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Abstract

Information is an intuitive notion that has been quanti�ed successfully both in physics
and communication theory. In physics, information takes the form of entropy; informa-
tion that one does not possess. From this connection follows a trade-o¤, most famously
embodied in Maxwell�s demon: a device able to gather information about the state
of a thermodynamic system could use that information to decrease the entropy of the
system. In Shannon�s mathematical theory of communication, on the other hand, an
entropy-like measure called the mutual information quanti�es the maximum amount of
information that can be transmitted through a communication channel. In this thesis,
we bring together these two di¤erent aspects of information, among others, in a the-
oretical and practical study of control theory. Several observations indicate that such
an information-theoretic study of control is possible and can be e¤ective. One of them,
is the fact that control units can be regarded intuitively as information gathering and
using systems (IGUS): controllers gather information from a dynamical system by mea-
suring its state (estimation), and then use that information to conduct a speci�c control
action on that system (actuation). As the thesis demonstrates, in the case of stochas-
tic systems, the information gathered by a controller from a controlled system can be
quanti�ed formally using mutual information. Moreover, it is shown that this mutual
information is at the source of a limiting result relating, in the form of a trade-o¤, the
availability of information in a control process and its performance. The consequences of
this trade-o¤, which is very similar to the one in thermodynamics mentioned above, are
investigated by looking at the practical control of various systems, notably, the control
of chaotic systems. The thesis also de�nes and investigates the concept of controllabil-
ity, central in the classical theory of control, from an information viewpoint. For this
part, necessary and su¢cient entropic conditions for controllability are proved.

Thesis Supervisor: Seth Lloyd
Title: Assistant Professor of Mechanical Engineering
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The future belongs to those who can manipulate entropy;
those who understand but energy will be only accoun-
tants... The early industrial revolution involved energy,
but the automatic factory of the future is an entropy rev-
olution. 1

�Frederick Ke¤er

1Quoted by H.C. von Baeyer in [69]. Originally cited by Rogers in [54]. Apart from the date of
publication of Roger�s book (1960), the quote, unfortunately, cannot be dated exactly.



1 | Introduction

1.1. Perspectives on information and control

Information is a central component of most decision processes. Intuitively, information
is needed to conduct a decision task in the same way that directions are needed to �nd
our way to a precise location in a foreign city. In that case actually we simply ask for
information, or go to an information desk, in order to spare us from the trouble of wan-
dering desperately around. This information constitutes the �decision environment�, the
geographic details of the city, which restricts our set of possible (situation-dependent)
actions to the ones that serve e¤ectively the purpose of the task.

In the context of control systems, the same observation can be applied to so-called
closed-loop controllers, for they are decision agents of a speci�c kind whose actions
on a dynamical system are in�uenced by the state of that system. In fact, from an
information perspective, conventional closed-loop controllers, regardless of the physical
nature of the process underlying the control, proceed in a universal way: sensors are �rst
used to gather information about the state of the system to be controlled (estimation
step); this information is processed according to a determined control strategy (decision
step), and then fed back to actuators which try to �update� or redirect the state of
the system by augmenting its natural, non-controlled, dynamics (actuation step). Such
control systems paired with �information-processing� devices are found in many modern
control systems, ranging from sophisticated automatic �ight guidance systems to very
simple servomechanisms such as thermostats. In the former example, the sensors are the
various measurement devices (e.g., altimeter, speedometer) which provide the navigation
unit with the necessary data to steer a plane, whereas in the latter the sensor is just a
thermometer.

This thesis aims at clarifying this picture of control systems by proposing a novel
framework which allows the information-theoretic study of general dynamical processes
underlying control systems. The present work goes beyond the intuitive fact that in-
formation is required in control by demonstrating that it is possible to quantify exactly
the amount of information gathered by a controller, and that there exists a direct re-
lationship between the amount of information gathered and the performance of the
controller. It also addresses the fact, not illustrated above, that controllers do not al-
ways need information to execute a speci�c task. A toaster, to take a trivial example,
toasts and eject pieces of bread independently of its environment, and whether there
is bread in the toaster or not. In fact, the class of open-loop controllers, which can be
conceived as a subclass of closed-loop controls, includes all the control devices which
do not need a continual input of information to work; like the toaster, they implement

8



1.1. Perspectives on information and control 9

a control strategy based on general particularities of the system they are intended to
control (e.g., geometric features, statistics), and not its actual state. Why open-loop
control methods can work without information is a central issue of this work, along with
the complementary question of why closed-loop methods require information.

From Wiener�s signalman to Shannon�s theory of information

The idea that control theory can be cast or formulated in an information-theoretic
framework has been proposed by many scientists. Yet, none of them seem to have fully
investigated the problem. Historically, one of the �rst who thought seriously about the
role of information as a de�nable quantity in control systems is Norbert Wiener. In
his book that founded the �eld of cybernetics1 [71], Wiener notes that �the problem
of control engineering and communication engineering were inseparables, and that they
centered around [...] the fundamental notion of the message�. In addition, in close
relationship with what we noted in the introductory paragraphs, Wiener observes that

for e¤ective action on the outer world it is not only essential that we pos-
sess good e¤ectors, but that the performance of these e¤ectors be properly
monitored back to the central nervous system, and that the readings of the
monitors be properly combined with the other information coming in from
the sense organs [...]. Something quite similar is the case in mechanical
systems. [71]

To illustrate the possibility that indeed something similar happens in mechanical
system, Wiener discusses an example involving a man sitting in a signal tower along a
railroad, and whose job is to control a lever which activates a semaphore signal. For
this situation, he notes, it is not su¢cient for the signalman to assume blindly that
the semaphore signal has followed his command. The signaling device may actually be
defective for some reason, and in order to avoid a catastrophe, the signalman must be
con�rmed of his action either directly by looking at the semaphore or by referring to
another device correlated with it. Wiener called this �chain of transmission and return
of information� a chain of feedback. It appeared to him as being the central mechanism
by which control processes function.

Apart from discussing this example and other similar feedback systems, Wiener
thereafter did surprisingly little to build a quantitative description of control systems
focused expressly on information. Although he was well aware of the developments
of Shannon in communication theory [59] (to which Wiener contributed himself), and
although cybernetics was originally intended to study questions of control and com-
munication, Wiener never formalized completely his intuition about how information
should be quanti�ed in control. In fact, around the time his book on cybernetics was
published, Wiener decided to pursue his studies in another direction, and embarked on

1The word cybernetics originates from the Greek ÂÀ¯²½º ¶́¿´&, which means steersman, in recognition
to the �rst feedback control systems known as governors [71].
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Figure 1.1: The signalman�s o¢ce. Trains are coming from the bottom of the railways.

an ambitious programme of research concerned with the theory of continuous random
processes and estimation. In retrospect, it is thus fair to say that Wiener was probably
prevented from developing a complete theory of information because he devoted much
of his time to these other subjects which, not surprisingly, proved to be fundamental to
the �elds of control engineering and information theory.

In this thesis, we shall continue the subject of information and control exactly where
Wiener left it, as most of the results described in the next pages can be outlined by
analyzing a modi�ed version of his example of the signalman. Suppose now that the
duty of the signalman is to actuate a junction of two railway tracks either in position a

or b according to whether there is a train coming from track 1 or track 2 (see �gure 1.1).
In order to achieve this task properly, and so avoid accidents, the signalman must be
positively informed of the track number (1 or 2) of the incoming train, and thus receive,
for every train controlled, one bit of information. This is the case if he is in charge
of two tracks. For only one track, no information is necessary, nor is control actually,
and the signalman may just as well sleep! By way of generalization, we can easily
convince ourselves that the control of an exclusive 3-to-1 junction, i.e., a junction for
which only one path can be connected (�gure 1.2), requires at least 2 bits of information
per controlled train, the same number as a 4-to-1 junction, while an 8-to-1 junction,
for example, requires 3 bits. In general, it can be guessed that at least dlog2Ne bits of
information are needed to control an exclusive N-to-1 junction.

The occurrence of the logarithm measure in this analysis is by no means accidental.
As was pointed by Hartly [27] and by Shannon [59, 60], the logarithm function is the
most natural choice for a measure of information which (i) is a function of the number of
alternatives of the system considered, and (ii) is an additive function of that number. It
is additive in the sense that two systems whose number of states adds up to N2 (Carte-
sian product of the states of both systems) should possess twice as much information as
one system with N states. The fact that such a measure depends only on the number
of alternatives is an important conceptual step in de�ning information: it demonstrates
that semantic aspects of information referring to the concept of meaning are irrelevant
in the engineering problem of communication. The only relevant aspects are syntactic,
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Figure 1.2: (a)-(d) Exclusive N-to-1 junctions with N = 2; 3; 4; 8. (e) Non-exclusive
2-to-1 junction.

which means that they refer to structural characteristics of information (e.g., number
of messages and frequency of symbols in messages). Likewise, in the problem of control
engineering, the meaning of the information processed by a control system plays no role
in its performance. The only meaningful question is how much information there is?

Evidently, for an exclusive N-to-1 junction, �how much� simply refers to the number
N of incoming railways. Though this association is correct on its own, it is not the most
general that one can consider. For instance, what happens if for the 2-to-1 junction
only track 1 is used with probability one? Surely, in that case, no bit of information
is needed to locate the position of the train. To face this eventuality, we have to take
into account the statistics of the alternatives by replacing our original measure of the
number of alternatives by the more general expression

H = ¡
X
i

pi log2 pi; (1.1)

where pi is the probability of the alternative i. The above quantity is known as the
binary entropy, and was shown by Shannon [60] to correspond to the minimum average

number of bits needed to encode a probabilistic source of N states distributed with pi.2

Intuitively, H can also be considered as a measure of uncertainty: it is minimum, and
is equal to zero, when one of the alternatives appears with probability one, whereas it
is maximum and equals to log2N when all the alternatives are equiprobable so that
pi = N¡1 for all i.

This interpretation of entropy is of foremost importance here. At the lowest level
of description, controllers can arguably be thought of as devices aimed at reducing the
uncertainty associated with a system. On the one hand, open-loop control methods
attempt to reduce uncertainty about the state variables of a system, such as position

2Speci�cally, Shannon proved that the average size of any encoding of a data source is bounded below

by its entropy. Moreover, this entropy bound can be achieved within 1 bit, thereby justifying the use of

the ceiling predicate d¢e in the previous page. See section 2.2 for more details.
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or velocity, by acting on these variables, thereby increasing our information about their
actual values. On the other hand, closed-loop control attempt the same process of
reducing uncertainty with the di¤erence that information about the system variables is
used throughout the process. Returning to our example of the 2-to-1 exclusive junction,
we see, for instance, that by gathering 1 bit of information, the signalman is able to
identify with certainty the state of the outgoing train (on track or crashed), thus reducing
the entropy by 1 bit.

Thermodynamics and the physics of information

Shannon�s expression for the entropy of an information source is formally identical to
Gibbs� formula for the entropy S of an equilibrium thermodynamic ensemble aside from
the fact that, physically, S is measured in Joule per degree Kelvin and that i labels a
physical (micro)state, not a message. For this reason, the quantity de�ned by Eq.(1.1)
is sometimes called the Gibbs-Shannon entropy. This formal similarity has led many to
suspect that physical entropy is just information in disguise, and that thermodynamics
could be interpreted in information-theoretic terms. Conversely, the thermodynamic
entropy change of a system, de�ned phenomenologically by Clausius as

¢S =
¢Q

T
; (1.2)

should apply to information processes, therefore opening the way to a thermodynam-
ics of information. In the above formula, ¢Q is the heat transferred in a reversible
process from one physical system to another one, and T is the temperature at which
this exchange process takes place [53].

In the recent years, this conjecture has found a �rm ground in the observation that
information is physical ; information is not merely an abstract concept but inevitably
is tied to a physical representation and must be necessarily be processed in accordance
with the laws of physics [10, 32]. The earliest observations of the �physical nature�
of information are usually attributed to the works of James Clark Maxwell and Leo
Szilard (cf. [35] for original references). Maxwell, in 1867 or possibly earlier, imagined
a being whose ability to gather information about the positions and the velocities of the
molecules of a gas would enable him to act on the molecules and create a temperature
di¤erence in the gas starting from an initial equilibrium state. Paradoxically, such a
being would thus be able to decrease the entropy of a system without increasing the
entropy elsewhere, in violation of the second law of thermodynamics.

Recall that, in one of its many formulations, the second law asserts exactly that it is
impossible to construct a perfect engine (a perpetual machine) which would be able to
extract, in a cyclic way, useful energy in the form of work from a heat reservoir without
producing any other e¤ect on the environment [53]. In another formulation, this laws
posits equivalently that the entropy of a closed system must increase or stay constant,

but cannot, in any way, decrease. In other words, if entropy decreases in some place, it
must increase elsewhere.
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After causing much confusion in physics, Maxwell�s demon, as it has been called
since, was shown by Szilard in 1929 to threaten the second law only in appearance.
As noted in his seminal paper entitled �On the decrease of entropy in thermodynamic
system by the intervention of intelligent beings�, one bit of information gathered by the
demon can only serve to decrease the thermodynamic entropy of the gas by at most
one bit. In this case, the second law would still hold if there was a thermodynamic
cost associated with information. In the years that followed this proposal, Brillouin,
apparently unaware of Szilard�s work, identi�ed the measurement process, the act of
gathering information, as being thermodynamically expensive. For many physical sys-
tems, he calculated that one bit of information can only be accessed if one bit of entropy
is �dissipated� irreversibly in the form of heat [12, 13]. What Brillouin failed to show,
however, is that his prognostic did not constitute a general result, for we know now
that there exist non-dissipative measurement processes which do not involve the trans-
fer of entropy in an environment (e.g., see [8]). So then, how can Maxwell�s paradox be
resolved?

The �nal word on this problem, provided by Bennett and Landauer [6, 7, 8, 9, 32], is
that a thermodynamic cost has to be paid because the demon must erase the information
gathered at each cycle of its operation in order to operate in a truly cyclic fashion. Hence,
for each bit of information erased,

¢Q = kBT ln 2 (1.3)

joules of heat should be dissipated, thereby restoring the validity of the second law
(here kB ' 1:38 £ 10¡23 joule/kelvin is the Boltzmann constant which provides the
necessary conversion between energy units and information units, and the constant ln 2
arises because S is customary de�ned in physics with natural base logarithms). This
solution is based upon a general physical result known as Landauer�s principle which
states that many-to-one mappings of N bits of memory states, resulting physically
from a compression of the phase space of the system serving as the representation
of this memory, must lead to an entropy dissipation of N bits either in the form of
heat, ¢Q = NkBT ln 2, or as �junk� entropy transferred to another system (cf. [32]
and references therein). In other words, irreversible logical transformations on bits of
information must be associated with dissipative physical processes. This must be so
because the entropy of a closed system described by Hamiltonian mechanics is constant
over time, as stated in Liouville�s theorem [53]. As an important corollary, one-to-one
mappings of logical states, i.e., reversible transformations preserving information, can
be implemented physically as non-dissipative processes conserving entropy.

In the context of control, dissipative processes are very important. They can be
implemented physically to reduce the entropy of a system irrespective of its state, and
thus underlie most open-loop controllers. From an informational point of view, the
2-to-1 exclusive junction considered previously in �gure 1.2 is surely not a dissipative
device. In fact, it is a reversible one if we consider the input state of the train to be
an element of the set f1; 2g and the output state as being in f10;crashedg. Using these



1.2. General framework and overview 14

states, the action of the junction can be described by the diagram

(incoming track)
1 !

½
10 if junction is in state a
crashed otherwise

2 !

½
10 if junction is in state b
crashed otherwise

(outcoming state)

which is equivalent to the following logical table

x c x0 c0

1 a 10 a
1 b crashed b
2 a crashed a
2 b 10 b

where c is the state, a or b, of the junction (the controller), and where x is the state of
the train. The condition of reversibility in this table amounts to the fact that the states
x and c can be inferred uniquely with the knowledge of x0 and c0 alone, or, otherwise
stated, the mapping x; c! x0; c is one-to-one. A possible modi�cation of this junction,
which would make it dissipative, is to change it to a non-exclusive junction by merging
both track 1 and 2 to the same outgoing track (10) as shown in �gure 1.2e. In this case,
the action of the junction is just a 2-to-1 mapping of the form

(incoming track)
1 ! 10

2 ! 10
(outgoing state)

It maps the �nal state to 10 irrespectively of the initial state, which means for control
purposes that no human intervention is needed for the junction to function correctly.

1.2. General framework and overview

The work presented in this thesis conveys the essence of the above results by seeking a
quantitative characterization of the exchange of information between a controlled system
and a controller. Such a characterization of information is achieved by representing the
states of both of these systems as random variables, and by considering the control
process itself as a stochastic process. Within this stochastic picture, it is then possible
to de�ne information-theoretic measures similar to Eq.(1.1).

Speci�cally, the processes that we shall be concerned with are autonomous discrete-
state, discrete-time (dsdt) dynamical systems described by a one-dimensional stochastic
equation of the form

Xn+1 = f(Xn; Cn; En); (1.4)

where n = 0; 1; 2; : : : is the time, and where the random variable Xn represents the state
vector of the system. The possible values xn of the state vector form a �nite set X called
the state or phase space of the system. The random variable Cn represents the control
variable whose values cn 2 C are drawn from the actuation set C, assumed to be �nite



1.2. General framework and overview 15

as well. The way the values cn are chosen depends on the information available to the
controller which, at time-instant n, is a subset ³n of fX0;X1; : : : ;Xn; C0; C1; : : : ; Cn¡1g
(no access to future information). Admissible control strategies for the controller now
consist of all possible mappings g : ³n ! C whose domain determines the information
structure of the control process according to the following classes.

² Open-loop control. Cn has no explicit dependence on the values of Xn for all n and
precedent values of the control, i.e., ³n = ;. The control may depend, however, on
the statistics of Xn and other general characteristics of the system under control,
such as geometric features.

² Closed-loop or feedback control. ³n = fX0;X1; : : : ;Xn; C0; C1; : : : ; Cn¡1g. Thus,
the control is allowed to depend explicitly on the past values of the state vector,
and past values of the control.

From these standard de�nitions, it is clear that open-loop control laws form a subset of
the class of closed-loop control. Finally, the random variable En represents an external
process (random or deterministic) in�uencing the control. Physically, this process can
represent a noise component added to the system or may account for perturbations
resulting from interactions with any other systems. The term environment is reserved for
these systems which generally evolve according to their own, non-controllable, dynamics.

Our information-theoretic study of the system described by Eq.(1.4) shall proceed as
follows. After a brief review, in chapter 2, of the basic results of Shannon�s information
theory, we present in chapter 3 two general probabilistic dsdt models of control. These
are used in conjunction with several entropy-like quantities to derive fundamental limits
on the controllability of physical systems. Two important results are obtained in this
chapter. The �rst one generalizes the concept of controllability of control systems to
allow the characterization of approximate controllability. It is shown that a necessary
and su¢cient entropic condition for a system to be perfectly controllable can be given
in the form of an independency condition between the system to be controlled and any
other interacting systems. The second result shows closed-loop control to be essentially
a zero sum game in the sense of game theory: each bit of information gathered di-
rectly from a dynamical system by a controller can serve to decrease the entropy of the
controlled system by at most one bit additional to the reduction of entropy attainable
without such information (i.e., in open-loop control). This last result, as we shall see,
generalizes the notion of Maxwell�s demons to controllers and extends the scope of the
second law of thermodynamics to control problems.

Despite the fact that our analysis is restricted to one-dimensional dsdt systems,
it is very important to note that, given minor exceptions noted in section 3.7, all the
results obtained apply equally to continuous-space (cs) systems, with state spaces of
arbitrary �nite dimension, and to continuous-time (ct) dynamics under speci�c condi-
tions. The need to restrict our attention on dtds is only for the purpose of simplifying
the notations, and thus making the whole general modeling question more amenable
to an e¤ective formalization. In the same vein, the recourse to a stochastic formalism
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in treating control systems does not imply that our results are limited to this class of
systems. Without loss of generality, the state of a dynamical system is represented here
by a random variable in order to take into account the following situations.

² Most real-world systems are genuinely stochastic. Material properties, forces act-
ing on mechanical systems, and the geometry of these systems exhibit spatial and
temporal random �uctuations that are best characterized by probabilistic models.
Also, a controller may be fed explicitly with noisy inputs, or can be bathed in a
noisy environment.

² Deterministic systems often display sensitivity to initial data or control parameters
which make them e¤ectively stochastic at �nite levels of observation and descrip-
tion. A �nite precision sensor, for instance, may blur the divergence of su¢ciently
close trajectories of a dynamical system upon measurement, thereby inducing a
randomization in the description of its motion.

² In certain cases, our study of dynamical systems may focus only on the long
term behavior of trajectories. This is justi�ed by the fact that a large class of
systems display transient evolutions followed by asymptotic recurrent regimes.
It is therefore appropriate to introduce probabilistic measures in the state space
which re�ect global and static behaviors in the limit n!1.

² As emphasized mainly by Wiener, we are rarely interested in the performance of
a control device for a single input. The need for versatility and robustness implies
that controllers be tested against a set of situations or possibilities for which they
are expected to perform satisfactorily. In this sense, the ensemble picture is just a
way to take into account all these situations in the same analysis. For example, the
ensemble describing the inputs of the junction depicted in �gure 1.1 can be taken
as the set f1; 2g with p(1) = p(2) = 1=2, even if the mechanism specifying the
arrival state of the trains is known exactly. This is so because the only (overall)
functionality requirement of the junction is to perform for both input states f1; 2g,
not for each state at a time.

To exemplify the results of chapter 3, and to further illustrate the generality of the
stochastic picture, several applications are presented in chapter 4. The applications
range from the control of discrete states of information by the use of logical gates
subjected to noise to the control of continuous state chaotic maps. The working model
for this latter application is a control algorithm for chaotic systems proposed by Ott,
Grebogi and Yorke (see chapter 4 for references), and is applied to the well-known
logistic map. Finally, in chapter 5, we point out some similarities of our approach
with statistical game theory, and conclude with a list of suggestions for possible future
research directions including possible applications to quantum systems.
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1.3. Related works

Previous proposals and ideas about entropy, information and control can be classi�ed
grosso modo into two categories: those which studied problems of information, partic-
ularly the question of how entropy can be reduced in systems, but did not speci�cally
address these problems in control theory; and those which considered, in a qualitative
fashion, control as an information process without invoking the quantitative power of
information theory. The physicists who solved the problem of Maxwell�s demon, some
problems of information in dynamical systems (e.g., see [56, 61, 23]), and a few re-
searchers in information theory [18, 11] certainly belong to the former group. Wiener,
on the other hand, was argued in the introduction to belong in the latter, perhaps along
with several researchers in cybernetics [3, 55, 36], and Warren Weaver [60] who discussed
informally the role of information in many contexts.

Of course, there are exceptions to this classi�cation. One of the very few is a
Russian physicist named R.P. Poplavski¼¬ who, during the 70�s, published two papers on
the subject of information and entropy, and their possible application to control. The
�rst paper, entitled �Thermodynamic models of information processes� [51], focuses
on the role of information in measurement, but mentions in passing that �information
is used for purposeful control, leading to a decrease of entropy [...]�, an idea that he
further developed in the second paper [52]. Although the essence of Poplavski¼¬�s work is
very similar to that which is presented here, his approach is somewhat incomplete with
respect to control theory for two main reasons. First, Poplavski¼¬ addresses mainly the
problem of entropy in the measurement process, and leave aside processes of actuation
which, as we show, can also be included in an information-theoretic study of control.
Second, most of his results concerning the thermodynamics of measurement processes
are based on Brillouin�s work, and, for that reason, are misleading and even wrong.

Another proposal, similar to Poplavski¼¬�s, was also put forward by A.M. Weinberg
who suggested the relatedness of modern microprocessor control systems with Maxwell
Demons in the article �On the relation between information and energy systems: a
family of Maxwell�s demons� [70]. In this paper, Weinberg discusses the duality between
entropy and information, but does so in a very informal mode that does not fully address
quantitatively the implications of the association controller-demon. To the author�s
knowledge, by far the most complete work proposing a formal picture of information in
control systems is a paper published by Lloyd and Slotine [40]. In this paper, the authors
review two measures of information, Shannon�s entropy and algorithmic information,
and study general problems of control and estimation to show how these measures
can be applied usefully. This latter work, together with another article by Lloyd [37],
provided the conceptual basis for a recent paper [68] developed here in greater details.



2 | Entropy in dynamical systems

The aim of the present chapter is to brie�y review some of the probabilistic concepts
and tools used in the subsequent chapters. We �rst de�ne the concept of entropy and
other related quantities, and give a list of their basic properties. Then, after exploring
a few examples which enable us to interpret entropy as a correlative of information, we
show how these concepts can be applied in the context of dynamical systems, either
deterministic or stochastic. It is not our intention in this chapter to be complete; all the
necessary de�nitions are given in as rigorous a way as allowed, but most of the results
concerning entropy are presented without proofs. A modern and complete treatment of
information theory, which provides all the proofs, can be found in [19] or in the seminal
article of Shannon [59] (reprinted in [60]). We also refer to the excellent books by Beck
and Schlögl [5], and by Nicolis [46] for a discussion of entropy in dynamical systems
theory.

2.1. Basic results of information theory

Entropy of discrete random variables

Let X be a random variable whose value x is drawn according to a probability mass
function PrfX = xg = pX(x) over the �nite set of outcomes X. The set X together
with the probability distribution pX(x), denoted simply as p(x) for convenience, form
a probabilistic ensemble. Following these notations, the entropy of the random variable
X (we also say of the ensemble or of the distribution) is de�ned as

H(X) ´ ¡
X
x2X

p(x) log p(x); (2.1)

with the convention value 0 log 0 = 0. The choice of the base for the logarithm function
is arbitrary, and can always be changed using the identity loga p = loga b logb p. Here,
unless otherwise noted, it is assumed to be 2 in which case the entropy is measured in
bits. If the natural logarithm (base e) is used, the information is given in natural units
or nats (1 nat = ln 2 bits).

Properties:

1. Positivity. H(X) ¸ 0 with equality if and only if (i¤) X is a deterministic random
variable; that is, if there exists an element a 2 X such that p(a) = 1 while p(x) = 0
for all x 6= a.

18
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2. Concavity. Entropy is a concave function of the probabilities, which means that
H(E[X]) ¸ E[H(X)], where E[¢] denotes the expectation value. In particular, for
all ¸ 2 [0; 1], and two arbitrary probability distributions p1 and p2, we have

H(¸p1 + (1¡ ¸)p2) ¸ ¸H(p1) + (1¡ ¸)H(p2): (2.2)

3. Maximum entropy. H(X) · log jXj, where jXj denotes the cardinality (number of
elements) of X. The equality is achieved i¤ X is distributed uniformly (written
as X » U), i.e., i¤ p(x) = jXj¡1 for all x 2 X.

4. Function of a random variable. H(g(X)) · H(X) where g is a function of X.
The equality holds i¤ g is a one-to-one function of X, in which case we write
X ³ g(X). As a corollary, entropy is invariant under permutation of the elements
of X.

Joint entropy and conditional entropy

For a set Z containing the joint occurrences fz = (x; y) : x 2 X; y 2 Yg, the de�nition
of entropy can be generalized to de�ne the joint entropy of X and Y :

H(X;Y ) ´ ¡
X

x2X;y2Y

p(x; y) log p(x; y): (2.3)

This expression, evidently, can be applied to any group of variables X1; :::;Xn to de�ne
the joint entropy H(X1; :::;Xn).

Now, given the conditional distribution p(xjy) = p(x; y)=p(y) with p(y) =
P

x p(x; y)
as the marginal of Y , we de�ne the entropy of X conditionally on the value Y = y as

H(XjY = y) ´ ¡
X
x

p(xjy) log p(xjy): (2.4)

On average, then, the conditional entropy H(XjY ) of X given Y is

H(XjY ) ´
X
y

p(y)H(XjY = y) = ¡
X
x;y

p(x; y) log p(xjy): (2.5)

Properties:

1. Positivity. H(X;Y ) ¸ 0 with equality i¤ X and Y are both deterministic. More-
over, H(XjY ) ¸ 0 with equality i¤ X, conditioned on Y , is a deterministic vari-
able, or equivalently i¤ X = g(Y ).

2. Conditioning reduces entropy. H(XjY ) · H(X)with equality i¤ p(x; y) = p(x)p(y)
for all x 2 X, y 2 Y. Such random variables are said to be statistically independent,
a condition denoted henceforth by X ?? Y .
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X

H(XjY)

H(X)

H(X,Y)

I(X;Y)

Y

Y
X

Z

I(X;YjZ) I(X;Y;Z)

Figure 2.1: Venn diagrams representing the correspondence between entropy, condi-
tional entropy and mutual information.

3. Chain rule. Using Bayes� rule p(xjy)p(y) = p(yjx)p(x), we can derive H(X;Y ) =
H(X) +H(Y jX) = H(Y ) +H(XjY ). In general, we have H(X1;X2; : : : ;Xn) =Xn

i=1
H(XijXi¡1; : : : ;X1).

4. Subadditivity. H(X1;X2; : : : ;Xn) ·
Xn

i=1
H(Xi) with equality i¤ all the Xi�s are

independent.

Mutual information

Given two random variables X and Y with joint distribution p(x; y) and marginals p(x)
and p(y) respectively, the mutual information between X and Y (or shared by X and
Y ) is de�ned to be

I(X;Y ) ´
X
x;y

p(x; y) log
p(x; y)

p(x)p(y)
: (2.6)

Properties:

1. Positivity. I(X;Y ) ¸ 0 with equality i¤ X ?? Y .

2. Chain rules. Using the chain rule for the joint entropy, we can write I(X;Y ) =
H(X)¡H(XjY ) = H(Y )¡H(Y jX) and I(X;Y ) = H(X) +H(Y )¡H(X;Y ).

3. Maximum information. I(X;Y ) · min[H(X);H(Y )].

Venn diagrams

The relationship between entropy, conditional entropy and mutual information can be
summarized conveniently by means of Venn diagrams, as shown in the �gure 2.1. This
diagrammatic correspondence, which follows from the fact that entropy is a measure in
the mathematical sense of the term, can be put in use to derive many chain rules and to
de�ne new quantities. For instance, �gures 2.1 shows how one can de�ne the conditional
mutual information

I(X;Y jZ) = H(XjZ)¡H(XjY;Z); (2.7)
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and the ternary mutual entropy

I(X;Y ;Z) = I(X;Y )¡ I(X;Y jZ): (2.8)

Continuous entropy and coarse-graining

In the case where the set of outcomes X is a continuous set parameterized by the
continuous variable x rather than a discrete set, all the above quantities can be replaced
by expressions involving integrals instead of sums over the outcomes. As an example,
the discrete entropy with this modi�cation is replaced by the di¤erential or �ne-grained
entropy

H(X) ´ ¡

Z
X

p(x) log p(x) dx: (2.9)

Di¤erential entropies obey properties similar to that of discrete entropies, though a few
exceptions must be noted [24, 28]:

1. The invariance under permutation property is replaced, in the continuous case, by
H(X + a) = H(X) for all constant a.

2. H(X), H(X;Y ), H(XjY ) and I(X;Y ) can be negative and/or in�nite in certain
cases (e.g., if p(x) is a Dirac delta function).

3. I(X;Y ) is not necessarily upper bounded by H(X) or H(Y ). Moreover, H(X) ·
log jsuppXj, where jsuppXj =

R
suppX dx is the �volume� of the support suppX =

fx 2 X : p(x) > 0g. The equality is achieved in this last inequality i¤ X is uniform
over its support, denoted by X » U(suppX).

4. Some properties concerning continuous random variables must be understood as
applying for almost all points of the density (p-almost everywhere). For example,
the independence relation X ?? Y for the continuous variables X and Y is de�ned
properly as p(x; y) = p(x)p(y) for all points x and y except for a subset of points
having measure zero. The same remark applies when two densities are said to be
equal.

The continuous entropies can be related to their discrete analogs by considering
what is called a coarse-graining of a continuous random variable (also known as a
discretization or a quantization). Consider the random variable X with density p(x)
illustrated in �gure 2.2. By dividing the range of X into non-overlapping bins of equal
length ¢, it is possible to de�ne a coarse-grained random variable X¢ = xi, for i¢ ·
X < (i+1)¢, and whose probability distribution is obtained by �averaging� the density
in the bins

Pr(X¢ = xi) = pi =

Z (i+1)¢

i¢
p(x)dx: (2.10)
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p(x)

xi i+1

D

Figure 2.2: Discrete probability distribution resulting from a regular quantization.

The corresponding coarse-grained entropy thus equals

H(X¢) = ¡
X
i

pi log pi; (2.11)

and can be shown to satisfy the limit H(X¢) + log¢ ! H(X) as ¢ ! 0 if p(x) is
Riemann integrable [19]. For ¢ su¢ciently small, this limit can be turned into the
useful approximations

H(X¢) + log¢ ' H(X); (2.12)

I(X¢;Y ¢) ' I(X;Y ): (2.13)

See also [26] for further information on coarse-grained entropies.

2.2. Interpretations of entropy

As discussed in the introduction, the entropic quantities de�ned so far are important
in that they capture quantitatively most of the intuitive connotations associated with
the concept of information. As �rst pointed out by Shannon in the development of his
theory of communication, entropy can be interpreted as a measure of uncertainty or
missing information associated with a statistical ensemble, and enters naturally in the
expression of many results relating the compression and the transmission of information.
The following is a list of di¤erent interpretations of entropy and scenarios in which this
quantity is used. The intuitive character of the scenarios should make them useful for
understanding the results of the next chapter.

² Uncertainty and variability. Recall that the discrete entropy H(X) is minimum
and equal to zero when one of the probabilities is equal to unity, i.e., when there is
no uncertainty left about the outcome of X. Conversely, H(X) is maximum and
equals log jXj when all the alternatives of X are equiprobable; in this case, the
ensemble is completely �disordered� since p(x) gives no information about which
outcome is more likely to happen. For a continuous random variable X, H(X)
can be thought as a measure of the �width� of the density p(x) which, in turn, is
a measure of the uncertainty or variability associated with X.
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² Noiseless coding. As formalized in Shannon�s source coding theorem (or noiseless
channel theorem), H(X) represents the minimum amount of resources (bits) re-
quired to encode unambiguously the ensemble describing X. More precisely, let C
be a (uniquely decodable) binary source code for the ensemble fX; p(x)g consisting
of codewords of length l(x) associated with each outcome x. Then, the average

codeword length, E[l(X)] =
P

x p(x)l(x), must satisfy E[l(X)] ¸ H(X). This
agrees with the intuitive fact that 1 bit of information is needed to encode each
toss of a fair coin and, equivalently, that 1 bit of information can be stored in a
binary state system. In the case of a continuous random variable, one can essen-
tially apply the same result by noting that n bits su¢ce to encode the uniform
continuous variable X » U([0; 1]) quantized with ¢ = 2¡n [19].

² Correlation and observation. Given two random variables X and Y , I(X;Y ) gives
the average number of bits (shared information) that X and Y have in common.
Also, from the chain rule I(X;Y ) = H(X)¡H(XjY ), we can interpret I(X;Y )
as the reduction of entropy of X resulting from the observation of Y . In other
words, I(X;Y ) represents the information on X gained by observing the random
variable Y . For example, the observation of the outcome of a fair coin toss (1
bit of information) �reduces� the original uncertainty of 1 bit associated with the
coin before observation.

² Transmission capacity. For a communication channel of the formX ! Y modeled
by the transition probability p(yjx), Shannon showed that I(X;Y ) quanti�es the
average maximum rate (capacity), measured in bits per use of the channel, at
which one can transmit information (see [19] for a formal account of this result).
If X ?? Y , then observing Y yields no information about X; Y is completely
random with respect to X, and no information can be transmitted between the
two random variables. When X ³ Y , on the other hand, H(X) = H(Y ) bits of
information are gathered upon observing Y , which means that an average of H(X)
bits of information can be transmitted in a noiseless channel. Using this fact,
H(XjY ) may be interpreted as the information loss appearing, in the expression
of the capacity, as a negative contribution to the maximum noiseless rate H(X).

2.3. Dynamics properties and entropy rates

Once a speci�c model of the stochastic system under study is determined, it is possible
to calculate the density p(xn) of the state of that system in time, and consequently its
entropy H(Xn) using Eq.(2.1) or (2.9). In principle, evolution equations for p(xn) and
H(Xn) can be derived from methods of dynamical systems theory (e.g., Frobenius equa-
tion, Fokker-Planck equation, and the Kolmogorov-Chapmann equation for Markovian
processes [33]). For the present study, we will not touch upon the actual derivation of
these equations, but will only be concerned with the e¤ect of the dynamics on entropy.

To be more precise, consider a system such as the one described by Eq.(1.4). Let
X be the state of the system at time n, and X 0 the state at a later time n0 > n.
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Using this notation, we say that the transition X ! X 0 is dissipative, or simply entropy

decreasing, if H(X 0) < H(X), or equivalently if the change of entropy of the system
over the transition, de�ned as

¢H = H(X)¡H(X 0); (2.14)

is strictly positive. Conversely, the transition is called entropy increasing if ¢H < 0. It
is entropy conserving when ¢H = 0. A non-dissipative transition is such that ¢H · 0.
(Note that ¢H is de�ned so that ¢H > 0 corresponds to the desired situation where
the system is controlled.)

Table 2.1 lists a few examples of systems whose dynamics fall into the three classes
¢H > 0, ¢H = 0, and ¢H < 0. Let us note that most systems in this list, except for
the ones with the asterisk ¤, are not generic in the sense that they do not always satisfy
the requirements of the class they have been associated with. This arises because a
system�s entropy may decrease over a certain period of time and increase over another
period. Also, ¢H may depend on the choice of Xn. In these cases, it is impossible to
determine if a system is strictly dissipative or not. The listed systems do however satisfy
the requirements in an average sense or for typical states. To illustrate this, consider
the following one-dimensional csdt map

xn+1 = f(xn); (2.15)

where x 2 R, n = 0; 1; 2; : : :. Let us assume that we do not know anything about the
system except that at a time n the iterate xn lies in an interval "n centered around xn,
and at time n+ 1 it is in "n+1. According to our de�nition of continuous entropy, this
implies that

¢H ' log "n ¡ log "n+1: (2.16)

For in�nitesimal intervals, we have

¢H = lim
"n!0

log "n ¡ log "n+1 = ¡ log
¯̄
f 0(xn)

¯̄
: (2.17)

where f 0(xn) = @xf jxn . Hence, we see that ¢H depends locally on the value of the
Jacobian of the map which, apart from linear systems, varies in general from point to
point in the state space. Globally, we can also average the contribution of each Jacobian
over the space and de�ne, accordingly, the Lyapunov exponent of the map f

¸ ´

Z
½(x) log

¯̄
f 0(x)

¯̄
dx; (2.18)

which is a quantity that does not depend on time if the distribution ½(x) is the invariant
density of the map obtained by solving the so-called Frobenius-Perron equation [33].
Using the expression for ¸, we expect that ¢H = ¡¸ should hold on average [61, 23,
58, 50, 67]. However, one can prove that this equality does not always hold (even on
average) though, numerically, it can be observed that it holds for any typical choice of
p(xn), and that ¢H · ¡¸ for almost all n ¸ 0 (see [34] and section 4.3). On average
then ¢H ' ¡¸.
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Remarks:

1. The Lyapunov exponents can also be calculated as time averages instead of en-
semble averages using the formula

¸ = lim
N!1

1

N

NX
i=1

ln
¯̄
f 0(xi)

¯̄
; (2.19)

where the sum is taken over a discrete-time trajectory x1x2 : : : xN . (Other for-
mulae also exist for continuous-time dynamics. See [46]). The above formula and
Eq.(2.18) are equal for ergodic systems [21].

2. For a D-dimensional system, there are D Lyapunov exponents ¸i, i = 1; 2; : : : ;D.
In this situation, the relationship between ¢H and the ¸i�s is more problematic
since information about the evolution of a system can be lost in any direction of
the space where ¸i > 0, i.e., in the directions for which p(xn) undergo an expan-
sion over time. This suggests that ¢H should depend on the positive exponent,
an observation embodied in the inequality ¢H ¸ ¡h, where h =

P
i:¸i>0

¸i is
the Kolmogorov-Sinai entropy [2]. This inequality has again been con�rmed in
numerical simulations [34].

Class Type System, evolution Characteristics

¢H < 0 dsdt N-to-M maps M > N

dsdt Double stochastic mc p
0 = Pp,

P
i Pij =

P
j Pij = 1

(cd)sdt Noise-perturbed map Xn+1 = f(Xn) + »n
csct Noise-perturbed �ow _X(t) = f [X(t)] + ´(t)
cs(cd)t K system + coarse-grained ¸i > 0 for some i

hamiltonian systems ¢H . h

¢H = 0 dsdt Permutation¤ p
0 = Pp,

P is a permutation matrix
csct Hamiltonian systems¤ Liouville theorem,

P
i ¸i = 0

(cd)s(cd)t Quantum closed systems

¢H > 0 dsdt N-to-M maps M < N

csct Damped system _E < 0 (energy function)P
i ¸i < 0

Table 2.1: Examples of systems or dynamics for the three entropy classes. The asterisk ¤ means
that the example given satis�es systematically the conditions of its class (see text). In this table,
p = (p1; p2; :::; pn)T denotes the probability (column) vector of a discrete state Markov chain (mc),
and P is the transition probability matrix whose elements are Pij = Pr(xn+1 = jjxn = i). Also, »n
and ´(t) represent respectively discrete and continuous noise processes.
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3.1. Information-theoretic problems of control

In the context of dsdt systems, one general problem of control is to �nd a history fcng of
the control variables cn 2 C, say for a time interval [0;N ], which forces the state xn from
an initial value x0 to a �nal state xN and, at the same time, minimizes or maximizes
a cost function J along the trajectory connecting x0 and xN [65]. In a very broad
sense, the measure J serves as a �metric� for comparing the performance of di¤erent
control histories. It is generally a scalar function of fxng and fcng whose purpose is to
embody in a quantitative fashion the control goals, a criterion of stability, in addition
to possible constraints on the control design (e.g., energy or power constraint, material
speci�cation, geometry, etc.) In principle, by incorporating all these aspects of control
into one function, it is then possible to solve a single optimization problem

J(fx¤ng; fc
¤
ng) = min

fcng
J(fxng; fcng); (3.1)

which yields an optimal trajectory fx¤ng for a given control history fc¤ng (�gure 3.1a).
Now, for a system described by a stochastic evolution equation such as Eq.(1.4),

even if we specify how the control variable cn has to be chosen, it is impossible to pre-
dict the precise outcome of the cost function because of the presence of the random
component En. This means that the deterministic cost function above cannot be min-
imized unambiguously by the choice of a control strategy. If, however, the statistics of
the systems involved in the control are known to a certain extent, we may minimize the
expected value of the cost function, e.g., using dynamic programming techniques [65, 4],
thereby specifying a set of inputs fCng that control an ensemble of trajectories which
are optimal on average.

The fact that stochastic control strategies are intended to act upon an ensemble
of trajectories rather than a single one is very important as it enables us to formulate
problems of stochastic control which have no equivalent in deterministic control. One
fundamental di¤erence of stochastic control is that the state of a system cannot usually
be �stochastically� controlled to take only one end value xN . Instead, one might consider
control of an estimate of the state, usually taken to be the expectation value x̂n = E[Xn],
and construct J so as to minimize the average distance

d(x̂N ; xN ) = jE[XN ]¡ xN j ; (3.2)

in addition to the average error

e(x̂N ; xN ) = E[jXN ¡ xN j]: (3.3)

26
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Figure 3.1: (a) Deterministic propagation of the state xn versus (b) stochastic propaga-
tion. In (b) both discrete and continuous distributions are illustrated. The thick grey
line at the base of the distributions gives an indication of the uncertainty associated
with Xn.

The minimization of e(x̂N ; xN ) can be seen as a requirement of stability: in a deter-
ministic sense, a state x is stable if any trajectory initiated by a point x0, chosen in a
small neighborhood of x, stays arbitrarily close to that state as n ! 1 [64]. From a
stochastic viewpoint, this requirement of stability translates readily into constraining
the error within a certain interval. Accordingly, one problem that we shall be concerned
with is to determine by how much the uncertainty of the �nal state XN can be con-
strained for a speci�c control situation. By associating the measure of uncertainty with
the entropy H(Xn), this is equivalent to asking: given H(X0), the actuation set C and
the type of controller (open-loop or closed-loop), what is the maximum entropy decrease
H(X0)¡H(XN ) achievable in the transition X0 ! XN?

For this problem, it must be stressed that the reduction of entropy we are referring
to is the reduction associated with the entropy of the marginal distribution p(xn). For
control purposes, it does not su¢ce to reduce the entropy of a system conditionally
on the state Y of another system, as the inequality H(XnjY ) · H(Xn) would like to
suggest. In particular, contrary to a statement commonly found in the physics litera-
ture, H(Xn) cannot be reduced simply by �measuring� Xn, for measuring apparatuses
(classical ones at least) are not intended to a¤ect or in�uence physically the dynamics of
the observed system. As an example, one can imagine measuring the state Xn in such
a way that, given the measurement outcome, Xn is determined with probability one.
Yet, is the system really controlled after this measurement? Surely not. In fact, it is
conceivable that the measurement has left the system�s state unchanged and, as a result,
any observer who does not know the outcome of the sensor will estimate the entropy
of the controlled system from the data of p(xn) and obtain H(Xn). Consequently, we
see that what is required for a control action is to act directly on the dynamics of the
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controlled system through the use of actuators in order to reduce the entropy H(Xn)
for all observers unconditioned on the state of any external systems. (This is still true
even if p(xn) is interpreted from a Bayesian perspective as a subjective belief measure
on the state Xn. Subjective or not, p(xn) is the distribution that must be modi�ed in
a control process since Xn is the only state available to any observer of the system.)

Although the problem of controlling a dynamical system requires more than limiting
its entropy, the ability to limit entropy is a necessary condition for control: the fact
that a control process is able to localize xn near a stable state x simply means that
the controlled system can be constrained to evolve into states of low entropy. Another
necessary requirement for control is that of reachability: given the initial (random) state,
is it possible to reach a �nal state xN at time instant N by manipulating the control
inputs? In a stronger sense, we can also inquire about controllability; that is, given the
initial state, is it possible to reach any �nal state? From these de�nitions, we see that
another distinction has to be made for stochastic control, namely the need to allow for
approximate reachability and approximate controllability. Probabilistically, a state xN
can be de�ned as approximately reachable from an initial state X0 if, given the type of
control, we can build a single trajectory connecting X0 to xN with non-zero probability.
Clearly this de�nition can be extended to de�ne approximate controllability.

In this chapter, we study these two problems, namely the problem of entropy reduc-
tion and the reachability-controllability problem (actually, in the reverse order). For
both problems, we shall simplify our analysis further by restricting our attention to
the study of transitions of the form X ! X 0, where X = Xn and X 0 = Xn+1. This
restriction is totally justi�ed for two reasons. First, the derivation of limiting bounds
on ¢H for a single time-step automatically implies a bound for any multiple time-steps
processes. Second, results concerning the controllability of a system can be formu-
lated for a single time-step control history cn, and can be generalized thereafter, when
necessary, by associating cn with a collective history cncn+1 ¢ ¢ ¢ cm.

3.2. General reduced models

The stochastic models used for the description of a transition X ! X 0 are shown in
�gure 3.2. In the jargon of statistics, the graphs shown in this �gure are called directed

acyclic Bayesian networks, or simply directed acyclic graphs (dag) [49, 44, 17, 30, 38].
The vertices of these graphs correspond to random variables representing the state of
a particular system, while the arrows give the probabilistic dependencies among the
random variables according to the general decomposition

p(x1; x2; : : : ; xN ) =
NY
j=1

p(xj jparent[xj]); (3.4)

where parent[xj ] ½ fxig is the set of direct parents of Xj . The acyclic condition means
that no vertex is a descendant or an ancestor of itself, in which case we can order
the vertices chronologically, i.e., from ancestors to descendants. This de�nes a causal
ordering, and consequently a time line directed from left to right.
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Figure 3.2: Directed acyclic graphs (dags) corresponding to (a) open-loop and (b)
closed-loop control. The states of the controlled system X are represented by X and
X 0, whereas the state of the controller C and the environment E are C andE respectively.
(c)-(d) Reduced dags obtained by tracing over the random variable of the environment.

Let X denote the system to be controlled, and let C and E denote respectively the
controller and the environment to which X is coupled.1 The initial state X of X is
distributed according to p(x), x 2 X, while the �nal state after the transition is denoted
by X 0. The state of the controller and the environment are respectively denoted by C

and E, with c 2 C and e 2 E. Using these notations and Eq.(3.4), the complete joint
distribution p(x; x0; c; e) over the random variables of the graphs can be constructed.
For instance, the complete joint distribution corresponding to the open-loop graph of
�gure 3.2a can be written as

p(x; x0; c; e) = p(x)p(c)p(e)p(x0jx; c; e); (3.5)

whereas the closed-loop graph of �gure 3.2b is characterized by a joint distribution of
the form

p(x; x0; c; e) = p(x)p(cjx)p(e)p(x0jx; c; e): (3.6)

In accordance with the de�nition of open-loop and closed-loop control given in the
introduction, what distinguishes graphically both control strategies is the presence, for
closed-loop control, of an explicit correlation link between X and C. This correlation
can be thought of as a communication channel (measurement channel) that enables C to
gather an amount of information identi�ed formally as the mutual information I(X;C).
Operationally, we thus de�ne closed-loop as having I(X;C) 6= 0; open-loop control, on
the other hand, corresponds to the condition I(X;C) = 0, or equivalently X ?? C.

1The calligraphic letters should not be confused with the script upright letters (Euler fonts), such as
X and C, which stand for the respective state spaces of the systems X and C.
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Furthermore, since in open-loop control the control variable C is entirely determined
by the choice of p(c), we de�ne the following: an open-loop control strategy is called
pure if C is a deterministic random variable, i.e., if p(ĉ) = 1 for one value c of C and
p(c) = 0 for all c 6= ĉ. An open-loop controller that is not pure is called mixed (we also
say that a mixed controller implements a mixture of control actions).

The joint distributions (3.5) and (3.6) show that the e¤ect of the environment
and the controller is taken into account by a channel-like probability transition ma-
trix p(x0jx; c; e) parameterized by the control value c and by each realization e of the
stochastic perturbation E appearing with probability p(e). In e¤ect, for each value c
and e, the system X undergoes an evolution

X
E;C
¡! X 0; (3.7)

referred to here as a subdynamics, which is assumed to be completely determined by the
values of the states X, C and E. In other words, we assume that X 0 conditioned on X,
C and E is a deterministic random variable whose value is speci�ed with probability
one by p(x0jx; c; e). As a result of this assumption, we have the following.

Proposition 1. If X 0 is a deterministic random variable conditioned on X, C and E,
then H(X 0jX;C;E) = 0:

Proof. For each triplet (x; c; e), p(x0jx; c; e) = 1 for one value of x0. Thus, H(X 0jx; c; e) =
0. On average then

H(X 0jX;C;E) =
X
x;c;e

H(X 0jx; c; e)p(x; c; e) = 0; (3.8)

where p(x; c; e) is obtained by summing Eq.(3.5) or (3.6) over x0. ¤

It is very important to note that the deterministic assumption on X 0, which only
relies on the mathematical form of the evolution function f in Eq.(1.4), does not imply
that H(X 0) = H(X). That is to say, a system can be stochastic even if p(x0jx; c; e) is a
deterministic transition function. For example, consider an open-loop system with the
binary states x; x0; c; e 2 f0; 1g described by

x0 =

½
x© e; c = 0
¹x© e; c = 1

; (3.9)

where © stands for modulo 2 addition, and ¹x = x©1 is the complement of x. If E » U ,
it is easy to verify that H(X 0) = log 2 for all p(x) and p(c), notwithstanding the fact
that, obviously, p(xjx; c; e) is deterministic. For a system such as Eq.(3.9), or any of the
models of �gure 3.2a-b, the deterministic/nondeterministic character of the dynamics
can be revealed by the reduced matrix p(x0jx; c) which is obtained by tracing out the
variables of the environment

p(x0jx; c) =
X
e

p(x0jx; c; e)p(e): (3.10)
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(See �gure 3.2c-d). The speci�c form of this actuation matrix depends on the subdy-
namics envisaged for the control process and the e¤ect of the environment. Some of the
control actions, for example, may correspond to control strategies forcing several initial
states to a common stable �nal state, in which case the corresponding dynamics is en-
tropy decreasing. Others can model uncontrolled transitions perturbed by the external
noise component E leading to �fuzzy� actuation rules which increase the entropy. (This
is valid only approximately, for ¢H may also depend on X:) Eq.(3.9) is an example of
such a fuzzy control system which speci�es the �nal state X 0, conditioned on X and C,
only up to a certain probability di¤erent than one or zero. Explicitly, for this example,
p(x0jx; c) = 1=2 for all values x0, x and c.

Remarks:

1. As a shortcut, it is also possible to model a control process (stochastic or deter-
ministic) by specifying directly the actuation matrix without including explicitly
the random variable E. This approach in modeling a control process is sometimes
adopted in this chapter.

2. A complete model of a control system should include two intermediate devices: a
sensor S which is the measurement apparatus used to access the value of X, and
an actuator A which is the device used to change the dynamics of X . Here, S
and A are merged in a single device C called the controller which ful�lls the roles
of estimation and actuation. From the viewpoint of information, this simpli�ca-
tion amounts to a case where we may consider the sensor as being connected to
the actuator by a perfect noiseless communication channel, so that A ³ S and
I(A;S) = H(A) = H(S). In this case, we are justi�ed in replacing the random
variables A and S by C with H(C) = H(A) = H(S).

3.3. Separation analysis

The reduced graph of �gure 3.2c possesses a useful symmetry that enables us to separate
the e¤ect of the random variable X in the actuation matrix from the e¤ect of the control
variable C. From one perspective, the open-loop decomposition

p(x0) =
X
c

p(c)
X
x

p(x0jx; c)p(x) (3.11)

suggests that a mixed open-loop controller can be decomposed into pure actuations, one
for each value of c, that takes the initial distribution p(x) to a �nal distribution

p(x0jc) =
X
x

p(x0jx; c)p(x): (3.12)

The �nal distribution p(x0) is then obtain by �averaging� over the control variable using
p(c). From another perspective, the same decomposition, re-ordered as follows

p(x0) =
X
x

p(x)
X
c

p(x0jx; c)p(c); (3.13)
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Figure 3.3: Separation analysis. (a)-(b) open-loop control and (c) closed-loop control.
The size of the sets, or �guratively of the entropy �bubbles�, is an indication of the value
of the entropy.

indicates that the overall action of a mixed controller can be seen as propagating p(x)
using

p(x0) =
X
x

p(x0jx)p(x) (3.14)

through an �average� actuation channel p(x0jx) =
P

c p(x
0jx; c)p(c). In the former

perspective, as shown in �gure 3.3a, each actuation subdynamics can be characterized
by a pure entropy reduction

¢Hc = H(X)¡H(X 0jc) (3.15)

associated with the transitions

X
c
¡! X 0jc

p(x)
p(x0jx;c)
¡! p(x0jc)

(3.16)

for all c. (The notation X 0jc stands for the random variable X 0 conditioned on the value
C = c). In the latter perspective (�gure 3.3b), the entropy reduction associated with
the average actuation channel is exactly the total entropy change ¢H of the (possibly
mixed) transition X ! X 0.

For closed-loop control such a separation of X and C is a priori impossible, for C
itself depends on the initial state X. Despite this fact, one can use Bayes� rule

p(xjc) =
p(cjx)p(x)

p(c)
(3.17)

to invert the dependency between X and C in the closed-loop decomposition

p(x0) =
X
x;c

p(x0jx; c)p(cjx)p(x); (3.18)
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Figure 3.4: Illustration of the separation analysis procedure for a binary closed-loop
controller acting on a binary state system.

so as to obtain
p(x0) =

X
c

p(c)
X
x

p(x0jx; c)p(xjc); (3.19)

where p(c) =
P

x p(cjx)p(x). This last equation shows that a closed-loop controller is
essentially an open-loop controller acting on the basis of p(xjc) instead of p(x). Thus,
given that c is �xed, the entropy H(X 0jc) can be calculated in the manner of Eq.(3.11)
by replacing p(x) with p(xjc). In this case, the corresponding pure actuation that must
be considered is

Xjc
c
¡! X 0jc

p(xjc)
p(x0jx;c)
¡! p(x0jc)

; (3.20)

and is characterized by the entropy reduction ¢H 0
c = H(Xjc)¡H(X 0jc).

To illustrate this procedure more precisely, let us imagine that a binary state con-
troller with C = f0; 1g �measures� a binary state system, X = f0; 1g, in such a way
that X conditioned on C is a deterministic random variable (�gure 3.4). Moreover, let
us assume that the controller is only allowed to use permutations of the state of X as
actuation rules. For dimX = 2, this corresponds, as shown in �gure 3.4, as using the
identity transformation (c = 0) or single permutations 0 $ 1 (c = 1). In that case,
it is clear that after measuring the state of X , the controller can control the state X 0

to a �xed value with probability one simply by permuting the measured value of X,
i.e., the value for which p(xjc) = 1. Under this control action, the random variable
X 0 conditioned on C = c is forced to be deterministic for all c, implying that X 0 is
deterministic as well, regardless of the statistics of C. In the situation depicted in the
above �gure where pX(0) = pX(1) = 1=2, this means that ¢H = 1 bit. In open-loop
control, only ¢HC = 0 can be achieved. Such a separation of closed-loop controllers
will be very useful in the remainder.
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3.4. Controllability

We are now in position to study the problem of controllability stated at the beginning
of the chapter. In its simplest expression, we de�ne a system to be perfectly controllable
at a particular value x if for every x0 2 X there exists a least one control value c such
that p(x0jx; c) = 1. Let Cx denote the set of values c such that p(x0jx; c) = 1 over all x0.
If we suppose that PrfCxg 6= 0, then as a necessary and su¢cient condition for perfect
controllability we have the following [40].

Proposition 2. A system is perfectly controllable at x if and only if p(x0jx) 6= 0 for all
x0 and there exists a non-empty subset Cx µ C such that

H(X 0jx;C) = ¡
X

x02X;c2Cx

p(x0; cjx) log p(x0jx; c) = 0: (3.21)

Proof. If x is controllable, then for each control value c 2 Cx there exists one value of
x0 such that p(x0jx; c) = 1. Thus H(X 0jx; c) = 0 for c 2 Cx, and

H(X 0jx;C) =
X
c2Cx

H(X 0jx; c)p(c) = 0: (3.22)

Also, p(x0jx; c) = 1 for all x0, and for at least one c such that p(c) 6= 0, implies

p(x0jx) =
X
c

p(x0jx; c)p(c) 6= 0 (3.23)

for all x0. Now, to prove the converse, note that if p(x0jx) 6= 0 for all x0 then there exists
at least one c for which p(x0jx; c) 6= 0. However, if in addition H(X 0jx;C) = 0, then X 0

must be deterministic for some value of C. Hence, for all x0 there exists a c such that
p(x0jx; c) = 1. ¤

From a perspective centered on information, Eq.(3.22) has the desirable feature
of being interpretable as the residual uncertainty or uncontrolled variation left in the
output X 0 when C is �xed for a given (pure) initial state x [40]. If one regards C as
an input to a communication channel (the actuation channel), and X 0 as the channel
output, then the degree to which X 0 can be controlled by �xing C can be identi�ed with
the information

I(X 0;Cjx) = H(X 0jx)¡H(X 0jx;C): (3.24)

By analogy with what was presented in section 2.2, we see that H(X 0jx;C) can be
interpreted as a control loss which appears as a negative contribution in I(X 0;Cjx),
the number of bits of accuracy to which specifying the inputs speci�es the outputs. In
a global sense, one may also look at the controllability of a system over all the input
x 2 X, and in that respect de�ne

L ´ H(X 0jX;C) =
X
x

H(X 0jx;C)p(x) (3.25)
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as the average control loss of the combined system X + C. A system is then perfectly
controllable, for all the inputs x such that p(x) 6= 0, if L = 0 (recall that entropy is
always positive); it is approximately controllable otherwise. The results in the remaining
of this section relate H(X 0jX;C) with other quantities of interest.

Proposition 3. Under the assumption that X 0 is deterministic conditioned on X, C
and E, then L · H(E) with equality i¤ H(EjX 0;X;C) = 0.

Proof. Using the inequality H(A) · H(A;B), and the chain rule for joint entropies,
one can write

H(X 0jX;C) · H(X 0; EjX;C) (3.26)

= H(EjX;C) +H(X 0jX;C;E): (3.27)

However, H(X 0jX;C;E) = 0 by assumption, so that

H(X 0;EjX;C) = H(EjX;C) (3.28)

= H(E) (3.29)

where the last equality follows from E ?? X;C (see the dags of �gure 3.2). Now, from
the chain rule

H(X 0;EjX;C) = H(X 0jX;C) +H(EjX 0;X;C); (3.30)

it is clear that the equality in Eq.(3.26) is achieved i¤ H(EjX 0;X;C) = 0. ¤

Intuitively, this result shows that the uncertainty associated with the control of X is
upper bounded by the noise level introduced by the environment. In this sense, it seems
clear that one goal of a control system is to protect X against E so as to ensure that X
is minimally a¤ected by the noise. (The other goal is to put the controlled system in
a particular state.) Following the interpretation of the control loss, in the limit where
L = 0 the state of the controlled system shows no variability given the initial state and
the control action, even in the presence of a perturbing environment, and should thus
be independent of the environment. This is the essence of the two next theorems which
hold for the same conditions as proposition 3.4.2.

Theorem 4. I(X 0;EjX;C) = L

Proof. From the chain rule

I(A;B) = H(A)¡H(AjB); (3.31)

we can easily derive

I(X 0;EjX;C) = H(X 0jX;C)¡H(X 0jX;C;E): (3.32)

Thus, I(X 0;EjX;C) = H(X 0jX;C) where, again, we have used the deterministic con-
dition on X 0. ¤
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Theorem 5. I(X 0;X;C;E) = I(X 0;X;C) + L

Proof. Using the chain rule of mutual information, Eq.(3.31), we can write

I(X 0;X;C;E) = H(X 0)¡H(X 0jX;C;E) (3.33)

= H(X 0)¡H(X 0jX;C;E)

+H(X 0jX;C)¡H(X 0jX;C) (3.34)

= I(X 0;X;C) + I(X 0;EjX;C): (3.35)

In the last equality we have used Eq.(3.32). Now, by substituting I(X 0;EjX;C) = L,
we obtain the desired result. ¤

As a direct corollary of these two theorems, we have that a system is perfectly con-
trollable on average, i.e., L = 0, if and only if I(X 0;EjX;C) = 0 or, equivalently, i¤
I(X 0;X;C;E) = I(X 0;X;C). Hence, a necessary and su¢cient entropic condition for
perfect controllability is that the �nal state of the system, after control, is statistically
independent of E given X, and C. In that case, the information I(X 0;EjX;C) trans-
ferred from the environment to the system in the form of noise is zero. Alternatively,
since L = I(X 0;EjX;C) measures the information (in bits) about X 0 that have been
irrecoverably lost in correlations with E, the condition L = 0 is equivalent to the state-
ment that the environment does not �extract� information from the system. Thus, in
view of L = 0, the addition of a controller C to a system X has to e¤ect of constraining
the state X 0 of entropy H(X 0) = I(X 0;X;C) to a sort of noiseless subspace decoupled
from the environment.

3.5. Entropy reduction

The emphasis in the previous section was on proving upper limits on H(X 0jX;C) and
conditions for which the average control loss vanishes. A complete and practical study
of control systems, however, cannot be restricted to the evaluation of the control loss
alone, since this quantity is not a direct physical observable. One information-theoretic
quantity that we know is more �physical� is the entropy di¤erence ¢H which enters
in Eq.(1.2). Also, as noted in section 3.1, one of the goals of a control system is to
minimize the uncertainty associated with X 0. And insofar as this uncertainty must be
the same for any observer of the controlled system, we argued that it should not be
taken as a conditional entropy, but should physically correspond to H(X 0). It seems,
therefore, more desirable to �nd limiting bounds on the �nal marginal entropy H(X 0)
than to limit the control loss itself.

In addition to provide a more direct route to the physics of control, the study of
H(X 0) has the advantage that any upper bound on H(X 0) limits per se the conditional
entropy H(X 0jX;C). To understand this, let us note that, since conditioning reduces
entropy, we must have the following nested inequalities:

H(X 0) ¸ H(X 0jC) ¸ H(X 0jX;C) ¸ H(X 0jX;C;E): (3.36)
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The quantity H(X 0jC) in this �hierarchy� of entropies was introduced in the earlier sec-
tion on separation analysis. In open-loop or closed-loop control, the conditional entropy
H(X 0jC) corresponds to the average �nal entropy attained by all the subdynamics of
index c, that is,

H(X 0jC) =
X
c

p(c)H(X 0jc); (3.37)

where H(X 0jc) is the entropy of the distribution p(x0jc) obtained by propagating p(x) or
p(xjc), depending on the type of control (open-loop and closed-loop respectively), using
the channel p(x0jx; c). In this section we shall prove two important theorems related to
the fact that H(X 0) ¸ H(X 0jC), but before we do so, we note the following result.

Proposition 6. H(X 0jC) · H(X) + L with equality i¤ C is an open-loop controller
and H(XjX 0; C) = 0.

Proof. Repeating essentially the same steps as in the proof of proposition 3.4.2, we have

H(X 0jC) · H(X 0;XjC) (3.38)

= H(XjC) +H(X 0jX;C) (3.39)

· H(X) + L: (3.40)

Now, to �nd the condition which saturates the bound, note that the inequality (3.40)
becomes an equality when C ?? X (open-loop control). Moreover, since

H(X 0;XjC) = H(X 0jC) +H(XjX 0; C); (3.41)

H(X 0jC) = H(X 0jC) when H(XjX 0; C) = 0. The converse of the equality part follows
in a similar fashion. ¤

We now show that ¢H in open-loop control is upper bounded by the maximum
¢Hc over all pure actuations of variable c. As a consequence, the maximum value of
¢H can always be attained by choosing a deterministic value for C; any mixture of the
control variable either achieves the maximum or yields a smaller value. Explicitly, we
have the two following results. (The second one was �rst stated without proof in [68]).

Proposition 7. For open-loop control,

¢H · ¢HC ; (3.42)

where ¢HC = H(X)¡H(X 0jC). The equality is achieved i¤ C ?? X 0.

Proof. Using the property H(X 0) ¸ H(X 0jC), we write directly

¢H = H(X)¡H(X 0) (3.43)

· H(X)¡H(X 0jC) (3.44)

=
X
c

p(c)¢Hc; (3.45)
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where ¢Hc = H(X)¡H(X 0jc). Now, let us prove the equality part. If C ?? X 0, then
H(X 0) = H(X 0jC) and ¢H = ¢HC . Conversely, if ¢H = ¢HC , we must have that
H(X 0jC) = H(X 0), and thus C ?? X 0. (It must be noted that in closed-loop control
¢H cannot be maximized by choosing C since the control variable is determined by the
condition p(c) =

P
x p(cjx)p(x), and p(x0jc) 6=

P
x p(x

0jx; c)p(x).) ¤

Theorem 8. (Open-loop optimality). In open-loop control,

¢H · max
c2C

¢Hc; (3.46)

where ¢Hc = H(X) ¡ H(X 0jc). The equality can always be achieved for the pure
controller C = ĉ where ĉ = argmaxc¢Hc.

Proof. Notice that the average of a set of numbers faig always sits in the interval
[min ai;maxai], so that

min
c

H(X 0jc) ·
X
c

p(c)H(X 0jc) · max
c

H(X 0jc); (3.47)

and, therefore,

¢H = H(X)¡H(X 0) (3.48)

· H(H)¡min
c

H(X 0jc) (3.49)

= max
c

¢Hc: (3.50)

Also, if C = ĉ with probability one, ĉ being the value for which ¢Hc is maximum,
then C must be such that C ?? X 0, and the average ¢HC reduces to ¢Hĉ. (Note that
H(X 0) = maxcH(X 0jc) does not imply necessarily that C ?? X 0. Hence, C ?? X 0 cannot
be a necessary and su¢cient condition for having ¢H = maxc¢Hc.) ¤

From the standpoint of the controller, one major drawback of acting independently
of the state of X is that often no information other than that available from the state
X itself can provide a reasonable way to determine which subdynamics are optimal
or even accessible given the initial state. For this reason, open-loop control strategies
implemented independently of the state of the system, or solely on its statistics, usually
fail to operate e¢ciently in the presence of noise because of their inability to react or
be adjusted over time. In order to account for all the possible behaviors of a stochastic
dynamical system, we have to use the information contained in its evolution by consid-
ering a closed-loop control scheme in which the state of the controller is allowed to be
correlated with the state of X .

For example, in the case of the signalman, the knowledge of the perfect localization
of the incoming train (1 or 2) helped him to decide in which position, a or b, he should
actuate the 2-to-1 exclusive junction. In fact, as noted before, I(X;C) = 1 was even a
prerequisite for control in that case, since any �open-loop� choice of the junction�s state
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could result in generating with some probability the high risk state �train crashed�.
Yet, just as a non-exclusive 2-to-1 does not require information to function correctly,
we expect that ¢H in closed-loop should not only depend on I(X;C), but also on
the reduction of entropy obtainable by open-loop control. The next theorem, which
constitutes the main result of this thesis, exactly embodies this statement by showing
that the maximum improvement that closed-loop control give over open-loop control is
limited by the information obtained by the controller.

Theorem 9. (Closed-loop optimality). The amount of entropy ¢Hclosed that can be
extracted from X by a closed-loop controller satis�es

¢Hclosed · ¢Hopen + I(X;C); (3.51)

where
¢Hopen = max

q(x);c
¢H (3.52)

is the maximum entropy decrease that can be obtained by (pure) open-loop control over
all input distributions q(x), and I(X;C) is the mutual information gathered by the
controller upon observation of the system�s state with distribution p(x).

A proof of the result, based on the conservation of entropy of closed systems, was
given in [68] following some interesting results found in [37]. Here, we present another
proof based on separation analysis which has the advantage over ref.[37] to make explicit
the conditions under which we obtain equality in the expression (3.51). These conditions
are derived in the next section.

Proof. Given that ¢Hopen is the optimal entropy reduction for open-loop control over
any input distribution, we can write

H(X 0)open ¸ H(X)¡¢Hopen: (3.53)

Now, using the fact that a closed-loop controller is formally equivalent to an open-loop
controller (possibly mixed) acting on p(xjc), we also have, for each value c,

H(X 0jc) ¸ H(Xjc)¡¢Hopen; (3.54)

and, on average,
H(X 0jC) ¸ H(XjC)¡¢Hopen: (3.55)

(The distribution p(xjc) is a legitimate open-loop input distribution, so the maximum
¢Hopen must also apply in that case.) At this point, notice that H(X 0) ¸ H(X 0jC)
implies

H(X 0)closed ¸ H(XjC)¡¢Hopen: (3.56)
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Hence, we obtain

¢Hclosed ´ H(X)¡H(X 0)closed (3.57)

· H(X)¡H(XjC) +¢Hopen (3.58)

= I(X;C) +¢Hopen; (3.59)

which is the desired upper bound for a feedback controller. ¤

The closed-loop optimality theorem is a general statement about a given set of
actuation rules used to control any initial condition X whose distribution is taken in the
dense set P of all the possible input distributions. Speci�cally, the optimality theorem
states that for an arbitrary initial state, the set of actuations can be used in a closed-
loop fashion to achieve at best ¢Hclosed = ¢Hopen + I(X;C), where ¢Hopen is the
maximum open-loop decrease of entropy obtainable over any input distribution. In a
weaker sense, the optimality theorem can also be applied for a speci�c input distribution
p(x). In that case, the maximization problem of Eq.(3.52) can be restricted over the

subset eP µ P containing the distributions pX(x) and p(xjc) for all values c. This is so
because, of all the possible input distributions, p(x) and p(xjc), for all c, are the only
distributions entering in the reasoning of the above proof. (The fact that ¢Hopen cannot
be calculated using p(x) alone arises because the maximum entropy decrease in open-
loop control starting from the actual distribution p(x) may di¤er from the maximum
¢H obtained by starting with p(xjc). See section 4.1 for a speci�c example.)

The same remark also applies for the maximization over the pure actuations: in
the statement of the optimality theorem, we demand that ¢Hopen be calculated for
a deterministic random variable C since we know that optimality, in the open-loop
sense, is satis�ed when C = ĉ with probability one. However, if we want the optimality
theorem to hold in the case of a speci�c p(x), ¢Hopen may not be calculated for a pure
controller; in fact, it could be associated with ¢HC or ¢H 0

C , depending on which one
is the maximum.

3.6. Optimality and side information

The fact that ¢Hclosed may be greater than ¢Hopen is in agreement with the intuitive
observation that if a controller is accorded information regarding the state of X , then
a decision rule for selecting control strategies based on that information can improve
upon a rule neglecting the information. In fact, feedback control can always be made to
perform at least as well as open-loop control, simply by applying open-loop actuation
rules as closed-loop ones. Improvement, though, is not a systematic requirement in
control: it is always possible to design a pathological feedback controller which could
randomize the state of a system, so thatH(X 0)closed ¸ H(X 0)open, even in the presence of
a non-vanishing mutual information. Hence the need for an inequality in the expression
(3.51). The precise statement of the optimality theorem is that, in the case where
closed-loop control improves upon open-loop control, the improvement

¢H ´¢Hclosed ¡¢Hopen (3.60)
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must be bounded by I(X;C). Equivalently, the e¢ciency of a closed-loop control,
de�ned as

´ ´
¢H

I(X;C)
; (3.61)

must be such that ´ · 1. (Note that we can talk of improvement since I(X;C) ¸ 0.
This means that ¢Hclosed cannot be systematically smaller that ¢Hopen, in agreement
with the basic observation, noted in section 1.2, that open-loop control strategies are a
subset of closed-loop strategies.)

The closed-loop control strategies for which ´ = 1 are called optimal. Following the
same line of reasoning as in the optimality theorem for open-loop control, it can be
proved that a necessary, though not su¢cient, condition for closed-loop optimality is
the following.

Proposition 10. If C ?? X 0 and ¢HC = ¢H 0
C = ¢Hopen, where

¢HC = H(X)¡H(X 0jC)open (3.62)

¢H 0
C = H(XjC)¡H(X 0jC)closed; (3.63)

then ¢Hopen = ¢Hopen+I(X;C). (Subscripts have been added to H(X 0jC) to stress the
fact that p(x0jc) in open-loop control may di¤er from p(x0jc) obtained in a closed-loop
fashion.)

Proof. Suppose that C ?? X 0 and ¢HC = ¢H 0
C = ¢Hopen. Then, using the open-loop

optimality theorem, we can write

H(X 0)open = H(X 0jC)open = H(X)¡¢HC (3.64)

= H(X)¡¢Hopen; (3.65)

H(X 0)closed = H(X 0jC) = H(XjC)¡¢H 0
C (3.66)

= H(XjC)¡¢Hopen: (3.67)

Finally, substracting Eq.(3.65) from Eq.(3.67) yields

H(X 0)open ¡H(X 0)closed = H(X)¡H(XjC) (3.68)

= I(X;C): (3.69)

Hence the result. Note that C ?? X 0 and ¢HC = ¢H 0
C = ¢Hopen are not necessary

conditions for optimality simply because H(X 0)open = H(X)¡¢Hopen does not imply
C ?? X 0 (similarly for the closed-loop case). ¤

Corollary 11. Closed-loop optimality is also achieved if p(c) =
P

x p(cjx)p(x) equals
one for one value c corresponding to ĉ, and if ¢HC = ¢H 0

C = ¢Hopen. In this case,
actually, I(X;C) = 0.
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Figure 3.5: Entropy bubbles representing optimal entropy reduction in (a) open-loop
control and (b) closed-loop control.

The result of the condition stated in proposition 3.6.1 is illustrated in �gure 3.5
which shows how one can reduce the entropy H(XjC) (shaded region in �gure 3.5b)
by ¢Hopen, the maximum open-loop control entropy reduction (�gure 3.4a). From the
entropy bubbles, it is clear that the maximum improvement that closed-loop can give
over open-loop control is limited by the information obtained by the controller (dashed
area in the �gure). Also, we can see that the maximum entropy decrease achievable, both
in closed-loop and open-loop control, is ¢H = H(X). In that case, H(X 0) = L = 0.

In practice, several aspects of a control system will prevent a controller (open-loop
or closed-loop) from being maximally optimal, i.e., from achieving ¢H = H(X). In
the following, we list and discuss three main reasons that mainly pertain to closed-loop
control.

² Measurement devices usually do not have access to the whole state space of the
system they measure. Hence I(X;C) · H(X). The loss H(XjC) gives a rough
measure of the �area� of the state space of X not covered by C.

² Noiseless communication channels are a rare exception in the real world. This
means that losses measured byH(XjC)must necessarily occur in the measurement
channel. Note that any post-processing of the information gathered by C cannot
increase the mutual information I(X;C), and thus improve the inferences that
would result from the data. This comes as a result of the so-called data processing

inequality [19] which states, basically, that for a double channelX ! C ! C 0 with
p(x; c; c0) = p(x)p(cjx)p(c0jc), we must have I(X;C) ¸ I(X;C 0). In particular, if
C 0 = g(C) then I(X;C) ¸ I(X; g(C)). Thus, functions of the data C cannot
increase the information about X.

² Control actuations that cover the whole state space of a system are very �costly�
to implement. In practice, it is usually the case that actuators only modify the
dynamics of a controlled system locally in space. To illustrate this, consider the
equation of a thermostat

_x(t) = ®[x¤ ¡ x(t)]: (3.70)

where x(t) 2 R. In this equation, the variable x(t) on the right-hand side rep-
resents the feedback component c(t) = x(t) of a control system which tries to



3.7. Continuous extensions of the results 43

constrain the state x(t) to the target state x¤. By de�ning y(t) = x¤ ¡ x(t), the
solution of the above equation can be calculated easily:

y(t) = y(0)e¡®t: (3.71)

Now, by choosing X » U(d), the di¤erential entropy of the system can be esti-
mated to be

H(X(t)) / log d¡ ®t: (3.72)

Hence, even if c(t) = x(t) (perfect measurement with I(X;C) = 1), we see
that ¢H is essentially limited by the dissipation factor ® which, according to the
di¤erence equation

¢x ' ®[x¤ ¡ x(t)]¢t; (3.73)

gives the approximate radius of action of the controller over a time interval ¢t.

It is interesting to note for the data processing inequality that, even though the
manipulation of C cannot increase I(X;C), it is possible to access the state X using side

information, i.e., any data Y that is correlated with X in such a way that I(X;Y ) 6= 0,
and possibly I(X;Y ) ¸ I(X;C). What should enter in the inequality (3.51) is thus the
mutual information between X and the variable used as the basis for the choice of the
actuation rules (which is not necessarily the control variable). For example, a control
system C1 could infer the state of a system X not directly by observation, but indirectly
by solving the exact dynamics of X using the past knowledge of its state. In that case,
the controller could act on the basis of the calculated state in the same way another
control system, say C2, would operate by measuring X . Thus, even though C1 does
not interact directly with the controlled system, it should be considered as a closed-
loop control system; from an outside perspective on the system X + C1, I(X;C1) 6= 0:
(Controllers such as C1 are often referred to as feed-forward controllers.)

3.7. Continuous extensions of the results

The theorems presented in the two previous sections can be generalized beyond the dsdt
models of �gure 3.2 to continuous-states systems, multi-stages processes and continuous-
time dynamics. For each of these three classes, the modi�cations to the results of sections
3.4 and 3.5 are as follows.

² Continuous-state systems. If X and C are continuous state spaces, then a priori

the only modi�cation that has to be made is to change the sums involved in the
expressions of entropy and mutual information to integrals over the state variables.
(Recall that I(X;C) is still positive-de�nite for continuous random variables.) A
more careful analysis of the results, however, reveals that this modi�cation is
not su¢cient in the case of controllability, since the concept of a deterministic
continuous random variable is somewhat ill-de�ned, and is not associated with the
condition H(X) = 0. To circumvent this di¢culty, we may extend the concept
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of controllability to continuous variables in the following manner: a system is
de�ned to be perfectly controllable at x 2 X if for every x0 2 X there exists at
least one control value c which forces the system to reach a small neighborhood
of radius " > 0 around x0 with very high probability. From this de�nition, the
connection with all of our previous results on controllability simply follows by
coarse-graining the continuous variables X and X 0 using a �grid� of size ¢ & ",
and by applying the necessary de�nitions to the discrete random variables X¢ and
X 0¢. The recourse to this coarse-grained description of a continuous state system
has also the advantage that H(X¢) and I(X¢;C¢) are well-de�ned functions
which cannot be in�nite, contrary to their continuous analogs.

² Higher-order processes. For a process of the form Xn ! Xn+1 ! ¢ ¢ ¢ ! Xn+m

controlled by the history Cm¡1 = Cn; Cn+1; : : : ; Cn+m¡1, one applies the results
on controllability with the only di¤erence that the control variable C is replaced
by the control history Cm¡1. Now, for the results covering the section on entropy
reduction, one can �concatenate� the dags of �gure 3.2 over several time steps in
order to apply the optimality theorems on a one time-step basis, and in particular
write

¢Hn
closed · ¢Hn

open + I(Xn;Cn); (3.74)

where ¢Hn = H(Xn) ¡H(Xn+1). However, this sort of �memoryless� approxi-
mation is not the most general model of control we can think of. For instance, it
does not say anything about the use of past information to reduce the entropy, nor
it exploits non-Markovian features of coupled dynamics, such as memory e¤ect or
learning, to increase the information of the controller above what is permitted by
I(Xn;Cn). Work is ongoing along this direction.

² Continuous-time dynamics. The extension of our results on controllability to dy-
namics evolving continuously in time is direct: in this case, one essentially follows
the directives of the previous paragraph on multi-steps processes, the history now
being the continuous history fC(t) : t0 · t · tfg over the interval [t0; tf ]. For
the results on entropy reduction, the generalization to continuous time is more
problematic. On the one hand, the state X(t) of a continuous-time system can
be sampled at two discrete time instants, X(t) and X(t +¢t), separated by the
interval ¢t. In this case, the inequality (3.51) can be modi�ed in the following
manner:

¢Hclosed

¢t
·

¢Hopen

¢t
+
I(X(t);C(t))

¢t
: (3.75)

Now, in the limit ¢t! 0, we obtain well-de�ned rates for ¢Hclosed and ¢Hopen,
assuming thatH(X(t)) is a smooth and di¤erentiable function of t. Unfortunately,
the quantity

lim
¢t!0

I(X(t);C(t))

¢t
(3.76)

does not constitute a rate, for I(X(t);C(t)) is not a di¤erential which goes to zero
as ¢t! 0.
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On the other hand, even our very de�nition of open-loop control, namely the re-
quirement that I(X;C) be equal to zero prior to control, fails to apply in contin-
uous time. Indeed, the distinction between the estimation step and the actuation
step for a continuous-time control process cannot be drawn in a meaningful way,
other than by sampling the control process in time. Moreover, even open-loop
controllers, which operate continuously over a given time interval, will be such
that I(X(t);C(t)) 6= 0. One possible solution, in such a case, could be to re-
place the condition I(X;C) = 0 by the requirement I(X(t);C(t)jfC(t0)g) = 0 for
t0 < t. More precisely, let X(t ¡¢t), X(t) and X(t + ¢t) be three consecutive
sampled points of a trajectory X(t). Also, let C(t¡¢t) and C(t) be the states of
a controller during a time interval in which the state of the controlled system is
estimated. (The actuation step is assumed to take place between the time instants
t and t+¢t.) Then, by rede�ning the entropy reductions as

¢Ht = H(X(t)jCt¡¢t)¡H(X(t+¢t)jCt¡¢t); (3.77)

where Ct represents the control history up to time t, we must have

¢Ht
closed · ¢Ht

open + I(X(t);C(t)jCt¡¢t): (3.78)

Now, since I(X(t¡¢t);C(t¡¢t)jCt¡¢t) = 0, we also have

¢Ht
closed · ¢Ht

open + I(X(t);C(t)jCt¡¢t) (3.79)

¡I(X(t¡¢t);C(t¡¢t)jCt¡¢t): (3.80)

Hence, by taking the limit ¢t! 0 on both sides of the above equation, we obtain
the rate equation

_Hclosed · _Hopen + _I; (3.81)

relating the rate at which entropy is dissipated

_H = lim
¢t!0

1

¢t

£
H(X(t)jCt¡¢t)¡H(X(t+¢t)jCt¡¢t)

¤
; (3.82)

with the rate at which the conditional information

¢I = I(X(t);C(t)jCt¡¢t)¡ I(X(t¡¢t);C(t¡¢t)jCt¡¢t) (3.83)

is gathered upon estimation. The di¤erence between the conditional information
rate ¢I=¢t and the �wrong� rate de�ned by Eq.(3.76) lies in the fact that ¢I
represents �new� or �fresh� information gathered during the latest estimation stage
of the control process: it does not include past correlations induced by the control
history Ct¡¢t. Finally, note that in this picture, there exists a meaningful de�ni-
tion of open-loop control, which is ¢I = 0, simply because, in open-loop control,
there is no direct estimation process.
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3.8. Thermodynamic aspects of control

The closed-loop optimality theorem, re-written as

H(X 0)closed ¸ H(X 0)open ¡ I(X;C); (3.84)

establishes a unavoidable limit to the power or performance of any control devices
whose designs are based on the possibility to accede low entropy states. Speci�cally,
since a uniform discrete random variable X distributed over N(X) states has entropy
H(X) = logN(X), it can be estimated that the approximate average number of states
over which X 0 is distributed with non-zero probability is

N(X 0) ' 2H(X0): (3.85)

Thus, from Eq.(3.84), it can be inferred that

N(X 0)closed & 2¡I(X;C)N(X 0)open: (3.86)

In practice, the extend to which the entropy of a system can be decreased will depend
on several factors and parameters determining the e¤ect of a controller on a dynamical
system. In addition to the physical factors mentioned in section 3.6, the performance of
a controller may also be associated with the �cleverness� of an sensor-actuator system:
by observing regularities in the behavior of a system, a controller can �learn� and
adapt its strategy in order to enhance its prediction abilities, and therefore improve its
e¤ectiveness. Interestingly, this aspect of control can be put in correspondence with
the modern analysis of Maxwell�s demon [37, 73, 72, 74] (see also [14, 57, 47]). Here,
controllers, just as Maxwell�s demon, are complex and adaptive information gathering
and using systems (igus) that interact with the controlled system, perceive regularities
in the motion of that system, and compress that information in a utilizable form for a
given control task.

As a direct consequence of this association, the �energetic� capabilities of a con-
troller must be limited by thermodynamic laws similar to the ones we discussed in
relationship with the Maxwell�s demon problem. On the one hand, since the overall
system X + C + E is a closed system whose dynamics is given in terms of a constant
Hamiltonian, Landauer�s principle immediately implies that if the controller is initially
uncorrelated with the controlled system (open-loop control), then a decrease in en-
tropy ¢Hopen for the system X must be compensated for by an increase in entropy of
at least ¢Hopen for the controller and the environment, e.g., conveyed in the form of
¢Qopen = (kBT ln 2)¢Hopen joules of heat.

A feedback controller, on the other hand, need not necessarily transfer entropy to
an environment in decreasing the entropy of X . For example, a controller can use
entropy-conserving Hamiltonian dynamics to actuate the state of X using the mutual
information I(X;C), thereby reducing the entropy of X by an amount¢Hclosed without
a¤ecting the entropy of the environment (¢Hopen = 0). In this scenario, in analog to
what Szilard, Landauer and Bennett showed, the amount by which C can decrease the
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entropy of X without any e¤ect on E must be bounded above by I(X;C). Again, as
argued before, the fact that C is able to decrease the entropy of X without a¤ecting E
does not entail the second law of thermodynamics. Ultimately, if the controller is to be
a cyclic machine, then it must supply work

¢We = (kBT ln 2)I(X;C) (3.87)

after each actuation step in order to erase the mutual information I(X;C) into an envi-
ronment at temperature T . This price of information corresponds exactly to Landauer�s
erasure cost mentioned earlier: it is the thermodynamic cost of information needed to
rehabilitate the validity of the second law of thermodynamics when generalized to in-
clude information. Here, in accordance with Eq.(3.51), the second law can be written
as

¢Qtot ¸ ¢Qopen +¢Qe; (3.88)

where ¢Qe = ¢We is the heat dissipated upon erasure of I(X;C) bits of information.



4 | Applications

This chapter o¤ers a collection of applications of the formalism developed in this thesis
and the results derived previously. We �rst begin by analyzing a simple system aimed
at the control of a particle enclosed in a box. The setting of this example is very similar
to the one considered originally by Szilard in its analysis of Maxwell�s demon (see [35]
for references), and is given here to illustrate in more details how the quantity ¢Hopen is
to be calculated. As a second application, we treat the control of binary states systems
through the use of controllers apparented to logical gates. The model presented in this
section concerns the well-known controlled-not (cnot) gate modi�ed here to allow its
use in closed-loop control (both noiseless and noisy) of an ensemble of bits. This example
is very instructive in that it illustrates in a simple fashion fundamental limitations
on feedback control and the conditions for which controllers are optimal. Finally, we
show how our analysis can be applied in the context of chaotic control to calculate the
size of the interval at which a noisy closed-loop controller can constrain the state of
a chaotic map. This application to nonlinear systems is very important for two main
reasons: (i) nonlinear maps, and nonlinear systems in general, o¤er a natural framework
for calculating information measures through the use of Lyapunov exponents; and (ii)
chaotic actuation rules are usually entropy increasing, which means that I(X;C) should
be non-zero if we want ¢Hclosed ¸ 0. The results of this last section constitute the �rst
step towards a general information-theoretic study of noise in nonlinear systems. Other
applications and open problems are suggested in the next and �nal chapter.

4.1. Controlling a particle in a box: a counterexample?

Consider a system X consisting of N > 2 states (N even) and a binary sensor-actuator
C which consists of 2 states c 2 f0; 1g. The states of the system are mapped onto the
states of the controller, upon measurement, as follows:

p(c = 0jx) =

½
1; x · N=2
0; x > N=2

(4.1)

p(c = 1jx) =

½
0; x · N=2
1; x > N=2

(4.2)

That is, half of the states (x · N=2) are �observed� by the state c = 0, while the other
half is �observed� by c = 1. Furthermore, we assume the following dynamics for the

48
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c=0

(a) Initial state

(b) Exact location

(c) Actuation

x 6 N=2 x > N=2

Figure 4.1: Di¤erent stages in the control of a particle in a box of N states. (a) Initial
equiprobable state. (b) Exact localization. (c) Open-loop actuation c = 0.

whole system:

Initial state p(x) = N¡1; for all x = 1; : : : ;N

p(x0jx; c = 0) =

½
±x0;1; x0; x · N=2
1=N; x0; x > N=2

Actuation matrices

p(x0jx; c = 1) =

½
1=N; x0; x · N=2
±x0;N ; x0; x > N=2

(4.3)

Physically, the actuation matrix p(x0jx; c) acts as a piston inserted in the middle of a box
containing a single particle which is initially in one of theN states so thatH(X) = logN
(�gure 4.1a). When c = 0, the piston is moved to the �left� part of the box and a particle
x located in the right half of the box (x > N=2) is able to move throughout the entire
volume of the box (�gure 4.1c-d on the right), while if the particle is in the left part of
the enclosure (x · N=2), it is compressed to one �nal position corresponding to x0 = 1
(�gure 4.1c). For c = 1, the complementary actuation is adopted: the piston is moved
to the �right� part and a particle at x > N=2 is compressed to x0 = N , and moves freely
otherwise.

Open-loop control

In open-loop control, we choose pC(0) = 1, pC(1) = 0 as our control strategy. Using
the control rules, the �nal state of the system can be calculated using the open-loop
decomposition, Eq.(3.13), which yields

p(x0) =
1

N

X
x

p(x0jx; c) =
1

N

X
x·N=2

±x0;1 +
1

N

X
x>N=2

1

N

=
1

2N
+

1

2
±x0;1: (4.4)
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c=0 c=1

(a) Initial state

(b) Measurement

(c) Exact location

(d) Actuation

x 6 N=2 x > N=2

Figure 4.2: Closed-loop control stages. (a) Initial equiprobable state. (b) Coarse-grained
measurement of the position of the particle. (c) Exact location of the particle in the
box. (d) Actuation according to the controller�s state.

We thus obtain

H(X 0)open = ¡

µ
1

2N
+

1

2

¶
log

µ
1

2N
+

1

2

¶
¡
X
x0 6=1

1

2N
log

1

2N

= ¡

µ
1

2N
+

1

2

¶
log

µ
1

2N
+

1

2

¶
¡
N ¡ 1

2N
log

1

2N
: (4.5)

Closed-loop control

In closed-loop control, the actuation variable c is chosen according to Eqs.(4.1) and (4.2)
(see �gure 4.2). The mutual information in that case can be calculated easily since

pC(0) = pC(1) =
X
x

p(x)p(c = 1jx) =
1

2
; (4.6)

so that

I(X;C) =
X
x;c

p(x)p(cjx) log
p(x)p(cjx)

p(x)p(c)
=
X
x;c

p(x)p(cjx) log
p(cjx)

p(c)

=
1

N

X
x·N=2

[p(c = 0jx) log 2p(c = 0jx) + p(c = 1jx) log 2p(c = 1jx)]

+
1

N

X
x>N=2

[p(c = 0jx) log 2p(c = 0jx) + p(c = 1jx) log 2p(c = 1jx)]

= log 2 (4.7)
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Finally, the distribution p(x0) in closed-loop control becomes

p(x0) =
1

N

X
x·N=2

£
p(x0jx; c = 0)p(c = 0jx) + p(x0jx; c = 1)p(c = 1jx)

¤

+
1

N

X
x>N=2

£
p(x0jx; c = 0)p(c = 0jx) + p(x0jx; c = 1)p(c = 1jx)

¤

=
1

N

X
x·N=2

±x0;1 +
1

N

X
x>N=2

±x0;N =
1

2

¡
±x0;1 + ±x0;N

¢
: (4.8)

Thus, H(X 0)closed = log 2.
In light of these results, a contradiction seems to arise because

¢Hclosed £ ¢Hopen + I(X;C) (4.9)

for some values of N . In fact, �gure 4.3 shows that from N > 6 (outside the dashed re-
gion), ¢Hclosed deviates signi�cantly from what is allowed by the closed-loop optimality
theorem. What has not been taken into account in the analysis, however, is that ¢Hopen

requires the calculation of max¢H over the set eP = fp(x); p(xjc)g since, as mentioned,
the optimality theorem does not necessarily hold if both ¢Hopen and¢Hclosed are calcu-
lated using p(x). If one properly re-calculates the reduction of entropy in open-loop con-
trol, the value¢Hopen = logN=2 should be found, so that¢Hclosed < ¢Hopen+I(X;C)
for all N > 2. The value logN=2 is achieved by an equiprobable distribution covering
either the left half or the right half part of the box, which is exactly the distribution
p(xjc) after the measurement of the particle with the initial state p(x) = N¡1.

4.2. Binary control automata

In the example of the signalman, we noted that the gathering of one bit of information
was necessary to control the ensemble f1; 2g, p(1) = p(2) = 1=2, to a single �nal state
of zero entropy. Now, what happens if p(1) 6= 1=2, or if the controller has access to less
than one bit of information? To answer these two questions, we consider the following
toy model. Let the controlled system X have a binary state space X = f0; 1g with
pX(0) = a and pX(1) = 1 ¡ a, 0 · a · 1. Also, let C be a binary state controller
C = f0; 1g restricted to use the two actuation channels

p(x0jx; c = 0) :

µ
1 0
0 1

¶
; p(x0jx; c = 1) :

µ
0 1
1 0

¶
: (4.10)

(In matrix notation, columns are labelled by the values of X, and the rows are indexed
by the values of X 0. With this convention, the propagation p(x0) =

P
x p(x

0jx)p(x) is
written as the matrix multiplication0

BBB@
p(x01)
p(x02)
...

p(x0n)

1
CCCA =

0
BBB@

p(x01jx1) p(x01jx2) ¢ ¢ ¢ p(x01jxm)
p(x02jx1)

...
. . .

...
p(x0njx1) ¢ ¢ ¢ p(x0njxm)

1
CCCA
0
BBB@

p(x1)
p(x2)
...

p(xm)

1
CCCA (4.11)
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Figure 4.3: Apparent violation of the closed-loop optimality theorem. (²) ¢Hclosed as a
function of N . (±) ¢Hopen + I(X;C) versus N . Outside the dashed region ¢Hclosed >
¢Hopen + I(X;C). The dashed line represents the corrected result when is ¢Hopen is
calculated according to the proper de�nition.

known as the Kolmogorov-Chapman equation [25].) The �rst channel of Eq.(4.10) is
called the copy channel, whereas the second one is the anti-copy channel. As an equiva-
lent representation of the whole system X +C, we can think of the matrices of Eq.(4.10)
as representing the transitions of a cnot (reversible) gate

c x c0 = c x0

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

=
C C

0

X X

(4.12)

which takes the complement ¹x = x© 1 mod2 of x whenever c = 1.
Now, since these actuation rules consist of permutations, H(X 0)open ¸ H(X) with

equality if a pure controller is used (either c = 0 or c = 1), or if H(X) = Hmax = 1
bit. These two conditions are in agreement with the optimality theorem for open-loop
control, since for a deterministic random variable C or for pX(0) = pX(1) = 1=2, it can
be veri�ed that X 0 ?? C: Thus, for open-loop control we have ¢Hopen = 0.
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1

0

1

(a) (b)

Figure 4.4: (a) H(C) as a function of of the measurement error e and the initial para-
meter a. (b) I(X;C) as a function of e and a.

Noisy measurement

In closed-loop control, we consider a measurement channel modeled by a binary sym-
metric channel (bsc) [19]:

p(cjx) : (1¡ e)

µ
1 0
0 1

¶
+ e

µ
0 1
1 0

¶
=

µ
1¡ e e
e 1¡ e

¶
(4.13)

where e 2 [0; 1] (see Eq.(4.11) to identify the elements of the matrix). This transition
matrix represents a binary measurement channel in which the input is copied with
probability 1¡ e, and is changed otherwise, i.e., anti-copied, with probability e. Thus,
it can be said that for 0 < e < 1=2, the channel is a noisy copy channel, whereas it is a
noisy anti-copy channel for 1=2 < e < 1. The mutual information for this channel is

I(X;C) = H(C)¡
X
x=0;1

p(x)H(Cjx)

= H(C)¡H(e); (4.14)

where
H(e) ´ ¡e log e¡ (1¡ e) log(1¡ e): (4.15)

Figure 4.4 shows the plots of H(C) and I(X;C). From these �gures, it can be clearly
seen that C gathers a maximum of information when e equals 0 or 1, in which case the
measurement channel is noiseless, and thus I(X;C) = H(X) = H(a). Also, H(C) = 0
(pure controller) for the four couples (e; a) 2 f(0; 0); (1; 0); (0; 1); (1; 1)g. We thus expect
the controller to be optimal at these points since ¢H 0

C = ¢HC = ¢Hopen = 0:
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To verify this, we calculate the �nal state in closed-loop control using Eq.(3.18).
The complete solution is pX0(0) = 1¡ e, pX0(1) = e. Hence, H(X 0) = H(e), and

¢Hclosed = H(X)¡H(e): (4.16)

Figure 4.5a contains the plot of the entropy decrease ¢Hclosed as a function of the error
parameter e and the initial condition pX(0) = a. This plot is compared, in �gure 4.5b,
with the mutual information I(X;C). By analyzing these �gures, a few results can be
inferred. First, we see that, indeed, the controller is optimal for the four couples (e; a)
mentioned above. Furthermore, it is also optimal along the lines e = 0, and e = 1 since
H(X 0) = 0 when X ³ C. More precisely, for e = 0,

pX0(0) = 1; pX0(1) = 0; (4.17)

whereas for e = 1,
pX0(0) = 0; pX0(1) = 1: (4.18)

(This is very similar to the example given in the section on separability.) In addition to
these results, the controller is found to be optimal along the line a = 0:5. Unfortunately,
this case cannot be understood from the optimality condition of closed-loop control
because I(X 0;C) 6= 0.

Except for the mentioned cases, ¢H < 0 even if I(X;C) 6= 0 (non-optimal con-
troller). In fact, for e ' 1=2, it can be seen on �gure 4.5b that C randomizes the
state of X in such a way that ¢H < 0. This does not come as a surprise since, for
I(X;C) ' 0, the controller�s action relies essentially on a random bit. Note, however,
that the optimality theorem always holds true for this example. Indeed, �gure 4.5b
shows that

¢Hclosed · ¢Hopen + I(X;C)

= I(X;C) (4.19)

for all values of e and a. Analytically, this can be veri�ed by using Eqs.(4.14) and (4.16)
in the optimality theorem to obtain the inequality H(X) · H(C), which is always
satis�ed since the measurement channel is doubly stochastic. Note, �nally, that H(X 0)
is independent of H(X). Thus, by repeating the control action after a �rst transition
X ! X 0, we must end up withH(X 00) = H(X 0) = H(e) so that¢Hclosed = I(X;C) = 0.
Hence, applying the control action a second time does not change the state of the system.

Noisy actuations

Before concluding this section, let us study the case where the controller implements
noisy actuation channels modeled by the following matrices

p(x0jx; c = 0) : (1¡ d)

µ
1 0
0 1

¶
+ d

µ
0 1
1 0

¶
=

µ
1¡ d d
d 1¡ d

¶
(4.20)

p(x0jx; c = 1) : d

µ
1 0
0 1

¶
+ (1¡ d)

µ
0 1
1 0

¶
=

µ
d 1¡ d

1¡ d d

¶
(4.21)
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Figure 4.5: (a) ¢Hclosed as a function of e and a. (b) Comparison of I(X;C) (top
surface) and ¢Hclosed (partly hidden surface).

where d 2 [0; 1] is the error parameter. These matrices being doubly stochastic, we
expect to have ¢H < 0 for almost all initial conditions p(x) and values of d, so that
¢Hopen < 0. However, in general this guess would be wrong, since X » U gives rise
to ¢Hopen = 0 for any value of d. This illustrates an important fact about entropy-
increasing actuation rules: if we want to apply the optimality theorem for any initial
random variable X, then ¢Hopen must trivially be taken to equal zero in order to face
the possibility of having X » U . However, as remarked in chapter 3, if the distributions
p(x) and p(xjc) are given, then ¢Hopen can be evaluated on a case by case basis using

the set eP = fp(x); p(xjc)g. For the present example, by calculating ¢Hopen either with

P or eP, it can be shown that, for a perfect binary symmetric measurement channel
(e = 0; 1), the controller is optimal only for an actuation channel with d = 0; 1. This
leads us to conjecture that controllers which use strictly entropy-increasing actuation
rules can never be optimal, except for the trivial case where H(C) = 0.

To conclude, it should be noted that the controller with e 6= 0; 1 and d = 0; 1 (noisy
measurement, perfect actuation) controls the �nal state X 0 to an entropy H(e) which is
independent of X. This is rather interesting considering that the controller with e = 0; 1
and d 6= 0; 1 (perfect measurement, noisy actuation) is such that H(X 0) = H(d). This
kind of complementarity between noise components a¤ecting measurement and noise
components a¤ecting actuations is believed to be a general feature of controllers. Also,
for arbitrary values of e and d, and for H(X) = 1 bit, it was observed that

¢Hclosed = [1¡H(d)]I(X;C); (4.22)

although no proof of this result was found.



4.3. Control of chaotic maps 56

4.3. Control of chaotic maps

We now consider the feedback control scheme proposed by Ott, Grebogi and Yorke
(ogy) [48, 63], as applied to the logistic map

xn+1 = rxn(1¡ xn); (4.23)

with 0 · r · 4, and xn 2 [0; 1], n = 0; 1; 2; : : : (See [62] for a review of chaotic control).
The ogy method, speci�cally, consists to apply to Eq.(4.23) small perturbations r !
r + ±rn according to

±rn = ¡°(xn ¡ x¤); (4.24)

whenever the state xn falls into a small control region D in the vicinity of a target point
x¤. As a result of ergodicity of the logistic map, the probability that the trajectory
will enter any region D goes to one as n ! 1. The point x¤ is usually taken to
be an unstable �xed point of the unperturbed map (±r = 0), satisfying the equation
fr(x

¤) = x¤, that we want to stabilize. Moreover, the gain ° > 0 is �xed so as to
ensure the stability of the control actions. The possible stable values for °, explicitly,
are determined by linear analysis as follows. In the vicinity of the point x¤, the map
can be linearized to obtain

xn+1 = fr(x
¤) +

@f

@x

¯̄̄
¯
x=x¤

±xn +O(±x2n) (4.25)

for r = cte, where ±xn = xn ¡ x¤. Now, by allowing a variation r ! r + ±rn, the
linearization becomes

±xn+1 =
@f

@x

¯̄̄
¯
x=x¤

±xn +
@f

@r

¯̄̄
¯
x=x¤

±rn = @xf(x
¤)±xn + @rf(x

¤)±rn (4.26)

(neglecting all terms of order higher than 2). Thus, using Eqs.(4.24) and (4.26), we see
that if we want to reach the state x¤ from any state in one iteration of the map, then
the gain should be set to the value

° =
@xf(x¤)

@rf(x¤)
: (4.27)

In that case, ±xn+1 = 0, implying that xn+1 = x¤.
This procedure, clearly, is valid in the limit of a small control region D ! 0; in a

more realistic fashion, D need not be in�nitesimal if the gain ° is �xed to a constant
value that di¤ers slightly from the value prescribed by Eq.(4.27). Indeed, the only
requirement for stability, and achievability of the control goals, is that j±xn+1j < j±xnj
for all n. Hence, ° can be chosen so as to satisfy the inequality

j@xf(x
¤)¡ @rf(x

¤)°j < 1; (4.28)

which is readily derived by substituting the expression ±rn = ¡°±xn in the linearized
equation of motion.
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The foregoing equations can now be combined in the following algorithm which
describes in details the functioning of the ogy control scheme:

Initialization

2
66666666664

Choose
x0 2 [0; 1] ; initial condition
r 2 [0; 4] ; unperturbed control parameter
° according to Eq.(4.28) ; stable gain
D¿ 1 ; control region
N ; Number of control iterations

Solve
x¤ = fr(x

¤) ; target point

Control loop

2
66666666664

DO n = 0;N
IF xn 2 D THEN

Calculate ±rn = ¡°±xn ; controlled
ELSE

±rn = 0 ; uncontrolled
END IF

xn+1 = (r + ±rn)xn(1¡ xn)
END DO

The plots in �gure 4.6 illustrate the e¤ect of this control algorithm on the logistic
map for r = 3:78. The plots (a) and (b) represent, respectively, an uncontrolled and
a controlled trajectory fxn : 0 · n · 500g. For the controlled trajectory, the point
x¤ = (r¡1)=r ' 0:735 was stabilized by applying the control law from the time instant
n = 150 with the parameters ° = 7:0 and D = [0:725; 0:745]. Figure 4.6c also illustrates
the performance of the feedback control when the variable xn in the control law (4.24)
is replace by the �coarse-grained� value

x¢n =
lxn
¢

m
¢; (4.29)

obtained by using a uniform partition of the unit interval with cells of constant size ¢.
In this case, and more generally for any values of ¢ smaller than a certain threshold,
the controller is able to localize the system within a constant interval " enclosing x¤,
provided that ° lies in the stable interval de�ned by Eq.(4.28). The latter part of this
section will be devoted to the study of the properties of this interval using the closed-loop
optimality theorem.

Chaotic control regions

For the purpose of chaotic control, all the accessible control actions determined by the
values of ±rn, and correspondingly by the coordinates xn 2 D, can be constrained to be
entropy-increasing by a proper choice of D. In other words, by choosing D conveniently,
the Lyapunov exponents

¸(r) = lim
N!1

N¡1X
n=0

ln j@xfr(xn)j ; (4.30)
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Figure 4.6: (a) Realization of the logistic map for r = cte = 3:78, x¤ ' 0:735. (b)
Application of the feedback control algorithm starting at n = 150 with ° = 7:0. (c)
Application of the control law from n = 150 with ° = 7:0 in the presence of a uniform
partition of size ¢ = 0:02 in the estimation of the state.
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Regions rmin rmax rmid ¢r ¸mid (base e) x¤

R0 3.565 3.625 3.595 0.03 0.1745 0.7218
R1 3.63 3.735 3.6825 0.0525 0.3461 0.7284
R2 3.74 3.825 3.7825 0.0425 0.4088 0.7356
R3 3.858 4.0 3.929 0.071 0.5488 0.7455

Table 4.1: Parameters of the four control regions.

associated with any actuation indexed by r can be forced to be positive. This a priori

is not obvious since, as �gure 4.7 shows, the Lyapunov spectrum of the logistic map
contains many negative Lyapunov exponents closely interspaced between positive values
of ¸(r). In practice, however, the negative values appearing in the chaotic regions where
¸(r) seems mostly positive can be e¤ectively suppressed either by adding a small noise
component to the map or by coarse-graining the state space [20]. The e¤ect of the
addition of noise to the map is shown in �gure 4.7. The spectrum of this �gure, which
has been obtained by computing numerically the sum (4.30) up to N = 20000 with an
additive noise component of amplitude 10¡3, shows the disappearance of the negative
exponents in four clearly de�ned regions denoted respectively by R0, R1, R2 and R3.
The characteristics of these chaotic regions are listed in table 4.1. Among these, we
have listed the boundaries [rmin; rmax] of each region, in addition to the length ¢r and
the middle value, rmid, of the intervals. The Lyapunov exponents (calculated in base e)
and the �xed point associated with rmid are also listed in the table.

Coarse-grained controller

Physically, the fact that ¸(r) > 0 for all r 2 Ri (i = 0; 1; 2; 3) implies that almost any
initial uniform distribution for X covering an interval of size " �stretches� on average
by a factor e¸(r) after one iteration of the map with parameter r [58, 34]. This is true
as long as the support of p(x) is not too small or does not cover the entire unit interval,
as it is usually the case during the control process. Now, for an open-loop controller,
it can be seen that if ¸(r) > 0, no control of the state is possible by using the ogy
control algorithm. Indeed, without the knowledge of the position xn at the time instant
n, a controller merely acts as a perturbation during the transition xn ! xn+1, and the
optimal control strategy then consists in using the smallest Lyapunov exponent available
in order to achieve

¢Hopen = H(Xn)¡H(Xn+1)open

= ln "¡ ln("e¸min)

= ¡¸min < 0; (4.31)

for a typical distribution (�gure 4.8a). Following the closed-loop optimality theorem, it
is thus necessary in a controlled situation where ¢H ¸ 0 (�gure 4.8b) to have I(X;C) ¸
¸min using a measurement channel with a capacity of at least ¸min nats. For example,
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Figure 4.7: (Left) Lyapunov spectrum ¸(r) of the logistic map. The numerical calcu-
lations used approximately 20 000 iterates of the map. (Right) Spectrum for the noisy
logistic map. The de�nition of the 4 chaotic control regions (0, 1, 2, 3) is illustrated by
the dashed boxes. The vertical dashed lines give the position of rmid.

if by using the ogy control scheme, we want to localize the trajectory generated by the
logistic map uniformly within an interval of size ", using a set of actuations from the
chaotic control regions, then we need to measure the state xn in Eq.(4.29) within an
interval¢ · e¡¸min". In a weaker sense, the fact that ¢Hopen = ¡¸min also implies that
an optimal controller in the regime where ¢Hclosed = 0 should be such that I(X;C) =
¸min.

To understand this last observation, note that a perfect measurement of I(X;C) =
ln a nats consists, for a uniform distribution with jsuppXj = ", in partitioning " into
a �measurement� subintervals of length "m = "=a (�gure 4.9). By separation analy-
sis, the controller under this partition then applies the same actuation r(i) for all the
coordinates of the initial density lying in each of the subintervals i, thereby stretching
each of them by a multiplicative factor exp[¸(r(i))]. In the optimal case, all the subin-
tervals are controlled as if all the points of a given subintervals were directed toward x¤

using the same optimal open-loop actuation associated with ¸min (�gure 4.9), and the
corresponding entropy change is thus given by

¢Hclosed = ln "¡ ln
³
e¸min

"

a

´

= ¡¸min + log a: (4.32)

This last equation is consistent with the closed-loop optimality theorem with ¢Hopen =
¡¸min, and gives the correct value for a, namely a = e¸min , for ¢Hclosed = 0.
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Figure 4.8: (a) Entropy Hn = H(Xn) of the logistic map with r = cte and ¸(r) > 0.
The entropy was calculated by propagating about 10 000 points initially located in a
very narrow interval, and then by calculating a coarse-grained distribution. Inside the
typical region where the distribution is away from the initial distribution (lower left
part) and the uniform distribution (upper right part), H(Xn+1) ¡H(Xn) ' ¸(r). (b)
Entropy for the logistic map controlled by a coarse-grained ogy controller starting at
n = 150. For nÀ 150 (controlled regime), H(Xn) ' log " = cte.

Evidently, since the ogy algorithm does not control the points of di¤erent subinter-
vals using the same Lyapunov exponents, the value a = e¸min only gives us a lower bound
on the measurement interval "m at which one should measure Xn in order to achieve
¢Hclosed = 0. More realistically, ¸min could be replaced by ¸(hri), or ¸mid = ¸(rmid).
(In practice, it was found during the simulations that hri is well approximated by rmid.
See �gure 4.10.) The fact that e¸mid is a good approximation for a is illustrated in
Figure 4.11. In this �gure, the results of the numerical calculations of " as a function
of the e¤ective measurement interval "m = "=a are plotted for the four control regions
de�ned earlier. For each of the control region, the numerical simulations were carried
out by constructing a coarse-grained density consisting of about 104 di¤erent points
controlled by a gain ° �xed according to Eq.(4.28), and by choosing D in order to have
±rn · ¢r=2 for all n. In doing so, we were able to restrain the possible values of r+±rn
to lie in the control region Ri associated with the �xed points x¤(rmid) of interest (see
table 4.1). The solid line in each of the plots illustrates the average optimal �line�

" = e¸mid "m (4.33)

predicted by the optimality theorem with ¸min replaced by ¸mid. From the plots, it can
be seen that, even by taking ¸mid as the actuation parameter, the data points for " still
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Figure 4.9: Separation analysis for the coarse-grained controller in the optimal case
where ¢H = 0. The size of the measurement interval is given by eH(XjC) where
H(XjC) = H(X)¡ I(X;C).

deviate from the relation predicted by Eq.(4.33). From what we know about optimality
in closed-loop control, this can be partly understood by noticing that a controller based
on the ogy scheme must become increasingly mixed (in a closed-loop sense) as ¢! ",
or equivalently as a ! 1. This is corroborated by the plot on the right hand side
of �gure 4.10 which shows the variance of hri. However, as �gure 4.11 indicates, the
deviation from the optimal line predicted by Eq.(4.33) does not increase monotonically
with "m, a fact that cannot be explained by the optimality condition of closed-loop
control. In the future, it will be interesting to better understand the conditions under
which a closed-loop controller is optimal, and, in particular, to try to see if there exists
a necessary and su¢cient condition for closed-loop optimality.
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Figure 4.10: (a) Ensemble average of the parameter r used during the simulations of
the ogy control algorithm. (b) Variance of hri (logarithmic scale). The horizontal axis
for both graphs represents the number of cells used in the partition, i.e., a = "¢¡1.
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5 | Conclusion

5.1. Summary and informal extensions

This thesis presented a novel formalism for studying control processes from a informa-
tional viewpoint. Following a general discussion of control systems, presented in the
introductory chapter, it was realized that controllers can be described by models anal-
ogous to probabilistic communication channels à la Shannon. Speci�cally, given the
starting state X of a system, the task of a controller can be described as applying a
�transmission� channel, called the actuation channel, to X in order to redirect the sys-
tem towards another desired state X 0.1 In the process, the controller may operate in
two di¤erent regimes: (i) the controller may select the actuation channel independently
of X, in which case the control is said to be open-loop; or (ii) the controller can select
the actuation channel based on some information regarding the starting state of the
controlled system. This latter case, corresponding to closed-loop control, was modeled
by considering an extra channel to the model, the measurement channel, relating the
state X to a control variable C labeling the actuation channel to be used.

Using this picture of control, which depicts both the estimation and the actuation
processes as communication channels transmitting bits of information, several results
have been proved. Among these, it was shown that the concept of controllability can re-
ceive an information-based de�nition which can be used to derive necessary and su¢cient
entropic conditions for perfect and approximate controllability (section 3.4). Further-
more, it was shown that the amount of information gathered by a controller through the
measurement channel can be quanti�ed formally in terms of a quantity I(X;C) known
as the mutual information. Then, in the context of our general control models, it was
proved that I(X;C) must bound an improvement function de�ned as

¢H = H(X 0)open ¡H(X 0)closed; (5.1)

H(X 0)open and H(X 0)closed being, respectively, the �nal entropy of the controlled system
after an open-loop controller and a closed-loop controller have been applied. In other
words, the amount of entropy ¢Hclosed = H(X)¡H(X 0)closed that can be �extracted�
from a dynamical system using a closed-loop control system much be such that

¢Hclosed · ¢Hopen + I(X;C); (5.2)

1After completing the thesis, it was found that the control models proposed in chapter 3 are very
reminiscent of a communication model known, in the information theory literature, as the matching

channel. See [1] for more details.
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where ¢Hopen is the entropy reduction attained by restricting the control model to an
open-loop system. This constituted our central result which was extended to continuous-
state and continuous-time systems, and then illustrated extensively, in chapter 4, by
looking at the control of various dynamical systems, including chaotic maps.

The basic argument behind the proof of the above equations is that a closed-loop
controller acts on the basis of the information provided by the conditional distribution
p(xjc) which re�ects the knowledge of X acquired during its estimation. An open-loop
controller, on the other hand, must proceed to a control action solely on the basis
of the distribution p(x). Then, by comparing the e¤ect of both p(xjc) and p(x) on
the closed-loop and open-loop actuation channels, it can be seen that a closed-loop
controller essentially acts as if the values of the state X were partitioned into (usually
non-overlapping) sets distributed according to di¤erent distributions p(xjc) indexed by
the values of the controller�s state. In this case, the action of the closed-loop controller
can virtually be described as if the initial state of the system was distributed according
to p(xjc), and, consequently, as if the initial entropy of the system was H(XjC), as
opposed to the entropy H(X) �seen� by open-loop controllers. Hence the mentioned
improvement in ¢Hclosed.

As such, this argument is very similar to the one given by Kelly [31, 19] in its
information-theoretic treatment of the problem of gambling on a horse race. The sim-
ilarity between control and gambling is in fact not fortuitous: in both cases, the task
is to apply strategies (control or gambling strategies) chosen from some a priori set of
admissible strategies [43]. Then, as it is the case in control, we can envision to decide
of a gambling strategy either blindly (open-loop strategy) or based on some knowledge
or side information relevant to the gambling situation (closed-loop strategy). In this
context, the result derived by Kelly is the following: for a gambling problem based on
doubling rate optimization, there is a quantitative improvement of the �gambling re-
turns� proportional to I(X;C) in the eventuality where side information is used. (See
[19] for a precise statement of the problem.) In control, the only di¤erence with gam-
bling is that the cost function in the problem is chosen to be the entropy, and more
precisely the entropy di¤erence ¢H. As another parallel between control and game
theory, it should be noted that the terms �pure� and �mixed� control strategies were
de�ned exactly as in game theory [22]. An interesting result in that case, already found
in game theory and re-derived independently in this thesis, is the optimality theorem
of pure open-loop gambling/control strategies for concave �cost� or �reward� functions.2

This result in game theory can be found in [29].

5.2. Future work

There surely exist other parallels that one can draw from our analysis of control systems,
as well as other applications for which our formalism seems applicable and useful. A
promising avenue of research, in that sense, is the study of more realistic, hence more

2Cost functions are also referred to as value functions, Lyapunov functions, or Lagrangians, depending
on the �eld of study.
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complicated, control systems (e.g., high-dimensional noisy linear systems). As another
example, let us mention potential applications in the �eld of nanoscale control systems
which are often described by stochastic models. By way of conclusion, we present in the
following several topics of interest which have not been fully investigated in this thesis,
but will be in the future.

² Linear systems. We mentioned in chapter 3 that our results could be extended
to continuous-state and continuous-time dynamical systems. However, as pointed
out, in the continuous-time limit a di¢culty concerning the de�nition of the mutual
information arises: I(X(t);C(t)) is not a quantity relating two end points in time.
Thus, the limit ¢t ! 0 cannot be taken in order to yield a meaningful rate
equation, except for the case where one considers conditional entropies instead of
marginal ones.

For linear systems, an alternative solution to the continuous-time problem can be
put forward: it involves the study of continuous-time linear di¤erential equations
which can always be expressed, in the frequency domain, as scalar equations of
the form

Y (w) = G(w)X(w); (5.3)

where X(w) and Y (w) represent respectively the input and the output signals, as
functions of the frequency w, of a linear �lter whose transfer function is G(w).
Using this representation, the signals X(w) and Y (w) can be sampled at di¤erent
frequencies w1; w2; : : : ; wN to construct two random vectors

Y (w) ! Y = [Y (w1); Y (w2); : : : ; Y (wN )]T (5.4)

X(w) ! X = [X(w1);X(w2); : : : ;X(wN )]T ; (5.5)

related by the matrix equation Y = GX . In this last equation, G now represents
the transfer matrix obtained by sampling the function G(w): The next step then is
to apply our formalism to these vectors as if they were representing a multivariate
map. In particular, the entropy of the output signal can be calculated using
[24, 28]

H(Y (t)) ¡!
N!1

H(Y ) = ¡

Z
y

p(y) log p(y) dy

= H(X ) + log jGj; (5.6)

where jGj is the determinant of G, and

I(X(t);Y (t)) ¡!
N!1

I(X ;Y ) =

Z
x

Z
y

p(x ;y) log
p(x ;y)

p(x)p(y)
dydx : (5.7)

Evidently, for de�niteness, it should be noted that the signals X(t) and Y (t)
must be bounded in time, say over an interval T , in which case X(w) and Y (w)
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Figure 5.1: (a)-(b) General circuit models of open-loop controllers C acting on a system
X using transition functions denoted by fc. (c)-(d) Circuit models for closed-loop con-
trol. The transition functions for the estimation process are denoted by fe. (e) Example
of an environment-assisted open-loop control: the open-loop controller with H(C) = 0
is able to recover the bit of error introduced by the environment using a To¤oli gate
which uses the bit of mutual information between E and X.

are also bounded in the frequency domain. This being said, we are justi�ed,
by Shannon�s sampling theorem [24, 19], to restrict our study of the signals to
a �nite set of frequencies. This frequency representation of dynamical systems
should be particularly useful for modeling linear systems disturbed by �generic�
noise processes such as Gaussian noise or white noise processes.

² Generalizing the model: circuit models. The models studied in this thesis implic-
itly assume that the controller�s state is not changed during the actuation process.
For future studies, it would be desirable to consider a more general setup which
includes any possible dynamical e¤ects that X or E can induce on C. One conve-
nient way of doing this is to model the dynamics of the systems involved in the
control process as a logical circuit made of wires, representing the states of the
systems, and gates which model the evolution of the states. Figure 5.1 displays a
few examples of such circuit models. The circuit of �gure 5.1a, for instance, can
be thought of as the equivalent of the open-loop dag of chapter 3, generalized in
�gure 5.1b to include possible e¤ects of X on C. Closed-loop control, on the other
hand, is represented in �gure 5.1c with its generalization in 5.1d.

Such a generalization of the control models is very important if one wants to
consider non-conventional types of controllers such as error-correcting codes or the
controller shown in �gure 5.1e. The circuit of this �gure models, in a very abstract
way, an open-loop control process similar to the spin-echo e¤ect which, basically,
undo the evolution of a combined system X +E by using the correlations between
X and E . (See [41] for references on the spin-echo e¤ect, and for an insightful
information-theoretic discussion of the phenomenon.) In the circuit, speci�cally,
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the bit of noise introduced through the cnot gate can be �erased� by reversing it
exactly using a To¤oli gate such that x = x© 1mod2 when c = e = 1. As such, C
must be considered as an open-loop controller since C = 1 with probability one, in
spite of the fact that the control process, as a whole, uses one bit of information!

² Quantum controllers. The circuits models presented in the previous paragraph is
of particular interest for the generalization of control theory to quantum systems
capable of existing in superpositions of quantum states [39, 45]. As a �rst guess, an
information-theoretic formalism based on circuits seems to be directly applicable
in the context of quantum mechanics, though a few questions remain open at this
moment. One of them is related to the fact that the quantum mutual information
of a bipartite quantum system XY can be larger than the quantum (von Neumann)
entropy of X or Y [15]. Evidently, this is forbidden for classical systems, and
the intriguing question then is: can this extra information be used to dissipate
the entropy of a system above the limit imposed by the closed-loop optimality
theorem? [66] Other related subjects might also be of interest: see, e.g., [16] for
an interesting information-theoretic perspective on classical and quantum error
correction, and [42] for an introduction to quantum gambling.
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