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Abstract—We consider the problem of integrating a sequence
of range images, taken of a static scene from different view-
points, in order to form a consistent surface reconstruction that
preserves the geometric structure of the scene. We argue that
an incremental approach is desirable, particularly for real-time
mapping and navigation applications. Our proposed solution
starts by triangulating 3D data from individual range images into
a mesh structure, which is adaptively smoothed and decimated. A
feature-based image registration procedure is performed to align
consecutive meshes, and these meshes are segmented into regions
which are matched. Overlapping parts of matched regions are
retriangulated and a consensus surface is built using confidence
(or certainty) measures. The algorithm is applied to a dataset
captured by a Kinect and from the results we conclude that the
proposed algorithm has significant potential.

I. INTRODUCTION

Advancements in speed, accuracy and cost-effectiveness of
range scanning technologies have been vast over the past
decade or so, which has lead to an increased interest in 3D
measurement and reconstruction from range images. Many
applications exist, for example in mobile robot navigation,
non-evasive surgical procedures, reverse engineering and aug-
mented reality.

A range image is a regularly-spaced lattice of depth values
measured along the line of sight from the sensor to 3D object
or scene points. Note that depth is therefore typically measured
relative to the sensor.

Types of sensors vary from passive stereo vision, active ones
such as structured light and time-of-flight, to more invasive
probing. In our research we use the Microsoft Kinect, a
structured light sensor which projects an infrared pattern onto
objects in view and infers depth from pattern distortion. It is
also equipped with a colour camera which enables the mapping
of colours onto a reconstruction. For calibration of a depth and
colour camera pair, including mapping range data to 3D points,
the reader is referred to [1].

The problem we are concerned with in this paper is that of
range image integration. We suppose that the sensor travels
through a scene and returns a number of range images mea-
sured relative to the sensor. We wish to align reconstructions
from these range images and create consistent surfaces de-
scribed by a small amount of data, that preserve the underlying
global structure of the scene. This may eventually be useful
in 3D mapping for autonomous robot navigation.

In developing our solution we believe that the following
issues should be considered and incorporated.

1) Removal of redundant information: For the sake of com-
putational efficiency 3D information that will not contribute to
the global structure (e.g. many points on a flat plane) should
be removed — a process we term “decimation”.

2) Representation of range uncertainty: Not all 3D points
obtained from a range sensor may be sampled with the same
confidence, and our algorithm should take this into account.

3) Utilization of all the data: We wish to include all
points from all range images in the integrated surface, with
the exception of those deleted during decimation, i.e. we do
not necessarily want to discard less confident information.

4) Incremental: An incremental approach, desirable for
real-time mapping, means that the algorithm must be able to
incorporate a new range image into an integrated surface built
from previous images. We note that such an integrated surface
may not be of the same form as the input data (grid regularity,
for example, may be lost). A computational advantage of such
an approach is that only the new (previously unseen) and
overlapping parts of the surface need to be updated.

5) Robust against noise and outliers: Range scanners
typically introduce noise, particularly for points far away from
the scanner. The design of our algorithm should reflect this.

Our proposed algorithm can be summarized as follows.
Images are registered for estimating sensor motion from the
previous to the current time step (section III). An initial
mesh surface of the new range data is constructed, adaptive
smoothing is applied to combat noise and outliers, and deci-
mation is performed by eliminating vertices with negligible
curvature (section IV). We then apply region segmentation
and matching between our current (integrated) surface and the
new mesh, retriangulate corresponding regions, and construct
a consensus surface by taking measurement confidences into
account (section V). Before we discuss these steps in more
detail, we first provide a brief overview of related work from
the literature.

II. RELATED WORK

Previous research on range image integration may be di-
vided roughly into two categories: volume-based methods and
mesh-based methods.



In volume-based approaches the space in view of the sensor
is discretized into voxels from which an isosurface can be
extracted, normally using marching cubes [2] or by matching
signed distance fields [3]. Many variations of these approaches
exist [4], [5], [6]. However these methods can be sensitive to
sampling noise, in many cases cannot provide exact surface
topology, and thin surfaces can present problems.

A mesh-based reconstruction makes full use of the un-
derlying topological and geometric structure as it provides
neighbourhood, curvature and surface orientation information.
It is also more amenable to data reduction, an important
consideration for navigational purposes. By creating a trian-
gulated surface we introduce 2-manifoldness which is another
desirable property of any surface reconstruction method.

A mesh-based approach usually starts by building some ini-
tial mesh from the 3D range data [7]. Overlapping regions are
detected, for example by using a proximity relation [8] or by
projecting the mesh back to 2D and intersecting circumscribed
circles of triangles [9]. The manner in which overlapping
regions are handled varies. Less confident triangles can be
discarded [9], [10] which may introduce holes that need to
be filled. Our algorithm does not have this problem. Another
option is to remove redundant triangles on the boundaries of
the two meshes to be integrated, until they just meet, and then
zipper them together [11]. However it may result in many
small sharp-angled triangles, another problem our algorithm
avoids. Finally the holes mentioned above need to be filled
by seaming the patches remaining after surface removal and
the non-overlapping parts together. This is normally done by
identifying edges on the boundary and selecting candidate
vertices with which to form new triangles, based on largest
angles [10]. Careful considerations have to taken to ensure
that the resulting mesh does not intersect itself. Many mesh-
based algorithms terminate at this point, but valuable informa-
tion has been discarded by keeping only the most confident
triangles. There are methods that apply a post-processing step
by projecting vertices along their surface normals to obtain
some consensus geometry [11], or by smoothing the surface
normals [8].

Some research has also been done to obtain the integrated
surface using probability considerations [12].

III. IMAGE REGISTRATION

We proceed with details of our incremental mesh-based
algorithm for range image integration. The first range image
in a sequence is converted to a mesh surface, as explained in
section IV. It then serves as a base surface, and every range
image following in the sequence is integrated with it in an
incremental fashion.

Let us now consider a new range image to be integrated with
the current surface obtained from integrating all the previous
ones. We assume that the range sensor has been calibrated (see
e.g. [1]) so that pixels in the range image can be converted to
3D points, and that colour information is also available.

As mentioned in the introduction, the first step is to register
the new range image with the previous one, thereby also align-

ing it with the total reconstructed surface (since the previous
one is already aligned and integrated with the total surface).
This initial registration step is vital as it essentially controls
the accuracy and overall success of the entire integration
procedure.

We use colour information returned by the sensor to es-
timate sensor motion from the previous to the current time
step. In brief, matches between salient image features are
computed by a method such as SIFT [13] and used to infer the
position and orientation of one camera relative to the other.
More detail can be found in, for example, [14]. Note that the
scale ambiguity problem is easily solved by using available
3D information.

The procedure gives a 3 × 4 camera matrix P associated
with the new range image. It can be decomposed as

P = K
[

R t
]
, (1)

where K is an upper-triangular matrix containing the internal
parameters of the camera. The rotation matrix R and transla-
tion vector t give the necessary information to transform each
3D point Xold obtained from the range image, which currently
is measured relative to the sensor, to new coordinates

Xnew = RT (Xold − t) (2)

measured in the fixed “world” coordinate system.

IV. TRIANGLE MESH CONSTRUCTION

Next it is explained how we build a mesh surface from
a collection of 3D points given by the range sensor. An
initial triangle mesh is constructed by exploiting the grid
structure in range data, noise is removed by an adaptive
smoothing technique, and the mesh is then decimated in an
effort to remove redundant vertices that do not contribute to
the geometric structure of the surface. The resulting mesh will
be integrated into the current total surface.

A. Constructing an initial triangle mesh

We aim to create a neighbourhood structure over the 3D
points obtained from a range image, that defines a consistent
triangle mesh surface. Vertices close to one another should be
connected, and depth discontinuities should be preserved. We
achieve the latter by imposing an upper limit on edge lengths.

The rectangular grid structure of the 3D points, due to the
fact that they originate from pixel locations in a range image,
means that 4-connectivity between vertices is easily identified.
We consider four neighbouring vertices at a time, as depicted
in Fig. 1. If both diagonals are longer than the maximum
allowed edge length, no triangles are formed. If not, the shorter
of the two diagonals is chosen and those two vertices are

Fig. 1. The seven possible (topological) structures arising from triangulating
four neighbouring vertices.



connected. The two triangles that can be formed with this
diagonal are evaluated and if all edges of a triangle satisfy
the edge constraint, we form that triangle. This procedure will
result in one of the seven possibilities shown in Fig. 1 for each
such set of four vertices.

B. Adaptive smoothing

Range sensors typically add a fair amount of noise and, if
deemed necessary, the initial mesh can be smoothed at this
stage. Once again the grid structure in the 3D points can be
exploited: the 3D coordinates can simply be convolved with
some averaging (say Gaussian) filter in much the same way
as we would perform image filtering in the spatial domain.

We decide not to run a smoothing mask blindly over the 3D
data in this way, as it may result in undesired behaviour near
depth discontinuities. Instead we adapt the filter mask at every
vertex to include only the positions to which the specific vertex
is connected. Fig. 2 shows a mesh before and after smoothing,
and indicates that our technique has the ability to reduce noise
while preserving underlying structure.

C. Mesh decimation

Depending on the scene to be reconstructed, many of the
triangles in the mesh may be redundant. A planar or piecewise
planar surface can be described accurately by a relatively
small number of triangles. So, if we can identify vertices
approximately coplanar with their neighbours, we may remove
those without losing geometric structure.

A commonly used discrete analogy to the continuous notion
of Gaussian curvature (or deviation from planarity) is quite
simply 2π minus the sum of all the angles formed by triangles
around a particular vertex [15]. The closer that this value is
to zero, the closer the vertex is to being coplanar with its
immediate neighbours.

We define a cost to every vertex i in the mesh as

ci =

{
|2π −

∑
αj | , if i is an interior vertex,

|π −
∑
αj | , if i is a boundary vertex.

(3)

Here αj is the angle at vertex i of triangle j connected to
that vertex, and a vertex is said to be an interior vertex if
its number of connected neighbours equals the number of
connected triangles. Vertices with minimum cost are deleted
iteratively until a pre-specified maximum cost is reached or
until a desired number of vertices have been deleted.

Fig. 2. The effect of our smoothing technique: the original is shown on
top, and the smoothed mesh on the bottom. These are side views of the mesh
shown on the left of Fig. 4.

Fig. 3. Removal of internal vertices of degree 3, 4 or 5, and retriangulation.
The top row shows the affected part of the mesh before removal, and the
bottom row after removal and retriangulation.

Fig. 4. An example of a triangle mesh before (left) and after (right) our
decimation procedure.

After the deletion of a vertex the neighbouring vertices
need to be retriangulated to avoid holes being introduced in
the mesh. For simplicity and computational efficiency we will
consider deleting boundary and interior vertices only of degree
3, 4 or 5 (which in fact, from a graph-topological point of view,
is not that constrictive [16]).

Fig. 3 demonstrates our way of retriangulating holes caused
by the removal of interior vertices. In the case of a degree-3
vertex the three remaining neighbours are simply connected
by a new triangle. The removal of a degree-4 vertex requires
one new edge and we pick the shorter of the two possible
diagonals. For a degree-5 vertex we first choose the shortest
edge between non-adjacent pairs of vertices. This edge divides
the hole into a triangle and a loop of four vertices, and both
are triangulated as described.

Retriangulation after the removal of a boundary vertex of
degree 3, 4 or 5 is performed similarly, except that an extra
edge is first added between the two neighbouring boundary
vertices. This produces a loop of 3, 4 or 5 vertices which can
be triangulated as above.

After a vertex removal and subsequent retriangulation we
update the curvatures of the remaining neighbours and move
on to select a next candidate for deletion. An example of a
mesh before and after decimation is shown in Fig. 4.



V. MESH INTEGRATION

The methods of smoothing and decimating a triangle mesh
can be applied to the 3D data from a single range image. Next
we discuss the integration of two such meshes that are also
already aligned by the procedure outlined in section III.

In short our integration algorithm consists of segmenting
each mesh into connected regions and then matching over-
lapping regions across the meshes. Delaunay triangulation
is performed on the vertices of paired regions to build a
new integrated mesh. Finally, in an effort to suppress slight
misalignment errors, a consensus surface is obtained by taking
point confidences into consideration.

A. Region segmentation and matching

The segmentation of a mesh into regions is fairly simple. We
start with any particular vertex and all the vertices connected
to it. The connected neighbours of those vertices are added to
the set. This procedure is repeated recursively until no more
vertices are added, and the set thus obtained is classified as a
region. A vertex not yet assigned to any region is then selected,
and a new region is built from it. The whole process continues
until every vertex is assigned to a region.

Regions from two different meshes can now be matched.
Many such matching algorithms exist, see e.g. [17], but we
simply consider two regions a match if any point of the region
from one mesh is contained in the smallest 3D bounding box
of the region from the other mesh. By iteratively enlarging
this bounding box, multiple regions from the first mesh may
be grouped together with multiple regions from the second.

The triangulations of unmatched regions in the two meshes
remain unaffected. The matched regions, however, need to be
retriangulated in order to integrate them.

B. Delaunay triangulation

Two matched regions, either partially or wholly overlapping,
give two separate representations of the same surface. We aim
to combine them, in some sensible way, into one triangle mesh.

We employ Delaunay triangulation [18] to connect an
unorganized set of points, which will be optimal in the sense
that the circumscribed circle of any triangle contains no other
vertices. This property maximizes the minimum angle of all
triangles, implying that there will be few triangles with small
interior angles.

Although Delaunay triangulation can be extended to higher
dimensions [18] we decide to project the vertices of the two
mesh regions in question to a 2D plane in order to triangulate
them. Since one of the meshes (the new one to be integrated
into the total surface) is built from a range image, it naturally
projects to the 2D image plane of the current sensor. The
vertices of both mesh regions are projected onto this image
plane with the camera matrix obtained from the registration
stage. Fig. 5(a) illustrates with an example.

Those projected vertices that fall within the boundary of
the image become eligible for retriangulation (note that we
are thus guaranteed that all the vertices of the new mesh will
be eligible) as well as immediate neighbours in the old mesh

which fall outside the boundary (the circled vertices in Fig. 5).
Those triangles that connect the remaining vertices in the old
mesh are kept in tact, as in Fig. 5(b).

The vertices eligible for retriangulation are now connected
by Delaunay triangulation. Fig. 5(c) shows the result for that
example. This triangulation process may form new edges
between “circled” vertices. Two such cases are shown in
Fig. 5(c), one in red and one in green. It is clear that the
red edge is unwanted because it intersects the old mesh. We
circumvent this problem by requiring that no new triangles
may be formed between 3 circled vertices. We do allow
triangles that connect 0, 1 or 2 circled vertices. Fig. 5(d) shows
a final triangulation.

We transfer this 2D triangulation to the original 3D coordi-
nates of the two meshes, thus obtaining the desired triangula-
tion over them.

(a) (b)

(c) (d)

image boundary

Fig. 5. In (a) the old (shown in purple) and new (blue) meshes are projected
to the new sensor image plane. Vertices inside the image boundary, as well
as their immediate neighbours outside (the circled vertices), will be subjected
to retriangulation. The part of the old mesh not affected by those vertices are
kept in tact as shown in (b). Delaunay triangulation is performed, the result
of which is shown in (c). The red line is marked as an unwanted edge and
removed. The final triangulation is shown in (d).

C. Consensus surface
Errors in the registration process, or inaccurate depth infor-

mation returned by the range scanner, may cause slight mis-
alignment in the surfaces that we integrate. We may therefore
be faced with a situation where the Delaunay retriangulation
results in a surface that zig-zags between the two original
meshes. Fig. 6 clarifies.

This undesirable result can be remedied to some extent by
the application of a special surface smoothing procedure. We
introduce a confidence measure for every 3D point i, defined
as

Ci =
∣∣∣∣ 1
Lθ

∣∣∣∣ , (4)



surface A

surface B

desired surface

Fig. 6. A top-down view of two misaligned surfaces that were integrated.
This misalignment may result in a triangulation that zig-zags between the two
surfaces, and necessitates the building of some consensus surface.

where L is the distance from the 3D point to the optical centre
of the corresponding range sensor (the position that the sensor
was in when that point was captured). The angle θ is given
by

θ = arccos
(
ni · ri

)
, (5)

where ni is the average normal vector over the triangles
surrounding vertex i, and ri is the normalized measurement ray
from the sensor’s optical centre to the point. The confidence
measure captures the fact that points close to the sensor,
as well as surfaces close to a fronto-parallel orientation, are
typically captured more accurately by range sensors.

We now apply weighted smoothing on all the vertices
affected by the retriangulation in the integrated mesh. The
position of each of these vertices is substituted by a weighted
average of its position and the positions of all its immediate
neighbours, where the weights are proportional to the confi-
dence measures.

In doing so we obtain a consensus surface that takes into
account the confidence we have in the data while, contrary
to existing approaches mentioned in section II, avoiding the
creation of holes that must later be filled.

VI. RESULTS

We now demonstrate the performance of our incremental
range image integration algorithm by means of an example.
It is important to stress that we do not test the accuracy of
the proposed method here, as independently generated ground
truth is unavailable. We rather show that the method has
potential, warranting further development and testing.

A dataset of the interior of a static office environment was
captured with a hand-held Kinect. Fig. 7 shows a number of
colour images from this set. Range images were also captured
and converted to 3D point clouds. SIFT features were found
in the colour images and, as explained in section III, used to
estimate sensor motion.

Meshes built from the first and second range images in
the sequence are shown in Fig. 8(a) and (b), and the result
from integrating these two meshes is shown in (c). We see
that, particularly along the boundaries of the walls in the two
separate meshes, many holes occur. These holes are filled by
our integration algorithm, not by false edge extensions but
because of the shift in the sampling of points brought about
by the movement of the sensor. The desk, for example, is
disconnected in the separate meshes but not in the integrated
one. This extra filling of holes, due to the way in which

Fig. 7. A subset of the colour images of the dataset. Corresponding range
images were also captured and used to evaluate our algorithm’s performance.

(a)

(b)

(c)

Fig. 8. The individual meshes in (a) and (b) were obtained from two range
images captured by the Kinect. The result of integrating these two meshes is
shown in (c).



the Delaunay triangulation is performed, is (arguably) an
added advantage of our approach. Note also that no holes are
introduced where the two separate meshes overlap, nor is the
integrated mesh intersecting itself.

Structured light sensors typically struggle to measure strong
edges accurately. This is visible, for example, around the edges
of the computer screen in the meshes before integration. The
integration step improves matters rather dramatically, as clear
straight lines are now seen as opposed to jagged edges.

Fig. 9 shows the result of integrating 7 range images.
Colours were obtained by projecting points to the available
colour images.

It should be mentioned that error propagation from the
incremental image registration procedure may prohibit the
full functioning of our algorithm, particularly on datasets
containing more images. The partial reconstructions obtained,
however, appear to deliver accurate representations of the
structure of observed scenes.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a mesh-based algorithm for incremen-
tally integrating range images. The algorithm satisfies the
criteria listed in section I, which include the removal of redun-
dant data and the incorporation of range data uncertainty (or
rather, in the context of our algorithm, range data confidence
measures).

Our experiments suggest that consistent surface reconstruc-
tions that preserve the underlying structure of the scene, using

Fig. 9. This surface was obtained from incrementally integrating 7 range
images. Colours were mapped by projecting vertices onto the colour images
in the dataset.

a relatively small number of triangles, are attainable. The
algorithm also appears to handle noise well, and succeeds in
combating small misalignment errors by building a consensus
surface that incorporates point confidences in a final smoothing
process.

Future work may include a more accurate image registration
procedure where error propagation is somehow suppressed.
Some possibilities here include moving away from pairwise
registration and rather employ a Kalman filter-type estimator,
to simultaneously integrate the range images and refine the
motion parameters [19], or to apply a variant of iterative
closest point (ICP) matching to refine the alignment.

Another opportunity for further investigation would be to
model the uncertainty in vertex positions and the pose of the
sensor more completely, which would also be beneficial for
navigational and mapping purposes.
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of a depth and color camera pair, International Conference on Computer
Analysis of Images and Patterns, 437–445, 2011.

[2] C. Rocchini, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi, R. Scopigno,
The marching intersections algorithm for merging range images, The
Visual Computer, 20(2):149–164, 2004.

[3] T. Masuda, Registration and integration of multiple range images by
matching signed distance fields for object shape modeling, Computer
Vision and Image Understanding, 87(1):51–65, 2002.

[4] B. Curless, M. Levoy, A volumetric method for building complex models
from range images, Proceedings of SIGGRAPH, 303–312, 1996.

[5] A. Hilton, A. Stoddart, J. Illingworth, T. Windeatt, Reliable surface
reconstruction from multiple range images, European Conference on
Computer Vision, 117–126, 1996.

[6] K. Pulli, L. Shapiro, Surface reconstruction and display from range and
color data, Graphical Models, 62(3):165–201, 2000.

[7] T. Lu, D. Yun, Optimizing triangular mesh generation from range
images, Three-Dimensional Image Capture and Applications, 161–171,
2000.

[8] H. Zhou, Y. Liu, L. Li, Incremental mesh-based integration of registered
range images: robust to registration error and scanning noise, Asian
Conference on Computer Vision, 958–968, 2006.

[9] Y. Sun, C. Dumont, M. Abidi, Mesh-based integration of range and
color images, SPIE Conference on Sensor Fusion: Architectures, Algo-
rithms and Applications, 110–117, 2000.

[10] R. Pito, Mesh integration based on co-measurements, IEEE International
Conference on Image Processing, 397–400, 1996.

[11] G. Turk, M. Levoy, Zippered polygon meshes from range images,
Proceedings of SIGGRAPH, 311–318, 1994.

[12] M. Rutishauser, M. Stricker, M. Trobina, Merging range images of
arbitrarily shaped objects, IEEE Conference on Computer Vision and
Pattern Recognition, 573–580, 1994.

[13] D. Lowe, Object recognition from local scale-invariant features, IEEE
International Conference on Computer Vision, 1150–1157, 1999.

[14] W. Brink, D. Joubert, F. Singels, Dense stereo correspondence for
uncalibrated images in multiple view reconstruction, Proceedings of the
21st Annual Symposium of PRASA, 39–44, 2010.

[15] N. Dyn, K. Hormann, S. Kim, D. Levin, Optimizing 3D triangulations
using discrete curvature analysis, Mathematical Methods for Curves and
Surfaces, 135–146, 2001.

[16] A. Shapiro, A. Tal, Polyhedron realization for shape transformation, The
Visual Computer, 14:429–444, 1998.

[17] H. Shvaytser, A surface matching algorithm for two perspective views,
IEEE Conference on Computer Vision and Pattern Recognition, 742–
743, 1993.

[18] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational
Geometry: Algorithms and Applications, 3rd edition, Springer-Verlag,
2008.
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