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Outline

@ Equilibrium ensembles
© Result to be generalised
© New result and proof

@ Applications

© Conclusion
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Microcanonical vs canonical

@ N-particle system
e Hamiltonian: H(w)
@ Macrostate: M(w)

Microcanonical u = H/N ME | Canonical 3 CE
PY(w) = const - 6, Ps(w) = e PHW) 1 7(8)
@ Density of states: @ Partition function:

Q(u) = / §(H(w) — uN) dw Z(3) = / e PH) o

@ Entropy: @ Free energy:
1 1
s(u) = lim —InQ = lim ——InZ
() = lim +InQ(u) p(B) = lim —-inZ(5)
@ Equilibrium states: @ Equilibrium states:
E'={m"} Eg = {mg}
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Equivalence of ensembles

ME £ CE |
Thermodynamic level Macrostate level
v s g e g,
?
s(u) — »(0)
Thermo equivalence ' Macrostate equivalence J
Main result

@ Short-range systems have equivalent ensembles
@ Long-range systems may have nonequivalent ensembles

@ Related to concavity of s(u)
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Thermodynamic equivalence

Microcanonical Canonical

s(u) = inf{Bu — ©(8)} p(B) = inf{fu —s(u);
S ——— (p
U «— ﬁ
s =" p =s"
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Thermodynamic nonequivalence

*
k e
—*>
U 15} u
Nonconcave Always concave
s
p=s"
5** — 90*

@ s™*(u) = concave envelope of s(u)
@ Negative heat capacity: Cmicro(t) < 0

@ Related to first-order phase transitions
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Macrostate nonequivalence
[Eyink & Spohn JSP 1993; Ellis, Haven & Turkington JSP 2000]

u u u
Thermo level s = * s F# Q*
Macrostate level EY = &g EY # &3
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Macrostate equivalence of ensembles
[Ellis, Haven & Turkington JSP 2000]
Theorem
© Equivalence:
s strictly concave at u = £“ = €3 for some B € R
© Nonequivalence:
s nonconcave at u = &Y # Eg forall B € R
© Partial equivalence:
s concave (not strictly) at u = &Y C &g
Assumptions
@ H(w) can be expressed as a function of M(w)
Energy representation function h(m)
@ Entropy $(m) for M(w):
s(uy=sup 5(m)
{m:h(m)=u} )
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Applications

[Campa, Dauxois & Ruffo Phys Rep 2009]

Covered

Mean field BEG model
Mean-field Potts model
Mean-field ¢* model

1D a-Ising model

Free electron laser (HMF)

2D point-vortex models
(turbulence)

Not covered
@ Gravitational systems
@ Coulomb systems
@ Short-range systems

@ Short/long-range systems
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Step 1: Equilibrium large deviations

[Lanford 1973; Ellis 1985; HT Phys Rep 2009]

Microcanonical

@ Large deviation principle:

PY(m) < e N*(m)

@ Rate function:

[“(m) = lim —% In PY(m)

N—oo

@ Equilibrium states:

E'={m:1"(m) =0}

Canonical
@ Large deviation principle:

Pg(m) =< e~ Ns(m)

@ Rate function:

1
I3(m) = lim —Nln Pn 5(m)

N—oo

@ Equilibrium states:

€5 = {m: Is(m) = 0}
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Step 2: Energy decomposition of CE
CE = mixture of MEs )

e_BH(w)

Z(p)

Ps(w) = PY(w) = const - 6,

@ Energy conditioning:
Ps(wlu) = P*(w)
@ Energy decomposition:
Pofw) = [ Polwlu)Pylu) du= [ P(w)Ps(u)du
@ Energy LDP:
Po(u) = e Ml Jg(u) = Bu — s(u) — ()

e Equilibrium energy:
Us = {u: Js(u) = 0}
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Step 3: Representation formula

Theorem

Io(m) = inf {Js(u) + 1*(m)}

Proof :
Po(m) = [ Palmlu)Ps(u) du
- /P”(m)Pg(u) du
_ / o NI(m)+J5(u)] gy
— e—Ninfu{Jg(u)—H”(m)}
e Max of Pg(m) = max of P“(m) and Pg(u)
e Min of I3(m) = min of /“(m) and Js(u)
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Main result

Assumption
[“(m), I3(m) exist
@ LDPs for Pg(m) and PY(m) = ( &Y, Ep exist
s(u), o(B) exist

Theorem

@ Equivalence:
s(u) strictly concave = &£“ = €3 for some B € R

© Nonequivalence:
s(u) nonconcave = &£Y # &g for all B € R

© Partial equivalence:
s(u) concave (not strictly) = &% C &g
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Proof

EY={m:IY(m) =0}
ls(m) = inf{Ja(u) + 1"(m)} €5 = {m: Iy(m) = 0}
Uy = {u: Js(u) = 0}

@ Rate functions are positive
(] IBZOiﬂ:JB:Iu:O

° /ﬁ(guﬁ) =0
o) = inf{Ja(u) + 1(€")}
=0
° /uﬁ(m/g) =0

ls(mg) = inf{Jg(u) + I"(mgs)}
—0
o ucls e P eds(u)
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Proof (cont'd)

@ s(u) strictly concave:
= Up = {u} for B € Js(u)
= 5@ =&Y

@ s(u) nonconcave:
= u ¢ U forany g € R
=E&"N&Ez=0forall g eR

© s(u) concave but not strictly: s
= Ug ={u, ...} for B = 0s(u)
= &Y C 55
u
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Other results
Covering @ [Ellis, Haven & Turkington JSP 2000]:
Eg= | & &= ) &
uelg UGT'I(SB)
o Us = h(&p) if h exists
® hand 5 — Y and Is
e /Y and I3 exist without h and 3
Phase coexistence
s(u) nonconcave or affine & 5 =EYUEY U--- }
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Systems now covered

@ Non-mean-field systems
@ Long-range systems
e Gravitating systems
@ Short-range systems
@ Mixed short/long-range systems
@ Macrostates with no energy representation functions
@ Many macrostates for given model
° .
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Example 1. 1D a-Ising model
[Barré, Bouchet, Dauxois & Ruffo JSP 2005; Dyson CMP 1969]
@ 1D spin model:
N
J 1-5;S;
H o J>0,5=+1

o N1-—« 5 |I _j|a ’

@ Mean-field Imit for0 < a <1

@ “Mean-field" macrostate: Magnetization profile m(x)

@ Standard magnetization:

1 N
M:N;&

@ No energy representation function for M

Entropy s(u) is known

@ Equivalence (either strict or partial)
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Example 2: Short/long-range models
[Campa, Giansanti, Mukamel & Ruffo Physica 2006]

e Coupled rotators (generalized HMF):

N N N
P; J
H = E > + N E [1 —cos(6; — 6;)] — K g cos(fi+1 — 0;)
= j=1 i=1

Y (. 7
(. 2
-~ ~"

Long_range Short—range

@ Macrostate:

1 N 2 N 2
M = N (Zl cos«9,-> + (lein 0,-)

@ No representation function for M
e Entropy s(u) is known
@ Nonequivalence for —0.25 < K < K; ~ —0.168
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Example 3: 2D Ising model

@ Hamiltonian:

1
Hy = —5 ;a;aj, o; = =+1
i

— 1
@ Magnetization: M = N ZO‘,‘
)

No energy representation function

Entropy s(u, m) is known

o

°

e Equivalence for strictly concave parts Iyt \
@ Problems for flat parts

o

Bulk + surface LDPs:

P(m) = o~ NJ(m)—v/NI(m)

@ Equivalence determined by bulk + surface
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Conclusions

Thermodynamic equivalence < Macrostate equivalence )

@ General result of statistical mechanics

Covers:
@ Any (classical) many-body system
@ Any (valid) macrostate
e Canonical / Grand-canonical

@ Any other dual ensembles
@ Higher-dimensional Hamiltonian / macrostates
> e.g., turbulence models: H = {energy, circulation}

@ Nonequilibrium particle models (e.g., zero-range process)
Future work:

@ Include surface LDPs

@ Relative entropy equivalence: H(Pg|P") =0

@ Quantum systems
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