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Neural ordinary differential equations

A vector h(t) follows the dynamics f :
dh(t)

dt
= f (h(t), t),

where f (h(t), t) is a neural network.

For an input h(t0) determine output as

h(t0)

h(t1) = h(t0) +

∫ t1

t0

f (h(t), t) dt.

h(t1)

An example: binary classification

0

25

50

75

100

125

150

175

input output

h(t0) h(t1)

dh(t)

dt
= f(h(t), t) h(t0) +

∫ t1

t0

f(h(t), t) dt

Training a neural ordinary differential equation

1. Set up an error function L(h(t1), y) that depends on the output of the
neural ODE and ground-truth values.

2. Determine the parameters θ of f via gradient based optimisation on
the error. To calculate gradients ∂L

∂θ , we need to

a) calculate the output:

h(t1) = h(t0) +

∫ t1

t0

f (h(t), t) dt,

b) solve the adjoint ODE, backwards in time:

da(t)

dt
= −a(t)T

∂f (h(t), t)

∂h(t)
,

c) determine the gradient:

∂L
∂θ

= −
∫ t0

t1

a(t)T
∂f (h(t), t)

∂θ
dt.

We save memory by computing gradients via integration.

Rising number of function evaluations (NFE)

h(t1) = h(t0) +

∫ t1

t0

f (h(t), t) dt

numerical integration discretises input space higher accuracy requries higher NFE
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We would like to reduce the NFE during
training without sacrificing generalisation
and robustness.

NFE represents the number of times points along a solution trajectory are
passed through the network f that defines a neural ODE.

Introduction

Our work investigates the generalisation and robustness properties of neural ordinary dif-
ferential equations (ODEs) [1] when their computational cost is reduced through the ad-
dition of Jacobian regularisation terms to the loss function during training. We introduce
Jacobian condition number regularisation and show that
1. regularising the condition number of the Jacobian reduces the NFE without sacrificing

test accuracy, and
2. Jacobian norm regularisation can increase the distance to the decision boundary for cor-

rectly classified data points, but does not improve robustness against input perturbations.

Regularisation methods

The Jacobian J ∈ Rd×d is defined as

J = ∇h(t0)f (h(t), t). (1)

We experiment with regularising the Frobenius norm ∥J∥F , the spectral norm ∥J∥2, and the
condition number κ(J). These are defined as

∥J∥F =

√√√√√ d∑
i=1

d∑
j=1

∣∣J i,j

∣∣2, (2)

∥J∥2 = σmax(J), (3)

κ(J) =
σmax(J)

σmin(J)
, (4)

where σmax and σmin refer to the largest and smallest singular values of a matrix.

Robustness and distance to decision boundary

Figure 1: The intertwin-
ing moons dataset (red and
blue indicate class labels).

Generalisation and sensitivity are investigated by means
of performance on a hold-out test set, as well as input per-
turbations on the intertwining moons dataset (Figure 1).
The input perturbations include varying levels of Gaussian
noise.

Decision boundary distance. To determine the distance to
a decision boundary, we generate points on d-dimensional
spheres uniformly at random, with increasing radii. We
perform a linear search over the spheres to determine the
largest radius for which points are still labelled consis-
tently.

NFE reduction results

Table 1 shows that all three regularisation methods successfully reduce NFE. However, Jaco-
bian condition number regularisation achieves this reduction without a cost to test accuracy.

Intertwining moons
Regularisation NFE Test accuracy Condition number

None 34.98 ± 2.98 0.9975 ± 0.0008 5.31 ± 3.51
Frobenius 14.00 ± 0.00 0.8862 ± 0.0003 27.3 ± 34.1
Spectral 19.81 ± 5.76 0.8846 ± 0.0022 45.9 ± 70.6
Condition number 27.12 ± 1.94 0.9973 ± 0.0007 6.10 ± 5.22

Table 1: Measures of NFE, test accuracy and Jacobian condition number, for the different regularisation strate-
gies investigated. The Jacobian condition number in the last column is an average over the training data after
the final epoch of training.

Robustness and distance to decision boundary results

Figure 2 shows that Jacobian condition number regularisation offers similar robustness
when compared to the baseline. It also shows a slow decline in performance under random
(Gaussian) perturbations. This could relate to the observation that Jacobian norm regulari-
sation leads to larger classification margins, as shown in Figure 3.
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Figure 2: Accuracy as a function of Gaussian perturbations. Standard deviation of 0 corresponds to standard
test set performance.
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Figure 3: Box-and-whisker plot of distance to decision boundary for different regularisation strategies, over
the training data points. Jacobian norm regularisation increases distance to decision boundary on average.

Conclusion

We considered strategies to reduce the computational cost of neural ODES and their effects
on generalisation and robustness. The results indicate that Jacobian condition number reg-
ularisation can reduce NFE without a cost to test set accuracy. Future work will look into a
more efficient computation for the condition number so that the regularisation scheme can
scale to more relevant problems.
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