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Abstract
We present a technique for incorporating probabilistic (or soft)
segmentations into the shape-from-silhouette (SFS) technique
for volumetric reconstruction from a set of images. In basic
SFS points in 3D space are back-projected to all the images and
if any of these falls outside the contours of the object, the point
is disregarded. We extend the concept to a more probabilistic
nature and show that high quality models can be obtained by
thresholding the final point probabilities. The method used for
determining the soft segmentations is based upon a Bayesian
framework, but the idea of combining probabilistic segmenta-
tions would remain the same for any soft segmentation method.

1. Introduction
We consider the problem of reconstructing a volumetric 3D
model from a set of images depicting some physical object from
different viewpoints. Shape-from-silhouette [1] is an obvious
first and widely used approach, even just as a simple initializa-
tion for a more advanced procedure [2]. The aim in shape-from-
silhouette is to determine the intersection of the conic solids de-
fined by the outlining contours of the object in all the images.
If an accurate segmentation of the object from the background
is available for every image in the set, along with the spatial re-
lationships between the different cameras in world coordinates,
the problem is straightforward and easily solved by, for exam-
ple, space carving or exact polyhedral intersection [3, 4].

Calibrating an array of cameras is a well-studied topic and
is usually performed off-line. Segmenting the object from every
image, on the other hand, can be far more intricate and deserves
some attention. The general problem of image segmentation
remains, to this day, an enormous challenge. In a recent sur-
vey and evaluation Seitz et al. [5] noted that most multi-view
volumetric reconstruction algorithms assume that accurate sil-
houettes are available, and do not consider the crucial problem
of obtaining them if they are not.

We attempt to address, at least partially, the segmentation
problem in the context of shape-from-silhouette by showing
how probabilistic segmentations, i.e. segmentations that carry

Figure 1: Images of an alien sculpture from various views, a probabilistic reconstruction and a 3D model obtained by thresholding.

some uncertainty, can be incorporated in the reconstruction.
The method presented can operate alongside any technique

that produces probabilistic segmentations. For the purposes of
this paper we decided upon a Bayesian framework and describe
in some detail this classic approach to probabilistic image seg-
mentation. It models prior probability distributions over known
object and non-object regions and then establishes maximum
likelihood estimates for pixels to be classified. A so-called
“soft” segmentation results which, unlike traditional “hard” seg-
mentations, do not yield a decisive yes-or-no answer to the
question of whether a certain pixel belongs to the object but
rather a probability.

A sensible combination of probabilistic segmentations over
all the images in the set yields a probabilistic reconstruction in
which 3D points are assigned probabilities of being part of the
object. A threshold can be applied to these point probabilities
in order to generate a deterministic and decisive 3D model (as
Fig. 1 below illustrates) if need be. Experimental evaluation of
the obtained 3D models suggests both high accuracy and com-
pleteness by the measures defined in [5].

2. Bayesian segmentation
The Bayesian approach to image segmentation has its roots in
digital matting [6, 7] where the aim is to estimate opacities
for object pixels so that objects can be composed with new
scenes without visible edge artefacts. Thin wisps of hair and
motion blur are notorious difficulties and many improvements
have since been explored; see for example [8].

A common assumption in digital matting is that the ob-
served intensity c of each pixel in the input image is some linear
composition of a foreground colour f and a background colour
b, in the following way:

c = αf + (1− α)b. (1)

Here α denotes the opacity of the pixel and ranges between 0
(pure background) and 1 (pure foreground). For the rest of this
section c, f and b are assumed to be 3 × 1 column vectors
containing for example RGB-components, and α is a scalar.



Of course, the problem of finding f , b and α that satisfy (1)
for a given c is determinately underconstrained. The idea be-
hind Bayesian segmentation is to use prior probabilities on the
unknowns and pick optimal solutions by a maximum-likelihood
criterion.

In order to define sensible priors on f , b andα an initial seg-
mentation is needed that divides the image into three regions:
foreground, background and unknown. Such a segmentation is
normally called a trimap. The foreground and background re-
gions provide the information (colour and α-values) needed to
process pixels in the unknown region. Some ideas on the gen-
eration of trimaps are explored in section 4.1 of this paper.

For a specific pixel in the unknown region we proceed to
find values for f , b and α that maximize the joint posterior
probability of f , b and α, given c. From Bayes’ theorem,

P (f ,b, α|c) ∝ P (c|f ,b, α)P (f)P (b)P (α), (2)

which yields the following unconstrained optimization problem
to be solved:

arg max
f ,b,α

[
L(c|f ,b, α) + L(f) + L(b) + L(α)

]
, (3)

with L(·) = logP (·). It remains to define the log-likelihoods
L(c|f ,b, α), L(f), L(b) and L(α).

Following [6] we model P (c|f ,b, α) as a Gaussian PDF
with mean αf +(1−α)b and some specified standard deviation
σc. Then

L(c|f ,b, α) =
−||c− αf − (1− α)b||2

2σ2
c

+ terms. (4)

The extra “terms” correspond to normalization factors and can
be omitted in (3) as they remain constant with respect to the
optimization parameters f , b and α.

The prior probability P (f) is estimated from foreground
colours of pixels known and already processed in a neighbour-
hood around the current pixel. Let N denote this set of pix-
els. The contribution of every pixel in N can be weighed by
its α-value (placing higher confidence in more opaque pixels)
and, relying on the spatial coherency of the object, its proxim-
ity to the current pixel (stressing nearby pixels over those further
away). Supposing that fi and wi denote the foreground colour
and weight of pixel i respectively, such that

∑
i∈N wi = 1, a

weighted mean f and weighted covariance matrix Σf is deter-
mined as

f =
∑
i∈N

wifi, Σf =
1

1−W
∑
i∈N

wi(fi − f)(fi − f)T , (5)

with W =
∑
i∈N w

2
i . These two entities define a Gaussian

distribution such that

L(f) = − 1
2
(f − f)TΣ−1

f (f − f) + terms. (6)

Again, the extra normalization terms have no effect on the so-
lution to (3) and can be omitted. The log-likelihood of b is
modelled in a similar way:

L(b) = − 1
2
(b− b)TΣ−1

b (b− b) + terms. (7)

For now we adopt the assumption in [6] that the likelihood
of α is constant and thus omitted from (3). Naturally this is a
rather strong assumption that may be marginally applicable at
best, but it does simplify the optimization problem and yields
reasonable results.

Note that the partial derivatives of the function to be maxi-
mized in (3) are non-linear in f , b and α, so that the quest for
an analytical solution may be an arduous one. We may need to
depend upon some numerical optimizer for a solution. How-
ever, for the sake of efficiency, it turns out that the problem can
be broken up into two easier sub-problems: first fix α and solve
for f and b; then fix f and b and solve for α.

With α fixed at some value, setting the partial derivatives of
(3) with respect to f and b equal to zero leads to the following
set of equations:

α

σ2
c

[c− αf − (1− α)b]− Σ−1
f (f − f) = 0

1− α
σ2
c

[c− αf − (1− α)b]− Σ−1
b (b− b) = 0

 (8)

which is linear in the unknowns f and b. Values for f and b are
obtained, and now fixed to find a value for α that maximizes the
objective function in (3). Observe that this maximum is reached
when ||c− αf − (1− α)b||2 is minimum, and that

α =
(c− b) · (f − b)

||f − b||2 (9)

causes αf + (1−α)b to be the orthogonal projection of c onto
the line segment between f and b, thus yielding the desired
minimum.

We now alternate between (8) and (9) until convergence or
until some maximum number of iterations is reached. For the
first iteration α can be initialized to, for example, the mean of
the α-values in the neighbourhood N .

Concerning the order in which pixels are processed: since
prior probabilities are built from known or already processed
pixels, and since the unknown region inside the image is sur-
rounded by known foreground or background pixels, a sensible
choice would be to process pixels on the border of the unknown
region first. The unknown region is thereby effectively being
eroded, a process which can be repeated until no more unknown
pixels remain.

An apparent and important shortcoming of the procedure,
as it stands, is that it attempts to fit a unimodal Gaussian distri-
bution to neighbouring foreground colours as per (6), and one to
neighbouring background colours as per (7). If both the object
and the background exhibit a fair degree of homogeneity the
model may be adequate but, of course, this is rarely the case. A
quick fix would be to cluster the colours in the neighbourhood,
solve for each pair of foreground and background clusters and
then pick the solution corresponding to the maximum posterior
likelihood (2). For future improvements we hope to rather in-
vestigate the effectiveness of Gaussian mixture models.

Example output of the described procedure is shown in
Fig. 2. The input image depicts two actors in front of a green
screen. In this case simple thresholding of the colour channels
may yield a fairly good segmentation, but note in particular the
ability of Bayesian segmentation to estimate the opacities of the
hair strands in the closeup shown.

The probabilistic reconstruction technique described in this
paper requires α-values for every pixel in every image, which
will be interpreted as the probability of that pixel being part
of the foreground (i.e. the object). After the application of
Bayesian segmentation on every image in the sequence, let
Ai(r, c) denote the calculated α-value associated with the pixel
at row r and column c in image i. Also, to simplify matters
onwards, we assume that Ai(r, c) = 0 for any (r, c) that falls
outside the boundaries of image i.



input image trimap output

Figure 2: Result of a Bayesian segmentation. Blue in the trimap
indicates the unknown region, and the α-values (corresponding
to pixel opacities) from the output are here depicted as greyscale
intensities.

3. Silhouette-based reconstruction
Shape-from-silhouette (SFS) is a well-known technique for vol-
umetric reconstruction [1]. It takes a sequence of images of an
object from different viewpoints, extracts the silhouette of the
object from each and constructs a 3D model using also knowl-
edge of the relative positions and orientations of the cameras.

The conversion from a colour image to a silhouette image
removes a large amount of information and SFS can reconstruct
(at best) the so-called visual hull of the object. It is essentially
the maximal volume capable of reproducing all silhouettes of
the object [9]. Certain concavities, such as the inside of a bowl,
cannot manifest in any silhouette and therefore will not appear
in the reconstructed visual hull. However, because the problem
is well defined and generally easy to implement, SFS remains a
popular choice even just as a starting point for more advanced
reconstruction techniques that, for example, would construct a
visual hull and then return to the information in the original
images in an effort to chisel detail from it [2].

3.1. Basic shape-from-silhouette

There are chiefly two approaches to SFS for the generation of
a 3D model from a sequence of silhouette images. In the first
approach a portion of the 3D space, typically one visible by
all cameras, is quantized into voxels (that is, volume elements).
The center of every voxel is projected onto the image plane of
every camera, and removed if it projects outside the silhouette
in any of the images; see for example [10]. The second ap-
proach, which is slightly more accurate and does not introduce
quantization and aliasing artefacts, involves the construction of
a polyhedral surface from the intersection of conic solids, with
polygonal bases defined by the silhouettes, that extend from the
principal points of the corresponding cameras [3, 4].

In this paper we opt for the first approach, that of voxel
quantization or space carving as it is often called, as it naturally
lends itself to the incorporation of soft segmentations. Before
discussing this extension we provide first some detail of the ba-
sic procedure.

LetPi denote the 3×4 projection matrix associated with the
image taken by camera i, in some reference frame constant for
all cameras. The matrix should therefore contain extrinsic pa-
rameters that relate the position and orientation of camera iwith

all the others. Projection matrices are usually determined dur-
ing some off-line calibration procedure where objects of known
measurements are captured. Here we shall assume that the ma-
trices Pi are already known.

A subspace bounding the region visible to all cameras is
specified and divided into voxels, the size of which depending
upon the desired output resolution. A possible way to obtain
such a bounding region is to determine the intersection of the
viewing frusta of all the cameras (obtainable from the projection
matrices) by an efficient method such as [11].

The basic idea underlying voxel-based SFS is to project ev-
ery voxel onto every image plane using the projection matrices.
A voxel is believed to form part of the object if and only if it
projects onto a silhouette region in every image.

Put more formally, suppose the center of a voxel j is de-
noted by the column vector vj = [xj yj zj ]

T . Its projection
onto the image plane of camera i, in homogeneous coordinates,
is determined as

p
(i)
j = Pi

[
vj

1

]
, (10)

from which pixel coordinates (r
(i)
j , c

(i)
j ) can be obtained. The

reconstructed visual hull is then the collection of all voxels j
such that

n∑
i=1

Si(r
(i)
j , c

(i)
j ) = n, (11)

with n the number of images and Si(r, c) the value of a pixel
in silhouette image i, either 0 (background) or 1 (object). Here
it is also assumed that Si(r, c) = 0 if (r, c) falls outside the
boundaries of image i.

Note that, because a voxel has to project to a silhouette re-
gion in every single image, we can immediately flag a voxel as
soon as it falls outside such a region in one particular image, ex-
clude it from that moment onwards and thus save a substantial
amount of computation.

Once a set of object voxels has been identified, a polygonal
surface representation is obtained easily by, for example, the
marching cubes algorithm [12].

An example to illustrate the shape-from-silhouette tech-
nique is given in Fig. 3. The input data set, obtained from [13],
consists of 24 images of a Homo Heidelbergensis skull replica
on a ceramic ring. Accurate silhouettes and camera projection
matrices are also provided. We specified a 300×240×300 grid
(or voxelation) in 3D space that yielded over 21 million vox-
els, about 14 million of which satisfy (11) and are therefore in-
cluded in the reconstruction. A surface representation was also
determined, consisting of about 700,000 polygons. Because the
basic SFS procedure is so straightforward when silhouettes and
camera matrices are available, the entire procedure could be im-
plemented in a few lines of MATLAB-code and executed in less
than a minute on a standard PC.

3.2. Incorporating soft segmentations

The procedure described above uses silhouette images that pro-
vide a definite yes-or-no answer to the question of whether a
pixel belongs to the object, and ultimately if a voxel should be
included in the 3D model. However, if probabilities are intro-
duced in the segmentation, a “softer” decision can be incorpo-
rated. Moreover, obtaining accurate silhouette images may very
well be a non-trivial exercise and it would be sensible to accom-
modate for some degree of uncertainty in that respect.

Recall that the process of Bayesian segmentation returns,
for every image i, pixel opacities Ai(r, c) ranging between 0



4 of the 24 input images and their corresponding silhouette images

3D reconstruction, shaded (left) and texture-mapped (right)

Figure 3: A shape-from-silhouette reconstruction. Available
(ground-truth) silhouettes were used in the construction of the
visual hull. Certain concavities, notably the eye sockets, are
filled because they do not manifest in any of the silhouettes.

for pure background and 1 for pure foreground (which in this
case is the object). For the sake of brevity we shall henceforth
make use of the notation

α
(i)
j = Ai(r

(i)
j , c

(i)
j ) (12)

to denote the α-value associated with the point where voxel j
projects onto image i.

Our aim now is to amalgamate the α(i)
j ’s associated with a

particular voxel j, in order to define a probability of that voxel
belonging to the object. Consider the following:

p(j) =

(
n∏
i=1

α
(i)
j

)1
n

, (13)

i.e. let the probability that voxel j is part of the 3D model be
defined as the geometric mean of those α-values to which the
voxel projects (a comparable approach was taken by De Bonet
and Viola [14]). We chose the geometric mean, over say an
arithmetic mean, because it provides a slightly more natural ex-
tension to the “and”-operator used in the basic SFS: a voxel
must project to a silhouette region in all the images, and if any
of these projections falls outside a silhouette region the voxel
is discarded. The probability of voxel j belonging to the object
should behave analogously. Note that p(j) as defined in (13) is
1 if all the α-values are 1, and 0 if any of the α-values is ex-
actly 0. Furthermore if all the α-values are close to 1 then p(j)
is close to 1, while if any of the α-values is close to 0 then p(j)
is penalized accordingly.

The calculation in (13) is performed for every voxel in the
discretized subspace. Values thus obtained, ranging between
0 and 1, can now be thresholded in order to create a decisive
3D model. Alternatively, the unthresholded voxel probabilities
can be carried over to a next phase in some larger system for
further analysis. Examples of such larger systems, that could

require volumetric reconstruction of objects, include 3D object
recognition and robotic grasping systems.

4. Experiments
Experiments were carried out on three publicly available data
sets: alien, temple and kunli. Example images from these sets
are shown in Fig. 4 (cropped for display purposes). The ta-
ble below shows for each the source, number of images, image
size, and whether or not projection matrices and ground-truth
segmentations are provided with the data. The alien set con-
tains images from three cameras and each captured 8 images of
sizes 1900×1600, 1600×1400 and 1400×1400 respectively.

data set # images image size P -mats gr. truth
alien [13] 24 see text yes yes
temple [5] 16 480×640 yes no
kunli [15] 20 1024×768 yes no

The procedure described in this paper, that of applying soft
segmentations in volumetric reconstruction, involves mainly
three steps: generating a trimap for each image, performing
Bayesian segmentation and creating a probabilistic 3D model.

4.1. Generating trimaps

The Bayesian segmentation method discussed in section 2 re-
quires a trimap. Prior probabilities are estimated from specified
foreground and background regions, allowing maximum likeli-
hood estimates to be calculated for the pixels in the remaining
(“unknown”) regions. Clearly the success of Bayesian segmen-
tation hinges on the accuracy of the specified foreground and
background (i.e. the “known”) regions of the trimap. Unfor-
tunately an all-purpose segmentation method that requires no
prior knowledge of expected objects and/or background, yet
successfully copes with the immense diversity in images, eludes
researchers in the field to this day. For this very reason we are
content with generating trimaps for every data set on a case-by-
case basis.

There is, however, a technique for generating trimaps that
works quite well in many situations. A deliberately strict seg-
mentation is performed that favours background, say by appro-
priately thresholding the different colour channels. Many pixels
are thus miss-classified as background but those that are clas-
sified as foreground should at least be correct. The unknown
region is then determined by dilating the foreground region a
suitable number of times, hopefully engulfing all miss-classified
background pixels in the process. Trimaps created in this way
for the example images in Fig. 4 are depicted in Fig. 5. Back-
ground regions are represented in black, foreground in white
and unknown regions in blue.

Figure 4: Example images from the three data sets: alien, tem-
ple and kunli. The images were cropped for display purposes.



trimap segmentation trimap segmentation trimap segmentation

Figure 5: Trimaps generated for the example images, and results from Bayesian segmentation. Object boundaries are well delineated.
However note the segmentation uncertainty in shadow regions of the temple image and in detail on kunli’s T-shirt.

voxel probabilities thresholded (t = 0.85) voxel probabilities thresholded (t = 0.8) voxel prob. thresh. (t = 0.8)

Figure 6: Voxel probabilities for each data set, and decisive 3D models obtained by thresholding with the indicated t-values. Voxels
were rendered with opacities proportional to their probabilities so that regions of high probability are observable.

4.2. Bayesian segmentation

Bayesian segmentation is performed on every image in a data
set. A parameter that needs to be decided upon is the size of
the neighbourhood around an unknown pixel from which prior
probabilities are estimated. In our implementation we allow this
parameter to vary, depending on the amount of known informa-
tion contained in the neighbourhood. Example output is shown
in Fig. 5. It seems that object boundaries are found rather accu-
rately. Note however that shadows in the temple image and the
green design on kunli’s shirt cause some confusion.

In an attempt to quantify the accuracy of segmentations we
compare output α-values with ground-truth hard segmentations
(which are available for the alien set; for the temple and kunli
sets we took up the meticulous task of manual segmentation).
The ground-truth assigns either 0 or 1 to every pixel and the
calculated α-values range between 0 and 1.

A possible indication of accuracy is the absolute difference
between the ground-truth and the α-values averaged over all
unknown pixels, i.e. over the pixels on which the segmentation
was applied. It produces an average accuracy of about 92% for
the alien set, about 81% for the temple set, and just under 80%
for kunli. Keep in mind that the accuracy is measured over only
the unknown regions which are likely to be “difficult” parts of
an image. The higher accuracy for the alien set may be ascribed
to the fact that those images contain a more-or-less uniformly
dark object against a light background. The greater level of de-
tail in temple and kunli results in less accurate segmentation.

4.3. Building a probabilistic 3D model

Voxel probabilities are determined by combining all associ-
ated α-values by means of equation (13). Visualizations of

these probabilities are given in Fig. 6, using the standard “jet”
colourmap (red indicates high probability, blue indicates low
probability). In order to observe regions of high probability
each voxel was rendered with an opacity proportional to its
probability. We see that there is higher confidence in the recon-
struction of alien, again due to the undemanding separability of
the object and the background in those images.

The figure also shows some examples of decisive 3D mod-
els obtained by thresholding the voxel probabilities as indicated.
We evaluated the quality of reconstructions resulting from dif-
ferent thresholds t by measuring accuracy and completeness as
defined by Seitz et al. [5]. Results are displayed below.

alien temple kunli
t acc comp acc comp acc comp

0.00 3.58 45.2% 3.46 25.8% 2.26 63.7%
0.50 2.31 81.0% 2.31 69.2% 1.61 90.8%
0.75 1.64 90.1% 1.71 94.7% 1.16 96.8%
0.80 1.60 92.3% 2.86 97.2% 1.05 97.9%
0.85 1.38 95.3% 5.94 97.3% 0.90 98.9%
0.90 1.33 97.5% 8.71 93.7% 1.99 99.1%
0.95 1.98 86.6% 10.12 83.8% 5.05 96.3%
0.99 5.12 60.8% 10.38 63.9% 4.78 86.0%

The accuracy (acc) is the distance d such that 90% of the
reconstruction is within d of the ground-truth mesh (GTM, ob-
tained from the ground-truth segmentations), shown in mm for
the first two and in cm for the third data set (the object in the
kunli set is about 10 times larger than those in alien and tem-
ple). The completeness (comp) is the percentage of points on
the GTM that are within a specified distance of the reconstruc-
tion, 1.5mm for alien and temple, and 1.5cm for kunli.



t = 0.00 t = 0.50 t = 0.75

t = 0.85 t = 0.95 t = 0.99

Figure 7: Some thresholds applied to the probabilistic recon-
struction of kunli. Smaller thresholds may produce unwanted
volume, while larger thresholds may deny true positives.

Based on these results there appears to be a threshold
for each set that yields more-or-less optimal accuracy and
completeness simultaneously. In general a smaller threshold
would produce an excessively voluminous model, while a larger
threshold may deny many voxels that should in actual fact be
part of the model. These effects are illustrated in Fig. 7 where
the probabilistic reconstruction of the kunli set is thresholded by
a number of values. It seems that, in accordance with the table
above, a threshold of about 0.85 might give the best model for
this data set.

5. Conclusions
We showed how soft probabilistic segmentations can be in-
corporated into a shape-from-silhouette procedure for volumet-
ric reconstruction. The Bayesian approach was taken to seg-
ment objects from background and a geometric mean of back-
projected probabilities yielded a probabilistic reconstruction.
Thresholding this reconstruction, to arrive at a decisive 3D
model, can produce high quality models in terms of accuracy
and completeness if the threshold is chosen carefully.

A possible direction for further work may involve the inclu-
sion of calibration uncertainty. In this paper we assumed accu-
rate calibration but situations can occur where such an assump-
tion holds little validity. Another interesting venture would be
to apply the proposed method to a set of images depicting an
object with “fuzzy” boundaries like hair or wafts of smoke. We
hope that in doing so the true value of Bayesian segmentation
will shine through.
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