now simply map these 225 vectors to the
integers 1,2,...,225, in some specific order, to arrive at our
label set. It should be stressed that such a mapping does not
necessarily imply that proximity in the labels will mean that
those normal vectors are close to one another.

C. Setting up an energy function

Next we define an energy function, which will be of the
form given in equation 2, such that its minimum will coincide
with our goal of segmenting the range image into planar
surface regions. In order to set up the function we must
specify a data term and a smoothness term, consider the
relative importance between these two terms, and also build a
neighbourhood structure over the pixels.

1) Data term: The data term in the energy function de-
termines penalties for assigning certain labels to pixels. In
our case it must encapsulate, for every pixel p, the difference
between the proposed label f,, and the normal vector calcu-
lated directly from the data. We define D,(f,), i.e. the cost of
assigning label f, to pixel p, to be the positive angle between
the normal vector associated with label f, and the one given
by the data. We represent this angle in degrees, but we may
just as well have chosen radians. Any scale change in either the
data term or the smoothness term can always be compensated
for by scaling the A parameter accordingly.

2) Smoothness term: We have defined our labels to corre-
spond to surface normals and, if we limit our input data to
range images containing only planar or approximately planar
surfaces, it is reasonable to assume that neighbouring pixels
are likely to have the same normal vector and therefore the
same label. Furthermore we were forced to map a 2-parameter
set of normal vectors to a 1-dimensional set of indices which
makes it hard to define a metric function that varies smoothly
over those indices. In light of these arguments we opt for a
piecewise constant prior,

Vipay = A Upqy - 0(fp # fo) 3)

where uy, o is the edge weight between two neighbouring
pixels (dealt with in the next section) and

17 lf fp?éfqv

0, otherwise.

6(fp # fa) = {)

This smoothness function will assign a penalty to neighbouring
pixels which have different labels, and that penalty is constant
for any two different labels, which amounts to a prior assump-
tion that the scene contains significant regions over which the
labelling is constant (i.e. planar surfaces). It is important to
note also that this prior is invariant with regards to the specific
ordering of labels, which is preferable because the assigning of
1-dimensional indices to the 2-parameter set of normal vectors
will always be somewhat arbitrary.

Finally we note that our smoothness cost is a metric func-
tion, allowing us to perform a-expansion moves [8] iteratively
in our graph cuts optimization of the energy function.

3) The value of A: An ideal value for A, the parameter
that adjusts relative importance between the data term and
smoothness term, is related to how well the normal vectors
obtained purely from the data fit our prior assumptions about
smoothness. Factors to take into consideration when selecting
A include the level of detail in the scene, i.e. the amount and
size of the scene’s planar constituents, as well as the severity of
noise to be expected in the captured data. In our experiments
A will be the only parameter that we change, and we will
investigate its effect on the results obtained.

D. Defining a neighbourhood structure

The only issue remaining in our graph cuts formulation is
that of defining a neighbourhood structure over the pixels in
the range image, meaning that we need to specify which pairs
of pixels {p, ¢} belong to N\.

We can choose A to be the commonly used 4-connected
neighbourhood structure, where every (interior) pixel is con-
nected to the pixels immediately above and below, to the left
and to the right of it (pixels on the boundary will obviously
have less than 4 neighbours). Here all edges carry equal
weight, meaning that we assign a constant value to each u,, 4.
This structure may already be sufficient and, coupled with our
smoothness term, is capable of capturing our assumption about
labels likely to be the same for pixels in close proximity to
one another.

The simple 4-connected neighbourhood structure can, in
theory, correctly handle crease edges where the change in
surface orientation is large enough for the smoothness term to
lose its dominance over the data term. The same applies for
jump edges between surfaces with different normals. However,
situations may arise where a jump edge occurs between two
parallel (or nearly parallel) surfaces separated only in depth.
Those surfaces have the same (or approximately the same)
normal vector and our optimization procedure will combine
them into one region unknowingly, thereby failing to detect
the jump edge.

Luckily it turns out that jump edges are quite easy to
detect in range images. All the significant discontinuities in a
range image represent valid jump edges, and we found that a
simple edge detection technique, such as convolution with the
Sobel masks followed by morphological thinning and bridging,
has the ability to deliver crystal clear jump edges (it may

be necessary to suppress noise first with an edge preserving
median filter [13]).

We now simply remove from A all the connections to every
jump edge pixel found (or, equivalently, we set u,, = 0
for any identified jump edge pixel p or ¢). Note that this
will have the effect of also breaking connections between
pixels on either side of a jump edge, thus no longer enforcing
smoothness across that edge. Every jump edge pixel itself will
subsequently be labelled with the normal vector closest to the
one calculated from the data because such a pixel will not
have any effect on the smoothness term.

We have now defined a set of labels, an energy function
and a neighbourhood system and have defined everything
necessary to run the graph cut optimization procedure. It gives
as output an optimal labelling of the pixels, which we can
convert into a segmentation of the range image.

E. Relabelling connected components

The graph cut optimization process produces a labelled im-
age that should, depending on the scene and the data, contain
large regions of identically labelled pixels. This is almost a
segmentation, except that disconnected regions coinciding with
surfaces that happen to be (near) parallel may have the same
labels. We therefore perform a connected component labelling,
on the labels returned by the optimization step, to arrive at a
segmentation in which every segment is a region of connected
pixels with the same label.

This step is necessary because our graph cut optimization
is not actually a segmentation method, but more a method of
restoration that tries to find original normal vectors before they
were “corrupted” by sensor noise. However since crease edges
should appear in this restoration, as well as jump edges due
to our handling of the neighbourhood structure, it is natural
to assume that a sensible segmentation can be obtained from
a good labelling found by our graph cut optimization.

F. Merging thin regions

As a final step we may identify regions likely to be incorrect
and, in an effort to “clean up” our segmentation, merge them
with surrounding regions.

We note that incorrectly segmented regions are typically thin
and line-like, occurring along jump edges or creases edges.
We identify regions with these shape properties by calculating
the ratio between the total number of pixels contained in a
region (the area) and the number of pixels on the perimeter
of the region (the circumference). If this ratio is below some
threshold we iteratively erode that region, by changing the
labels of eroded pixels to those of surrounding regions, until
the region disappears. In the experiments that follow we chose
a threshold ratio of 2.

IV. RESULTS

We ran our segmentation algorithm on the Perceptron-Test
dataset created by Hoover et al. [2] and then used their
comparison tool to evaluate our results against the ground truth
data they provide. The dataset consists of 30 range images

obtained using a Perceptron laser range finder. Every image is
a 512 x 512 array of 12-bit depth data, and contains a scene
of “up to five polyhedral objects placed in a variety of poses
and with varying degrees of inter-object spacing” [2], which
means that the surfaces in the scene are all planar.

Fig. 3 shows some results of our graph cut optimization
step, applied to one of the images from the dataset (the one
shown in Fig. 1 of this paper) for different choices of A. These
are results before connected component relabelling and region
merging, so that different shades of grey represent different
labels. It is clear that very large values of A\ lead to under-
segmentation (or over-smoothing) as too much emphasis is
given to the smoothness prior, while very small X\ values
may lead to over-segmentation. In the case of A = 0 there
is absolutely no smoothing, and the result is identical to the
labels found when calculating normals directly from the data
which is noticeably noisy. We see that graph cut optimization
can successfully deal with this noise. It seems that for this
image A = 75 might be close to an optimal choice (that result
was subjected to connected component relabelling and region
merging to create the segmentation in Fig. 1(b)).

In setting up a neighbourhood structure for graph cuts
we decided to break connections to detected jump edges,
thereby removing the smoothness constraints on labels of
pixels on either side of such an edge. This breaking has another
important benefit: it tends to produce better (less noisy) edges
between regions separated by jump edges. Some examples are
shown in Fig. 4 where we compare segmentations obtained
with and without jump edge disconnection (JED).

We evaluated our segmentations of the dataset images using
the comparison tool of Hoover et al. [2]. It compares a submit-
ted machine segmentation with a ground truth segmentation,
and classifies regions as one of the following: correct, over-
segmented, under-segmented, missing and noise. Regions that

A =310

Fig. 3. A comparison of output results from our graph cut optimization
procedure (before connected component relabelling and region merging), for
a few choices of A. Detected jump edges are visible as white lines.

-
P

(a) without JED (b) with JED

Fig. 4. Close-ups of a segmentation we obtain without jump edge discon-
nection (JED), compared to the segmentation we obtain with JED. For the
latter the segmentation is less noisy around detected jump edges and parallel
surfaces at different depths are separated successfully.

are missing are those that appear in the ground truth but
not in the machine segmentation. Conversely, noise regions
are regions that are found only in the machine segmentation
and not in the ground truth. A tolerance threshold 7', chosen
between 50% and 100% where 100% is the strictest, is used
to determine region classification.

Fig. 5 shows the number of correct, over-segmented, under-
segmented, missed and noisy regions in our segmentations,
for various values of A (the one parameter in our method that
needs to be specified), averaged over the entire dataset. A
rather strict threshold value of T' = 80% was used, because it
is the value in [2] for which more results from other methods
are available. Note also that results are shown for A > 40,
due to the fact that the comparison tool allows segmentations
containing at most 256 regions and smaller A values will
typically produce more regions than that.

We note that the accuracy of our algorithm is quite strongly
related to the value of A but, fortunately, there seems to be a
large range of A values for which the algorithm performs well.
This implies that the method is quite stable, and not extremely
sensitive to a particular choice for \.

In Fig. 6 we show the average number of regions correctly
identified, when tweaking T', for a fixed value of A = 45
(which, from Fig. 5, appears to be a possibly optimal choice).
The figure compares our results, indicated by GC (for “graph
cuts”), with those obtained by the four algorithms evaluated
by Hoover et al. in [2].

Overall our method compares well with the others, and
even slightly outperforms all of them. However we should
be careful of reading too much into these results. Output from
the comparison tool can be rather misleading since quanti-
tative accuracy does not necessarily agree with a qualitative
evaluation of segmentations obtained. For example, the tool
considers regions of any size to be equally important.

1 18 T : 3 —
- + — over-segmented Lo L
B 16 * under-segmented R q 2817 SNy missed
£ 105 3 * ok PN R BN 4
2 Eia . 1 B :
H 2 + § 2af \]
g 10 b 12 : B % .
3 5 s .. L * R i
e - *a] g% o S S
[o ~
3 95 5 5 2 ok ey N
< Zos8 * R 3
2 € £ ler ¥ N J
3
£ 9 S osf! o 1 i T i
=1 =3 \ * o 1.6 ¥
P g lwl o g g
g g 04[] 1 2 14 T 1
o 85 RN *
< 02 T T PRETLL L2r : ' st FE 1
S+ e 4T
8 I I I I i 0 i i i * i 1 i i i i
40 60 80 100 120 140 160 40 60 80 100 120 140 160 40 60 80 100 120 140 160
A A A
Fig. 5. Results from the comparison tool of Hoover et al. [2], indicating how the various performance metrics change for our method using different choices

of A (the parameter that controls the relative interplay between data and smoothness in the graph cut optimization). The tool’s threshold was set to 80%.

—5— ideal
—e— GC
* wWsu
-t - uB
——UE |4
—9= USF

Average Number of Regions Correctly Identified

0 i i i i i i i
50 55 60 65 70 75 80 85 90 95
Compare Tool Tolerance (%)

Fig. 6. A comparison of our algorithm with A\ = 45 (GC) with the
four methods investigated in [2], for different threshold settings used in the
comparison tool.

V. CONCLUSIONS AND FUTURE WORK

We proposed a method for segmenting range images into
planar regions, which performs graph cuts in order to find
an optimal configuration of normal vectors at all pixels. We
introduced jump edge disconnection, and found that it can
produce cleaner edges between segments and separate adjacent
planar surfaces at different depths.

Our current implementation requires on average about 3
minutes to segment a 512 X 512 image. While that could
be considered quite fast, considering the size of the search
space (there are k°12*512 possible labellings where k is the
number of labels) over which the energy function needs to be
minimized, for most applications it would be much too slow.
The number of labels we consider is quite high (in this paper
we chose & = 225), making it a significant reason for the
slow execution, yet it still yields a fairly sparse distribution
of points on the sphere (recall Fig. 2). Possible future work
includes an investigation into other ways of placing points on
the surface of the sphere.

The concept of optimizing energy functions by graph cuts is
still quite actively researched, and in the near future we hope to
consider the incorporation of label costs [14]. This extra term
in the energy function penalizes segmentations according to

number of regions — an idea already found by Han et al. [4]
to have potential in a simulated annealing framework.

Lastly, an important consideration for future work would be
to investigate the performance of our method on range images
containing non-planar surfaces, and to expand on our ideas to
better handle such cases.

[1]

[2

—

[3]

[4]

[5]

[6

=

[7]

[8

—

[9]

(10]

[11]

[12]

[13]

[14]

REFERENCES

D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented
natural images and its application to evaluating segmentation algorithms
and measuring ecological statistics, IEEE International Conference on
Computer Vision, 2:416-423, 2001.

A. Hoover, G. Jean-Baptiste, X. Jiang, P. Flynn, H. Bunke, D. Goldof,
K. Bowyer, D. Eggert, A. Fitzgibbon, R. Fisher, An experimental
comparison of range image segmentation algorithms, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 18(7):673—-689, 1996.
R. Hoffman, A. Jain, Segmentation and Classification of Range Im-
ages, IEEE Transactions on Pattern Analysis and Machine Intelligence,
9(5):608-620, 1987.

F. Han, Z. Tu, S.-C. Zhu, Range image segmentation by an effective
Jjump-diffusion method, 1IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(9), 1138-1153, 2004.

X. Jiang, K. Bowyer, Y. Morioka, S. Hiura, K. Sato, S. Inokuchi, M.
Bock, C. Guerra, R. Loke, J. du Buf, Some further results of experimen-
tal comparison of range image segmentation algorithms, International
Conference on Pattern Recognition, 4877-4882, 2000.

M. Powell, Comparing curved-surface range image segmentors, MSc
thesis, University of South Florida, 1997.

J. Min, M. Powell, K. Bowyer, Progress in automated evaluation of
curved surface range image segmentation, International Conference on
Pattern Recognition, 1640-1644, 2000.

O. Veksler, Efficient graph-based energy minimization methods in com-
puter vision, PhD dissertation, Cornell University, 1999.

Y. Boykov, O. Veksler, R. Zabih, Efficient approximate energy minimiza-
tion via graph cuts, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(12), 1222-1239, 2001.

Y. Boykov, V. Kolmogorov, An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 26(9):1124-1137,
2004.

V. Kolmogorov, R. Zabih, What energy functions can be minimized
via graph cuts?, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(2):147-159, 2004.

E. Saff, A. Kuijlaars, Distributing many points on a sphere, The
Mathematical Intelligencer, 19(1):5-11, 1997.

V. Koivunen, M. Pietikdinen, Experiments with combined edge and
region-based range image segmentation, Theory and Applications of
Image Analysis: 7th Scandinavian Conference on Image Analysis, 162—
176, 1991.

A. Delong, A. Osokin, H. Isack, Y. Boykov, Fast approximate energy
minimization with label costs, IEEE Conference on Computer Vision
and Pattern Recognition, 2173-2180, 2010.

