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NB: UUNET also has infrastructure within individual countries, which is not shown on this map.

June 2000

UUNET’s North America Internet network
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Internet (cont’d)

IP connection map, 15 Jan 2005 (from wiki)
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European gas network

• ∼ 24 000 nodes, 25 000 links
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Transportation
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Biological and chemical networks

Gene regulatory network

Citric acid cycle
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Biological and chemical networks (cont’d)
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Facebook

Brendan Griffen Kris Krüg

• Draw your Facebook network:
https://msalganik.wordpress.com/2013/02/11/visualizing-your-facebook-network/

• More graphs:
http://noduslabs.com/research/inclusive-exclusivity-innovative-networks/
https://msalganik.wordpress.com/2013/02/24/a-gallery-of-personal-networks-from-facebook/
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Football networks

2010 FIFA World Cup

© QMUL 2010
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Bits of graph theory

• G = {nodes, edges}
• Incidence/adjacency matrix:

Aij =

{
1 i , j linked
0 otherwise

• Node degree:

ki =
∑
j

Aij

• Degree distribution: P(k)

• Shortest path (geodesic)

• Connected vs unconnected

• Largest component

10 nodes, 27 edges

{4, 6, 6, 5, 4, 6, 4, 8, 5, 6}
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Regular graphs

Complete

Cycle

Star

Circulant

• Lattices

• ...
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Random graphs

[Erdös & Rényi, 1959]

• N nodes

• Connect with probability p

• (6, 0.5):

� � �

• (20, 0.5):

� � �
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Random graphs (cont’d)

• Poisson degree distribution:

P(k)→ (Np)k

k!
e−Np, N →∞,Np = const

• Np < 1: Likely disconnected

• Np ≥ 1: Giant component

• Related to percolation transition
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N = 1000, Np = 0.8

Hugo Touchette (NITheP) Complex networks August 2015 13 / 25

Small-world networks

[Watts & Strogatz, 1998]

• Start with regular graph

• Rewire each edge at random with probability p

• Uniform re-attachment
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Small-world networks (cont’d)

• Efficient covering

• Small path length L

• High clustering C

� �

N = 100, p = 0, 0.1, 1

Nature © Macmillan Publishers Ltd 1998
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removed from a clustered neighbourhood to make a short cut has, at
most, a linear effect on C; hence C(p) remains practically unchanged
for small p even though L(p) drops rapidly. The important implica-
tion here is that at the local level (as reflected by C(p)), the transition
to a small world is almost undetectable. To check the robustness of
these results, we have tested many different types of initial regular
graphs, as well as different algorithms for random rewiring, and all
give qualitatively similar results. The only requirement is that the
rewired edges must typically connect vertices that would otherwise
be much farther apart than Lrandom.

The idealized construction above reveals the key role of short
cuts. It suggests that the small-world phenomenon might be
common in sparse networks with many vertices, as even a tiny
fraction of short cuts would suffice. To test this idea, we have
computed L and C for the collaboration graph of actors in feature
films (generated from data available at http://us.imdb.com), the
electrical power grid of the western United States, and the neural
network of the nematode worm C. elegans17. All three graphs are of
scientific interest. The graph of film actors is a surrogate for a social
network18, with the advantage of being much more easily specified.
It is also akin to the graph of mathematical collaborations centred,
traditionally, on P. Erdös (partial data available at http://
www.acs.oakland.edu/,grossman/erdoshp.html). The graph of
the power grid is relevant to the efficiency and robustness of
power networks19. And C. elegans is the sole example of a completely
mapped neural network.

Table 1 shows that all three graphs are small-world networks.
These examples were not hand-picked; they were chosen because of
their inherent interest and because complete wiring diagrams were
available. Thus the small-world phenomenon is not merely a
curiosity of social networks13,14 nor an artefact of an idealized

model—it is probably generic for many large, sparse networks
found in nature.

We now investigate the functional significance of small-world
connectivity for dynamical systems. Our test case is a deliberately
simplified model for the spread of an infectious disease. The
population structure is modelled by the family of graphs described
in Fig. 1. At time t ¼ 0, a single infective individual is introduced
into an otherwise healthy population. Infective individuals are
removed permanently (by immunity or death) after a period of
sickness that lasts one unit of dimensionless time. During this time,
each infective individual can infect each of its healthy neighbours
with probability r. On subsequent time steps, the disease spreads
along the edges of the graph until it either infects the entire
population, or it dies out, having infected some fraction of the
population in the process.

p = 0 p = 1 
Increasing randomness

Regular Small-world Random

Figure 1 Random rewiring procedure for interpolating between a regular ring

lattice and a random network, without altering the number of vertices or edges in

the graph. We start with a ring of n vertices, each connected to its k nearest

neighbours by undirected edges. (For clarity, n ¼ 20 and k ¼ 4 in the schematic

examples shown here, but much larger n and k are used in the rest of this Letter.)

We choose a vertex and the edge that connects it to its nearest neighbour in a

clockwise sense. With probability p, we reconnect this edge to a vertex chosen

uniformly at random over the entire ring, with duplicate edges forbidden; other-

wise we leave the edge in place. We repeat this process by moving clockwise

around the ring, considering each vertex in turn until one lap is completed. Next,

we consider the edges that connect vertices to their second-nearest neighbours

clockwise. As before, we randomly rewire each of these edges with probability p,

and continue this process, circulating around the ring and proceeding outward to

more distant neighbours after each lap, until each edge in the original lattice has

been considered once. (As there are nk/2 edges in the entire graph, the rewiring

process stops after k/2 laps.) Three realizations of this process are shown, for

different values of p. For p ¼ 0, the original ring is unchanged; as p increases, the

graph becomes increasingly disordered until for p ¼ 1, all edges are rewired

randomly. One of our main results is that for intermediate values of p, the graph is

a small-world network: highly clustered like a regular graph, yet with small

characteristic path length, like a random graph. (See Fig. 2.)

Table 1 Empirical examples of small-world networks

Lactual Lrandom Cactual Crandom
.............................................................................................................................................................................

Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 12.4 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05
.............................................................................................................................................................................
Characteristic path length L and clustering coefficient C for three real networks, compared
to random graphs with the same number of vertices (n) and average number of edges per
vertex (k). (Actors: n ¼ 225;226, k ¼ 61. Power grid: n ¼ 4;941, k ¼ 2:67. C. elegans: n ¼ 282,
k ¼ 14.) The graphs are defined as follows. Two actors are joined by an edge if they have
acted in a film together. We restrict attention to the giant connected component16 of this
graph, which includes ,90% of all actors listed in the Internet Movie Database (available at
http://us.imdb.com), as of April 1997. For the power grid, vertices represent generators,
transformers and substations, and edges represent high-voltage transmission lines
between them. For C. elegans, an edge joins two neurons if they are connected by either
a synapse or a gap junction. We treat all edges as undirected and unweighted, and all
vertices as identical, recognizing that these are crude approximations. All three networks
show the small-world phenomenon: L ) Lrandom but C q Crandom.
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Figure 2 Characteristic path length L(p) and clustering coefficient C(p) for the

family of randomly rewired graphs described in Fig. 1. Here L is defined as the

number of edges in the shortest path between two vertices, averaged over all

pairs of vertices. The clustering coefficient C(p) is defined as follows. Suppose

that a vertex v has kv neighbours; then at most kvðkv 2 1Þ=2 edges can exist

between them (this occurs when every neighbour of v is connected to everyother

neighbour of v). Let Cv denote the fraction of these allowable edges that actually

exist. Define C as the average of Cv over all v. For friendship networks, these

statistics have intuitive meanings: L is the average number of friendships in the

shortest chain connecting two people; Cv reflects the extent to which friends of v

are also friends of each other; and thus C measures the cliquishness of a typical

friendship circle. The data shown in the figure are averages over 20 random

realizations of the rewiring process described in Fig.1, and have been normalized

by the values L(0), C(0) for a regular lattice. All the graphs have n ¼ 1;000 vertices

and an average degree of k ¼ 10 edges per vertex. We note that a logarithmic

horizontal scale has been used to resolve the rapid drop in L(p), corresponding to

the onset of the small-world phenomenon. During this drop, C(p) remains almost

constant at its value for the regular lattice, indicating that the transition to a small

world is almost undetectable at the local level.
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Applications

• Electricity grids

• Gene networks

• Social networks

• ...

6 degrees of separation

• Kevin Bacon game (co-acting relation)

• No center: any actor/person will do

• Facebook app (average = 5.73)

• Erdös number

• Erdös-Bacon number (Sagan = 4 + 2, Feynman = 3 + 3)
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Scale-free networks

[Barabási & Albert, 1999]

• Start with n nodes
• Add new vertex with k edges
• Link edges to vertices at random in proportion to degree
• Preferential attachment

N = 100, k = 1

N = 200, k = 2
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Scale-free networks (cont’d)

• Degree reinforcement: High
degree nodes get more links

• Power-law degree distribution:

P(k) ∼ 1

kγ
, 2 < γ < 3

• Large hubs more likely

Examples

• Internet

• Scientific citations

• Neural networks

• Airline connections

• Stars?...
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Hubs, centrality, and communities

• Hubs: Central node, high centrality

• Many definitions: Betweenness, degree centrality, pagerank, etc.
• Communities: Clusters, tight subgraphs

S. Boccaletti et al. / Physics Reports 424 (2006) 175 –308 185

Fig. 2.3. Communities can be defined as groups of nodes such that there is a higher density of edges within groups than between them. In the
case shown in figure there are three communities, denoted by the dashed circles. Reprinted figure with permission from Ref. [51]. ! 2004 by the
American Physical Society.

The strongest definition requires that all pairs of community members choose each other. Such a requirement leads
to the definition of a clique. A clique is a maximal complete subgraph of three or more nodes, i.e. a subset of nodes
all of which are adjacent to each other, and such that no other nodes exist adjacent to all of them. This definition can
be extended by weakening the requirement of adjacency into a requirement of reachability: a n-clique is a maximal
subgraph in which the largest geodesic distance between any two nodes is no greater than n. When n=1, this definition
coincides with that of a clique. 2-cliques are subgraphs in which all nodes need not to be adjacent but are reachable
through at most one intermediary. In 3-cliques all nodes are reachable through at most two intermediaries, and so on.
Whereas the concept of n-clique involves increasing the permissible path lengths, an alternative possibility to relax
the strong assumption of cliques involves reducing the number of other nodes to which each node must be connected.
A k-plex is a maximal subgraph containing n nodes, in which each node is adjacent to no fewer than n–k nodes in
the subgraph.

A different class of definitions is based on the relative frequency of links. In this case communities are seen as
groups of nodes within which connections are dense, and between which connections are sparser [67,68]. An example
is shown in Fig. 2.3. While the simplest formal definitions in this class have been proposed in Refs. [69,70], a less
stringent definition is the following: G′ is a community if the sum of all degrees within G′ is larger than the sum of
all degrees toward the rest of the graph [71]. The definitions presented here are not the only possible choices. Several
other definitions, possibly more appropriate in some cases, can be found in Ref. [18].

2.1.6. Graph spectra
The spectrum of a graph is the set of eigenvalues of its adjacency matrix A [16]. A graph GN,K has N eigen-

values !i (i = 1, 2, . . . , N), and N associated eigenvectors vi (i = 1, 2, . . . , N). When G is undirected, without
loops or multiple edges, A is real and symmetric, therefore the graph has real eigenvalues !1 !!2 ! · · · !!N ,
and the eigenvectors corresponding to distinct eigenvalues are orthogonal. When G is directed, the eigenvalues
can have imaginary part, as, for instance, in the tournament graph with 3 nodes. Consequently, ordering and prop-
erties of eigenvalues and eigenvectors are more complicated. This latter situation will be described in details
when appropriate.

The Perron–Frobenius theorem tells that a graph (also direct) has a real eigenvalue !N associated to a real non-
negative eigenvector, and such that |!|!!N for each eigenvalue !. If the graph is connected, then !N has multiplicity
1 and |!| < !N for all eigenvalues ! different from !N . The value of !N decreases when vertices or edges are removed
from the graph. For a connected undirected graph, this means that the largest eigenvalue !N is not degenerate, and every
component of the corresponding eigenvector vN is non-negative. All other eigenvectors have entries with mixed signs,
because are orthogonal to vN . The same theorem also states that in a connected graph either kmin < ⟨k⟩ < !N < kmax,
or kmin = ⟨k⟩ = !N = kmax.
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Football graphs

• With Javier López Peña
(UCL, now at Kickdex London)

• 2010 FIFA World Cup in South Africa

• Passing data available (at the time)

• Data gathered with python script

• Pass networks generated with Mathematica

• Cumulative passes (all games added)

• Various centrality measures studied

• Predicted final result!

• www.maths.qmul.ac.uk/˜ht/footballgraphs/

• Article: arxiv.org/abs/1206.6904

© QMUL 2010
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Measures

• Pass matrix: Aij = # passes between players i , j

• Geodesic length: dij = shortest (weighted) path between i , j

Closeness centrality

Ci =
1∑

j 6=i dij +
∑

j 6=i dji

• High closeness = small distance

• Easily accessible player

Other quantities

• Betweenness CB(i): Impact of removing a player
(Hub related, 0 = player not involved)

• Pagerank xi : Fraction of time player has the ball

• Clustering coefficient cwi : Clique factor
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Germany vs England

© QMUL 2010
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The Netherlands vs Spain

© QMUL 2010

Ci CB (i) xi cwi
1 Stekelenburg 16.34 0.32 7.63 28.35
3 Heitinga 16.23 2.67 11.06 31.34
4 Mathijsen 17.30 1.30 10.84 33.22
5 V. Bronckhorst 15.74 1.12 10.07 37.00
6 Van Bommel 12.46 3.08 11.19 32.36
7 Kuyt 7.97 1.67 9.02 27.06
9 Van Persie 6.89 2.92 5.88 20.13
10 Sneijder 10.91 2.17 10.32 33.77
11 Robben 5.91 0.16 4.91 23.91

Ci CB (i) xi cwi
1 Casillas 16.52 0.00 3.29 20.46
3 Pique 17.32 3.92 11.46 30.70
5 Puyol 16.32 2.86 7.92 27.12
6 Iniesta 14.60 0.50 8.54 31.03
7 Villa 8.68 0.50 5.89 23.96
8 Xavi 18.28 1.19 14.66 46.47
11 Capdevila 16.54 6.12 10.56 29.91
14 Alonso 17.11 1.19 12.31 41.69
15 Ramos 16.45 2.41 9.02 27.05
16 Busquets 18.55 2.41 12.99 35.32
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Research on complex networks

• Resilience/robustness of networks (random or targeted attacks)

• Immunology (centrality, communities)

• Layered networks (gas + electricity, distribution + consumption)

• Time-evolving networks (cities, transportation)

• Random walks on networks (Google, search, infections)
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Useful references

D. J. Watts
Small Worlds
Princeton University Press, 1999

M. Newman
Networks
Oxford University Press, 2010

M. Newman
The physics of networks
Physics Today, Nov 2008

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang
Complex networks: Structure and dynamics
Physics Reports 424, 175, 2006

R. Albert, A.-L. Barabási
Statistical mechanics of complex networks
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Hugo Touchette (NITheP) Complex networks August 2015 25 / 25


