## Doing maths with computers

Hugo Touchette

School of Mathematical Sciences Queen Mary, University of London

June 30, 2009

Presentation available at http://www.maths.qmul.ac.uk/~ht

Hugo Touchette (QMUL)

Computers & Maths

June 2009 1 / 28

# Outline



A brief history of computers

- 2 Crunching big numbers
- **3** Solving equations
- 4 Visualising functions
- 5 Experimental mathematics

6 Programming

# Early mechanical calculators







- Abacus
- Mesopotamia (2500 BC), Roman Empire, China, etc.
- Quick arithmetic operations
- Pascal's calculator 1645 (Pascalina or the Arithmetique)
- Blaise Pascal (1623-1662)
- Add and substract numbers
- Difference engine 1822
- Charles Babbage (1791-1871)
- Compute values of polynomial functions

Hugo Touchette (QMUL)

Computers & Maths

June 2009 3 / 28

# More mechanical computers



- Leonardo Torres Quevedo (1852-1936)
- Computes real and complex roots of trinomial equations x<sup>p</sup> + x + r = 0



- Isograph, AT&T, 1937
- Calculates roots of polynomials up to degree 15





- Differential analyzer, 1910s-1920s
- Solves differential equations

Hugo Touchette (QMUL)

June 2009 4 / 28

## First universal computers

1945: ACE (Automatic Computing Machine) Designed by Alan Turing



1946: ENIAC (Electronic Numerical Integrator And Computer) Designed by John von Neumann



Hugo Touchette (QMUL)

Computers & Maths

June 2009 5 / 28

## Modern computers

Personal computers / calculators



#### Fastest computer

- DOE Roadrunner, USA, 1400 TeraFlops =  $1400 \times 10^{12}$  ops/sec
- List at www.top500.org

Hugo Touchette (QMUL)

June 2009 6 / 28

## Mathematical softwares

| Maple 11                                  | Maple (commercial)<br>Maplesoft (Canada)<br>maplesoft.com |  |  |  |  |  |
|-------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|
| Wolfram<br>Mathematica6                   | Mathematica (commercial)                                  |  |  |  |  |  |
|                                           | Wolfram Research (USA)                                    |  |  |  |  |  |
|                                           | wolfram.com                                               |  |  |  |  |  |
|                                           | Sage (open source, free)                                  |  |  |  |  |  |
|                                           | sagemath.org                                              |  |  |  |  |  |
|                                           | Magma (non-commercial, license fee)                       |  |  |  |  |  |
|                                           | University of Sydney                                      |  |  |  |  |  |
|                                           | magma.maths.usyd.edu.au/magma/                            |  |  |  |  |  |
| <ul> <li>Numerical</li> </ul>             | computations                                              |  |  |  |  |  |
| <ul> <li>Symbolic computations</li> </ul> |                                                           |  |  |  |  |  |

```
Hugo Touchette (QMUL)
```

Computers & Maths

June 2009 7 / 28

# Representing large numbers

# Question 1 What's the biggest number you can write on a typical pocket calculator? Solution:

## Question 2

What's the biggest number that you think a computer can represent?

## Solution:

## Question 3

What limits us in representating numbers on computers?

# Crunching big numbers

#### Question 4

Write down the value of 4!

## Solution:

#### Question 5

How many digits do you think 1000! has?

#### Solution:

## Question 6

Write the largest number you can think of using 4 digits arranged in any way you like.

#### Solution:

Hugo Touchette (QMUL)

Computers & Maths

June 2009 9 / 28

## Solving simple polynomial equations

- Some equations can be solved by hand
- No need to use computers

## Question 7

Write down the solution of 2x + 4 = 8.

#### Solution:

#### Question 8

Write down the solutions of the general equation

$$ax^2 + bx + c = 0$$

where a, b, and c are constants. How many solutions are there?

# Cubic equations

- Some equations are more difficult to solve
- Computers begin to be useful

## Question 9

Find all the solutions of  $x^3 - x = 0$ .

## Solution:

## Question 10

Consider the general equation

$$ax^3 + bx^2 + cx + d = 0$$

where *a*, *b*, *c*, and *d* are constants. Do you know the formula for the solutions of this equation? How many solutions are there?

```
Hugo Touchette (QMUL)
```

Computers & Maths

June 2009 11 / 28

## From cubic to quintic equations

Here's one solution of the equation of degree 3 of the previous page:

$$\begin{split} x &= -\frac{b}{3a} - \frac{2^{1/3} \left(-b^2 + 3ac\right)}{3a \left(-2b^3 + 9abc - 27a^2d + \sqrt{4 \left(-b^2 + 3ac\right)^3 + \left(-2b^3 + 9abc - 27a^2d\right)^2}\right)^{1/3}} + \\ \frac{\left(-2b^3 + 9abc - 27a^2d + \sqrt{4 \left(-b^2 + 3ac\right)^3 + \left(-2b^3 + 9abc - 27a^2d\right)^2}\right)^{1/3}}{32^{1/3}a} \end{split}$$

Question 11

Consider the general equation

$$ax^4 + bx^3 + cx^2 + dx + e = 0$$

of degree 4. Is there an explicit formula for the solutions of this equation?

#### Solution:

## Mathematical fact

Solutions of equations of degree 5 (quintics) cannot be expressed in terms of the four arithmetic operations and roots only.

## Transcendental equations

- Some equations can't be solved in closed form
- But they can be solved numerically on a computer

| Question 12                           |                             |                       |         |
|---------------------------------------|-----------------------------|-----------------------|---------|
| Consider the equation                 |                             |                       |         |
|                                       | $e^{-x}=x.$                 |                       |         |
| Can you solve it? That this equation? | is, can you find the numeri | cal value that verifi | es      |
| Solution:                             |                             |                       |         |
|                                       |                             |                       |         |
|                                       |                             |                       |         |
|                                       |                             |                       |         |
|                                       |                             |                       | J       |
|                                       |                             |                       |         |
| Hugo Touchette(QMUL)                  | Computers & Maths           | June 2009             | 13 / 28 |

## Transcendental equations

Question 13

Find the solution of

 $\cos(x) = x$ 

in the interval  $[0, \pi]$ .

Solution:

## Question 14

Find the two solutions of the equation

$$\cos(x^3) - x^2 = 0.$$

# Plotting functions of one variable

## Question 15

Can you plot the following functions? a)  $f(x) = x^2$ b)  $f(x) = \sin(x)$ c)  $f(x) = \sin(\frac{1}{x})$ 

## Solution:

Hugo Touchette (QMUL)

Computers & Maths

June 2009 15 / 28

# Plotting functions of two variables

Question 16 Try to plot the following functions: a)  $f(x, y) = x^2 + y^2$ b)  $f(x, y) = x^2 - y^2$ c)  $f(x, y) = x \sin(x) \cos(y)$ 

## Plotting function of three variables

• Can we plot a function f(x, y, z) of three variables?



# The prime numbers

Question 18

What's a prime number?

Solution:

## Question 19

Write down the first 10 primes.

## Solution:

## Question 20

Is 7918 a prime? What about 7919?

## Distribution of primes

Here are the primes between 2 and 100:

| 1         | 2  | 3         | 4  | 5  | 6  | 7         | 8  | 9         | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17        | 18 | 19        | 20  |
|-----------|----|-----------|----|----|----|-----------|----|-----------|----|----|----|----|----|----|----|-----------|----|-----------|-----|
| 21        | 22 | 23        | 24 | 25 | 26 | 27        | 28 | 29        | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37        | 38 | 39        | 40  |
| <b>41</b> | 42 | <b>43</b> | 44 | 45 | 46 | 47        | 48 | 49        | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57        | 58 | <b>59</b> | 60  |
| 61        | 62 | 63        | 64 | 65 | 66 | <b>67</b> | 68 | 69        | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77        | 78 | <b>79</b> | 80  |
| 81        | 82 | 83        | 84 | 85 | 86 | 87        | 88 | <b>89</b> | 90 | 91 | 92 | 93 | 94 | 95 | 96 | <b>97</b> | 98 | 99        | 100 |

#### Question 21

Do you see any order in the way the primes appear?

#### Solution:

## Question 22

Is there a maximum prime number? In other words, is there a finite or an infinite number of prime numbers?

# Solution: Hugo Touchette (QMUL) Computers & Maths June 2009 19 / 28

## Plotting the distribution of primes

• Cumulative distribution:

N(x) = Number of primes smaller or equal to x



## Question 23

Do you see any pattern in the way N(x) grows?

## Solution:

## Question 24

How quickly does N(x) grow?

## Solution:

Hugo Touchette (QMUL)

June 2009 20 / 28

# Order in the primes: The Ulam prime spiral

## Stanislaw Ulam, 1963



# What's programming?

- Instructing a computer to perform a task
- Writing down the recipe for a computation
- Computer's language = programming language

| Programming language                            |  |  |  |  |
|-------------------------------------------------|--|--|--|--|
| Java, C, C++, Pascal, Fortran, Basic,           |  |  |  |  |
|                                                 |  |  |  |  |
| Basis of all languages                          |  |  |  |  |
| • Arithmetic operations: +, -, ×, $\div$        |  |  |  |  |
| <ul> <li>Functions: e.g. sin(x)</li> </ul>      |  |  |  |  |
| <ul> <li>Repeated execution (loops)</li> </ul>  |  |  |  |  |
| <ul> <li>Conditional execution (ifs)</li> </ul> |  |  |  |  |

Hugo Touchette (QMUL)

Computers & Maths

June 2009 23 / 28

# A simple example

## Problem

Add all the prime numbers between 1 and 100

#### Recipe

sumvalue = 0
1 prime? no
2 prime? yes ⇒ sumvalue + 2
3 prime? yes ⇒ sumvalue + 3
4 prime? no
:
99 prime? no
100 prime? no
Print final sumvalue

#### Program

sumvalue:=0; for i from 1 to 100 do if isprime(i)=true then sumvalue:=sumvalue+i; end if; end do; sumvalue;

## Another example: The Lorenz attractor

Edward Lorenz, 1963

- Position: (x(t), y(t), z(t))
- Equations of motion:

$$\frac{dx}{dt} = \sigma(y - x)$$
$$\frac{dy}{dt} = x(\rho - z) - y$$
$$\frac{dz}{dt} = xy - \beta z$$



## Basic code for i from 0 to t/dt do $x:=x+sigma^*(y-x)^*dt;$ $y:=y+(rho^*x-x^*z-y)^*dt;$ $z:=z+(x^*y-beta^*z)^*dt;$ end do: Mug Touchette (QMUL) Computers & Maths June 2009 25 / 28

# Extra: Program for cumulative distribution of primes

• Cumulative distribution:

N(x) = Number of primes smaller or equal to x

#### Recipe

- 1. Scan all number from 1 to x
- 2. Add 1 to a counter when a prime is encountered

#### Algorithm Program nprimes = 0nprimes:=0; for i from 1 to x do 1 prime? no 2 prime? yes $\Rightarrow$ *nprimes* + 1 if isprime(i)=true then 3 prime? yes $\Rightarrow$ *nprimes* + 1 nprimes:=nprimes+1; 4 prime? no end if; end do; nprimes; x prime? Print final nprimes

## If you want to know more ...

- History of computers:
  - Wikipedia
- Top 500 computers in the world:
  - http://www.top500.org
- Solving quintic equations:
  - http://library.wolfram.com/examples/quintic/
- Prime numbers:
  - Wikipedia
  - Marcus du Sautoy, The Music of the Primes, Harper Collins, 2003
- Prime spiral:
  - Wikipedia
  - http://www.numberspiral.com/
  - http://mathworld.wolfram.com/PrimeSpiral.html
- Lorenz attractor:
  - Wikipedia
  - http://mathworld.wolfram.com/LorenzAttractor.html

http://www.maths.qmul.ac.uk/~ht

| Hugo Touchette(QMUL) | Computers & Maths | June 2009 | 27 / 28 |
|----------------------|-------------------|-----------|---------|

## Notes