Convex invertible cones and Nevanlinna-Pick interpolation: the suboptimal case

Alma van der Merwe¹

University of the Witwatersrand

65th SAMS Congress 6-8 December 2022, Stellenbosch University

Classical Nevanlinna-Pick interpolation (Pick 1916, Nevanlinna 1929)

Given points $\lambda_1,\ldots,\lambda_n$ in the unit disc $\mathbb D$ (or right half plane Π_+) and values η_1,\ldots,η_n , find an analytic function f that maps $\mathbb D$ into $\overline{\mathbb D}$ (resp., Π_+ into $\overline{\Pi}_+$) so that $f(\lambda_k)=\eta_k$ for $k=1,\ldots,n$. There exists a solution iff the Pick matrix $\mathbb P$ is positive semidefinite, where $\mathbb P:=\left[\frac{1-\overline{\eta}_i\eta_j}{1-\overline{\lambda}_i\lambda_j}\right]_{i,j=1}^n$ for the unit disc case and $\mathbb P:=\left[\frac{\overline{\eta}_i+\eta_j}{\overline{\lambda}_i+\lambda_j}\right]_{i,j=1}^n$ for the right half plane case.

Classical Nevanlinna-Pick interpolation (Pick 1916, Nevanlinna 1929)

Given points $\lambda_1,\ldots,\lambda_n$ in the unit disc $\mathbb D$ (or right half plane Π_+) and values η_1,\ldots,η_n , find an analytic function f that maps $\mathbb D$ into $\overline{\mathbb D}$ (resp., Π_+ into $\overline{\Pi}_+$) so that $f(\lambda_k)=\eta_k$ for $k=1,\ldots,n$. There exists a solution iff the Pick matrix $\mathbb P$ is positive semidefinite, where $\mathbb P:=\left[\frac{1-\overline{\eta}_i\eta_j}{1-\overline{\lambda}_i\lambda_j}\right]_{i,j=1}^n$ for the unit disc case and $\mathbb P:=\left[\frac{\overline{\eta}_i+\eta_j}{\overline{\lambda}_i+\lambda_j}\right]_{i,j=1}^n$ for the right half plane case.

Consider the class \mathcal{PRO} of rational complex functions f for which

$$f\left(\Pi_{+}\right)\subseteq\overline{\Pi}_{+}\ \left(\mathsf{positive}\right),\ f(\mathbb{R})\subseteq\mathbb{R}\ \left(\mathsf{real}\right),\ -f(z)=\overline{f\left(-\overline{z}\right)}\ \left(\mathit{odd}\right).$$

Classical Nevanlinna-Pick interpolation (Pick 1916, Nevanlinna 1929)

Given points $\lambda_1,\ldots,\lambda_n$ in the unit disc $\mathbb D$ (or right half plane Π_+) and values η_1,\ldots,η_n , find an analytic function f that maps $\mathbb D$ into $\overline{\mathbb D}$ (resp., Π_+ into $\overline{\Pi}_+$) so that $f(\lambda_k)=\eta_k$ for $k=1,\ldots,n$. There exists a solution iff the Pick matrix $\mathbb P$ is positive semidefinite, where $\mathbb P:=\left[\frac{1-\overline{\eta}_i\eta_j}{1-\overline{\lambda}_i\lambda_j}\right]_{i,j=1}^n$ for the unit disc case and $\mathbb P:=\left[\frac{\overline{\eta}_i+\eta_j}{\overline{\lambda}_i+\lambda_j}\right]_{i,j=1}^n$ for the right half plane case.

Consider the class \mathcal{PRO} of rational complex functions f for which

$$f\left(\Pi_{+}\right)\subseteq\overline{\Pi}_{+} \text{ (positive)},\ f\left(\mathbb{R}\right)\subseteq\mathbb{R} \text{ (real)},\ -f(z)=\overline{f\left(-\overline{z}\right)} \text{ (odd)}.$$

Definition. A matrix $A \in \mathbb{F}^{n \times n}$ is called Lyapunov regular if the eigenvalues $\lambda_1, \dots, \lambda_n$ of A satisfy

$$\lambda_i + \overline{\lambda}_j \neq 0$$
 for all $i, j = 1, \dots, n$.

Classical Nevanlinna-Pick interpolation (Pick 1916, Nevanlinna 1929)

Given points $\lambda_1,\ldots,\lambda_n$ in the unit disc $\mathbb D$ (or right half plane Π_+) and values η_1,\ldots,η_n , find an analytic function f that maps $\mathbb D$ into $\overline{\mathbb D}$ (resp., Π_+ into $\overline{\Pi}_+$) so that $f(\lambda_k)=\eta_k$ for $k=1,\ldots,n$. There exists a solution iff the Pick matrix $\mathbb P$ is positive semidefinite, where $\mathbb P:=\left[\frac{1-\overline{\eta}_i\eta_j}{1-\overline{\lambda}_i\lambda_j}\right]_{i,j=1}^n$ for the unit disc case and $\mathbb P:=\left[\frac{\overline{\eta}_i+\eta_j}{\overline{\lambda}_i+\lambda_j}\right]_{i,j=1}^n$ for the right half plane case.

Consider the class \mathcal{PRO} of rational complex functions f for which

$$f\left(\Pi_{+}\right)\subseteq\overline{\Pi}_{+} \text{ (positive)}\,,\,\,f(\mathbb{R})\subseteq\mathbb{R} \text{ (real)}\,,\,-f(z)=\overline{f\left(-\overline{z}\right)} \text{ (odd)}\,.$$

Definition. A matrix $A \in \mathbb{F}^{n \times n}$ is called Lyapunov regular if the eigenvalues $\lambda_1, \dots, \lambda_n$ of A satisfy

$$\lambda_i + \overline{\lambda}_j \neq 0$$
 for all $i, j = 1, \dots, n$.

The Cohen-Lewkowicz Nevanlinna-Pick problem

Given $A, B \in \mathbb{R}^{n \times n}$ with A Lyapunov regular, when is there a $f \in \mathcal{PRO}$ s.t. f(A) = B? Classical Nevanlinna-Pick interpolation occurs when A and B are diagonal. Evaluating a (rational) function in a Jordan block $J_k(\lambda)$ corresponds to evaluating f and derivatives up to order k-1 in λ . So, an interpolation condition f(A) = B in matrix point A can combine derivative interpolation conditions at various points.

Definition. A subset $\mathcal C$ of a unital algebra $\mathfrak A$ is called a convex invertible cone (cic for short) if $\mathcal C$ is a convex cone that is closed under inversion. For $\mathcal A\subset \mathfrak A$, $\mathcal C(\mathcal A)$ denotes the cic generated by $\mathcal A$, written as $\mathcal C(a)$ if $\mathcal A=\{a\}$.

Definition. A subset $\mathcal C$ of a unital algebra $\mathfrak A$ is called a convex invertible cone (cic for short) if $\mathcal C$ is a convex cone that is closed under inversion. For $\mathcal A\subset \mathfrak A$, $\mathcal C(\mathcal A)$ denotes the cic generated by $\mathcal A$, written as $\mathcal C(a)$ if $\mathcal A=\{a\}$.

<u>Matrix cics</u>: Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ (we follow notation of $\mathbb{F}=\mathbb{C}$). Write \mathcal{H}_n for the Hermitian matrices and \mathcal{P}_n and $\overline{\mathcal{P}}_n$ for the positive definite and positive semidefinite matrices in $\mathbb{F}^{n\times n}$. Then:

- For $\mathcal{X} \subset \mathbb{F}^{n \times n}$, $\{\mathcal{X}\}'_{\mathbb{F}} := \{Y \in \mathbb{F}^{n \times n} \colon YX = XY, \ X \in \mathcal{X}\}$ is a **cic** in $\mathbb{F}^{n \times n}$.
- For $A \in \mathbb{F}^{n \times n}$ the non-strict and strict Lyapunov solutions of A:

$$\begin{split} \overline{\mathcal{H}}(A) &:= \{ H \in \mathcal{H}_n : HA + A^*H \in \overline{\mathcal{P}}_n \}, \\ \mathcal{H}(A) &:= \{ H \in \mathcal{H}_n : HA + A^*H \in \mathcal{P}_n \}; \end{split}$$

are **cic**s in $\mathbb{F}^{n \times n}$.

Definition. A subset $\mathcal C$ of a unital algebra $\mathfrak A$ is called a convex invertible cone (cic for short) if $\mathcal C$ is a convex cone that is closed under inversion. For $\mathcal A\subset \mathfrak A$, $\mathcal C(\mathcal A)$ denotes the cic generated by $\mathcal A$, written as $\mathcal C(a)$ if $\mathcal A=\{a\}$.

<u>Matrix cics</u>: Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ (we follow notation of $\mathbb{F}=\mathbb{C}$). Write \mathcal{H}_n for the Hermitian matrices and \mathcal{P}_n and $\overline{\mathcal{P}}_n$ for the positive definite and positive semidefinite matrices in $\mathbb{F}^{n\times n}$. Then:

- For $\mathcal{X} \subset \mathbb{F}^{n \times n}$, $\{\mathcal{X}\}_{\mathbb{F}}' := \{Y \in \mathbb{F}^{n \times n} \colon YX = XY, \ X \in \mathcal{X}\}$ is a **cic** in $\mathbb{F}^{n \times n}$.
- For $A \in \mathbb{F}^{n \times n}$ the non-strict and strict Lyapunov solutions of A:

$$\begin{split} \overline{\mathcal{H}}(A) &:= \{ H \in \mathcal{H}_n : HA + A^*H \in \overline{\mathcal{P}}_n \}, \\ \mathcal{H}(A) &:= \{ H \in \mathcal{H}_n : HA + A^*H \in \mathcal{P}_n \}; \end{split}$$

are **cic**s in $\mathbb{F}^{n\times n}$.

<u>Function cics</u>: \mathcal{PRO} is a **cic** in the vector space of real rational functions, singly generated by f(z) = z.

Definition. A subset $\mathcal C$ of a unital algebra $\mathfrak A$ is called a convex invertible cone (cic for short) if $\mathcal C$ is a convex cone that is closed under inversion. For $\mathcal A\subset \mathfrak A$, $\mathcal C(\mathcal A)$ denotes the cic generated by $\mathcal A$, written as $\mathcal C(a)$ if $\mathcal A=\{a\}$.

<u>Matrix cics</u>: Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ (we follow notation of $\mathbb{F}=\mathbb{C}$). Write \mathcal{H}_n for the Hermitian matrices and \mathcal{P}_n and $\overline{\mathcal{P}}_n$ for the positive definite and positive semidefinite matrices in $\mathbb{F}^{n\times n}$. Then:

- For $\mathcal{X} \subset \mathbb{F}^{n \times n}$, $\{\mathcal{X}\}'_{\mathbb{F}} := \{Y \in \mathbb{F}^{n \times n} \colon YX = XY, \ X \in \mathcal{X}\}$ is a **cic** in $\mathbb{F}^{n \times n}$.
- For $A \in \mathbb{F}^{n \times n}$ the non-strict and strict Lyapunov solutions of A:

$$\begin{split} \overline{\mathcal{H}}(A) &:= \{ H \in \mathcal{H}_n : HA + A^*H \in \overline{\mathcal{P}}_n \}, \\ \mathcal{H}(A) &:= \{ H \in \mathcal{H}_n : HA + A^*H \in \mathcal{P}_n \}; \end{split}$$

are **cic**s in $\mathbb{F}^{n\times n}$.

<u>Function cics:</u> \mathcal{PRO} is a **cic** in the vector space of real rational functions, singly generated by f(z) = z. Note also, \mathcal{PRO} -functions have poles and zeros only on $i\mathbb{R}$. **Corollary.** If $A \in \mathbb{F}^{n \times n}$ has no eigenvalues on $i\mathbb{R}$, then

$$C(A) = PRO(A) := \{f(A) : f \in PRO\}.$$

Definition. A subset $\mathcal C$ of a unital algebra $\mathfrak A$ is called a convex invertible cone (cic for short) if $\mathcal C$ is a convex cone that is closed under inversion. For $\mathcal A\subset \mathfrak A$, $\mathcal C(\mathcal A)$ denotes the cic generated by $\mathcal A$, written as $\mathcal C(a)$ if $\mathcal A=\{a\}$.

<u>Matrix cics</u>: Let $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ (we follow notation of $\mathbb{F}=\mathbb{C}$). Write \mathcal{H}_n for the Hermitian matrices and \mathcal{P}_n and $\overline{\mathcal{P}}_n$ for the positive definite and positive semidefinite matrices in $\mathbb{F}^{n\times n}$. Then:

- For $\mathcal{X} \subset \mathbb{F}^{n \times n}$, $\{\mathcal{X}\}'_{\mathbb{F}} := \{Y \in \mathbb{F}^{n \times n} \colon YX = XY, \ X \in \mathcal{X}\}$ is a **cic** in $\mathbb{F}^{n \times n}$.
- For $A \in \mathbb{F}^{n \times n}$ the non-strict and strict Lyapunov solutions of A:

$$\begin{split} \overline{\mathcal{H}}(A) &:= \{ H \in \mathcal{H}_n : HA + A^*H \in \overline{\mathcal{P}}_n \}, \\ \mathcal{H}(A) &:= \{ H \in \mathcal{H}_n : HA + A^*H \in \mathcal{P}_n \}; \end{split}$$

are **cic**s in $\mathbb{F}^{n\times n}$.

<u>Function cics:</u> \mathcal{PRO} is a **cic** in the vector space of real rational functions, singly generated by f(z) = z. Note also, \mathcal{PRO} -functions have poles and zeros only on $i\mathbb{R}$. **Corollary.** If $A \in \mathbb{F}^{n \times n}$ has no eigenvalues on $i\mathbb{R}$, then

$$C(A) = PRO(A) := \{ f(A) : f \in PRO \}.$$

Proposition. Let $A, B \in \mathbb{F}^{n \times n}$ with A no eigenvalues on $i\mathbb{R}$. Then f(A) = B for a function $f \in \mathcal{PRO}$ if and only if $B \in \mathcal{C}(A)$.

Definition. A subset \mathcal{C} of a unital algebra \mathfrak{A} is called a convex invertible cone (cic for short) if \mathcal{C} is a convex cone that is closed under inversion. For $\mathcal{A} \subset \mathfrak{A}$, $\mathcal{C}(\mathcal{A})$ denotes the **cic** generated by \mathcal{A} , written as $\mathcal{C}(a)$ if $\mathcal{A} = \{a\}$.

Matrix **cics**: Let $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$ (we follow notation of $\mathbb{F} = \mathbb{C}$). Write \mathcal{H}_n for the Hermitian matrices and \mathcal{P}_n and $\overline{\mathcal{P}}_n$ for the positive definite and positive semidefinite matrices in $\mathbb{F}^{n\times n}$. Then:

- For $\mathcal{X} \subset \mathbb{F}^{n \times n}$, $\{\mathcal{X}\}_{\mathbb{F}}' := \{Y \in \mathbb{F}^{n \times n} : YX = XY, X \in \mathcal{X}\}$ is a **cic** in $\mathbb{F}^{n \times n}$.
- For $A \in \mathbb{F}^{n \times n}$ the non-strict and strict Lyapunov solutions of A:

$$\begin{split} \overline{\mathcal{H}}(A) &:= \{ H \in \mathcal{H}_n : HA + A^*H \in \overline{\mathcal{P}}_n \}, \\ \mathcal{H}(A) &:= \{ H \in \mathcal{H}_n : HA + A^*H \in \mathcal{P}_n \}; \end{split}$$

are **cic**s in $\mathbb{F}^{n\times n}$.

Function cics: \mathcal{PRO} is a cic in the vector space of real rational functions, singly generated by f(z) = z. Note also, \mathcal{PRO} -functions have poles and zeros only on i \mathbb{R} . **Corollary.** If $A \in \mathbb{F}^{n \times n}$ has no eigenvalues on $i\mathbb{R}$, then

$$C(A) = PRO(A) := \{f(A) : f \in PRO\}.$$

Proposition. Let $A, B \in \mathbb{F}^{n \times n}$ with A no eigenvalues on $i\mathbb{R}$. Then f(A) = B for a function $f \in \mathcal{PRO}$ if and only if $B \in \mathcal{C}(A)$.

Question. How does one determine if $B \in \mathcal{C}(A)$? If $B \in \mathcal{C}(A)$, then $B \in \{A\}_{\mathbb{F}}''$.

Definition. For $A, B \in \mathbb{F}^{n \times n}$ we say B Lyapunov dominates A, denoted $A \preceq_{\mathcal{L}} B$, if each (non-strict) Lyapunov solution for A is a Lyapunov solution for B, i.e., $\overline{\mathcal{H}}(A) \subset \overline{\mathcal{H}}(B)$.

Definition. For $A, B \in \mathbb{F}^{n \times n}$ we say B Lyapunov dominates A, denoted $A \preceq_{\mathcal{L}} B$, if each (non-strict) Lyapunov solution for A is a Lyapunov solution for B, i.e., $\overline{\mathcal{H}}(A) \subset \overline{\mathcal{H}}(B)$.

Lemma. The set of matrices that Lyapunov dominates A:

$$C_{\mathcal{L}}(A) := \{ B \in \mathbb{F}^{n \times n} \colon A \leq_{\mathcal{L}} B \}$$

is a matrix **cic** in $\mathbb{F}^{n\times n}$. Hence $\mathcal{C}(A)\subset \{A\}_{\mathbb{F}}''\cap \mathcal{C}_{\mathcal{L}}(A)$.

Definition. For $A, B \in \mathbb{F}^{n \times n}$ we say B Lyapunov dominates A, denoted $A \leq_{\mathcal{L}} B$, if each (non-strict) Lyapunov solution for A is a Lyapunov solution for B, i.e., $\overline{\mathcal{H}}(A) \subset \overline{\mathcal{H}}(B)$.

Lemma. The set of matrices that Lyapunov dominates A:

$$\mathcal{C}_{\mathcal{L}}(A) := \{ B \in \mathbb{F}^{n \times n} \colon A \preceq_{\mathcal{L}} B \}$$

is a matrix **cic** in $\mathbb{F}^{n\times n}$. Hence $\mathcal{C}(A)\subset \{A\}_{\mathbb{F}}''\cap \mathcal{C}_{\mathcal{L}}(A)$.

Conjecture (Cohen-Lewkowicz '09). For $A \in \mathbb{R}^{n \times n}$ Lyapunov regular we have $\mathcal{C}(A) = \{A\}_{\mathbb{R}}'' \cap \mathcal{C}_{\mathcal{L}}(A)$.

Definition. For $A, B \in \mathbb{F}^{n \times n}$ we say B Lyapunov dominates A, denoted $A \leq_{\mathcal{L}} B$, if each (non-strict) Lyapunov solution for A is a Lyapunov solution for B, i.e., $\overline{\mathcal{H}}(A) \subset \overline{\mathcal{H}}(B)$.

Lemma. The set of matrices that Lyapunov dominates A:

$$C_{\mathcal{L}}(A) := \{ B \in \mathbb{F}^{n \times n} \colon A \preceq_{\mathcal{L}} B \}$$

is a matrix **cic** in $\mathbb{F}^{n\times n}$. Hence $\mathcal{C}(A)\subset \{A\}_{\mathbb{F}}''\cap \mathcal{C}_{\mathcal{L}}(A)$.

Conjecture (Cohen-Lewkowicz '09). For $A \in \mathbb{R}^{n \times n}$ Lyapunov regular we have $\mathcal{C}(A) = \{A\}_{\mathbb{R}}'' \cap \mathcal{C}_{\mathcal{L}}(A)$.

Definition. For a matrix $Y \in \mathbb{F}^{n \times n}$ we define the Lyapunov operator \mathcal{L}_Y as

$$\mathcal{L}_Y: \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}, \qquad \mathcal{L}_Y: X \mapsto XY + Y^*X.$$

Definition. For $A, B \in \mathbb{F}^{n \times n}$ we say B Lyapunov dominates A, denoted $A \preceq_{\mathcal{L}} B$, if each (non-strict) Lyapunov solution for A is a Lyapunov solution for B, i.e., $\overline{\mathcal{H}}(A) \subset \overline{\mathcal{H}}(B)$.

Lemma. The set of matrices that Lyapunov dominates A:

$$C_{\mathcal{L}}(A) := \{ B \in \mathbb{F}^{n \times n} \colon A \preceq_{\mathcal{L}} B \}$$

is a matrix **cic** in $\mathbb{F}^{n\times n}$. Hence $\mathcal{C}(A)\subset \{A\}''_{\mathbb{F}}\cap \mathcal{C}_{\mathcal{L}}(A)$.

Conjecture (Cohen-Lewkowicz '09). For $A \in \mathbb{R}^{n \times n}$ Lyapunov regular we have $\mathcal{C}(A) = \{A\}_{\mathbb{R}}'' \cap \mathcal{C}_{\mathcal{L}}(A)$.

Definition. For a matrix $Y \in \mathbb{F}^{n \times n}$ we define the Lyapunov operator \mathcal{L}_Y as

$$\mathcal{L}_Y: \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}, \qquad \mathcal{L}_Y: X \mapsto XY + Y^*X.$$

Lemma. For $Y \in \mathbb{F}^{n \times n}$, the Lyapunov operator \mathcal{L}_Y is a linear map so that $\mathcal{L}_Y(X^*) = \mathcal{L}_Y(X)^*$. Moreover, Y is Lyapunov regular iff \mathcal{L}_Y is bijective. In that case

$$\overline{\mathcal{H}}(Y) = \mathcal{L}_Y^{-1}(\overline{\mathcal{P}}_n).$$

Definition. For $A, B \in \mathbb{F}^{n \times n}$ we say B Lyapunov dominates A, denoted $A \leq_{\mathcal{L}} B$, if each (non-strict) Lyapunov solution for A is a Lyapunov solution for B, i.e., $\overline{\mathcal{H}}(A) \subset \overline{\mathcal{H}}(B)$.

Lemma. The set of matrices that Lyapunov dominates A:

$$C_{\mathcal{L}}(A) := \{ B \in \mathbb{F}^{n \times n} \colon A \preceq_{\mathcal{L}} B \}$$

is a matrix **cic** in $\mathbb{F}^{n\times n}$. Hence $\mathcal{C}(A)\subset \{A\}_{\mathbb{F}}''\cap \mathcal{C}_{\mathcal{L}}(A)$.

Conjecture (Cohen-Lewkowicz '09). For $A \in \mathbb{R}^{n \times n}$ Lyapunov regular we have $\mathcal{C}(A) = \{A\}_{\mathbb{R}}'' \cap \mathcal{C}_{\mathcal{L}}(A)$.

Definition. For a matrix $Y \in \mathbb{F}^{n \times n}$ we define the Lyapunov operator \mathcal{L}_Y as

$$\mathcal{L}_Y: \mathbb{F}^{n\times n} \to \mathbb{F}^{n\times n}, \qquad \mathcal{L}_Y: X \mapsto XY + Y^*X.$$

Lemma. For $Y \in \mathbb{F}^{n \times n}$, the Lyapunov operator \mathcal{L}_Y is a linear map so that $\mathcal{L}_Y(X^*) = \mathcal{L}_Y(X)^*$. Moreover, Y is Lyapunov regular iff \mathcal{L}_Y is bijective. In that case

$$\overline{\mathcal{H}}(Y) = \mathcal{L}_Y^{-1}(\overline{\mathcal{P}}_n).$$

Corollary. For $A, B \in \mathbb{F}^{n \times n}$ with A Lyapunov regular, we have

$$A \leq_{\mathcal{L}} B \iff \mathcal{L}_{A,B} := \mathcal{L}_{B} \circ \mathcal{L}_{A}^{-1} : \overline{\mathcal{P}}_{n} \to \overline{\mathcal{P}}_{n}.$$

Definition. For $A, B \in \mathbb{F}^{n \times n}$ we say B Lyapunov dominates A, denoted $A \leq_{\mathcal{L}} B$, if each (non-strict) Lyapunov solution for A is a Lyapunov solution for B, i.e., $\overline{\mathcal{H}}(A) \subset \overline{\mathcal{H}}(B)$.

Lemma. The set of matrices that Lyapunov dominates A:

$$C_{\mathcal{L}}(A) := \{ B \in \mathbb{F}^{n \times n} \colon A \preceq_{\mathcal{L}} B \}$$

is a matrix **cic** in $\mathbb{F}^{n\times n}$. Hence $\mathcal{C}(A)\subset \{A\}''_{\mathbb{F}}\cap \mathcal{C}_{\mathcal{L}}(A)$.

Conjecture (Cohen-Lewkowicz '09). For $A \in \mathbb{R}^{n \times n}$ Lyapunov regular we have $\mathcal{C}(A) = \{A\}_{\mathbb{R}}'' \cap \mathcal{C}_{\mathcal{L}}(A)$.

Definition. For a matrix $Y \in \mathbb{F}^{n \times n}$ we define the Lyapunov operator \mathcal{L}_Y as

$$\mathcal{L}_Y: \mathbb{F}^{n \times n} \to \mathbb{F}^{n \times n}, \qquad \mathcal{L}_Y: X \mapsto XY + Y^*X.$$

Lemma. For $Y \in \mathbb{F}^{n \times n}$, the Lyapunov operator \mathcal{L}_Y is a linear map so that $\mathcal{L}_Y(X^*) = \mathcal{L}_Y(X)^*$. Moreover, Y is Lyapunov regular iff \mathcal{L}_Y is bijective. In that case

$$\overline{\mathcal{H}}(Y) = \mathcal{L}_Y^{-1}(\overline{\mathcal{P}}_n).$$

Corollary. For $A, B \in \mathbb{F}^{n \times n}$ with A Lyapunov regular, we have

$$A \leq_{\mathcal{L}} B \iff \mathcal{L}_{A,B} := \mathcal{L}_B \circ \mathcal{L}_A^{-1} : \overline{\mathcal{P}}_n \to \overline{\mathcal{P}}_n.$$

So, B Lyapunov dominates A if and only if $\mathcal{L}_{A,B}$ is a positive matrix map.

Definition. For positive integers q and n, the linear matrix map

$$\mathcal{L}: \mathbb{F}^{q\times q} \to \mathbb{F}^{n\times n}$$

is said to be *-linear if $\mathcal{L}(X^*) = \mathcal{L}(X)^*$ for each $X \in \mathbb{F}^{q \times q}$.

Definition. For positive integers q and n, the linear matrix map

$$\mathcal{L}: \mathbb{F}^{q\times q} \to \mathbb{F}^{n\times n}$$

is said to be *-linear if $\mathcal{L}(X^*) = \mathcal{L}(X)^*$ for each $X \in \mathbb{F}^{q \times q}$.

 $\underline{\mathsf{Matrix}}$ representation 1: The Choi matrix $\mathbb L$ associated with $\mathcal L$ is given by

$$\mathbb{L} = \left[\mathbb{L}_{\mathit{ij}} \right] \in \mathbb{F}^{\mathit{nq} \times \mathit{nq}}, \quad \text{where} \quad \mathbb{L}_{\mathit{ij}} = \mathcal{L} \left(\mathcal{E}_{\mathit{ij}} \right) \in \mathbb{F}^{\mathit{n} \times \mathit{n}},$$

with $\mathcal{E}_{ij} := e_i e_j^T$ the standard basis elements in $\mathbb{F}^{q \times q}$.

Definition. For positive integers q and n, the linear matrix map

$$\mathcal{L}: \mathbb{F}^{q \times q} \to \mathbb{F}^{n \times n}$$

is said to be *-linear if $\mathcal{L}(X^*) = \mathcal{L}(X)^*$ for each $X \in \mathbb{F}^{q \times q}$.

 $\underline{\mathsf{Matrix}\ \mathsf{representation}\ 1\mathsf{:}\ \mathsf{The}\ \mathsf{Choi}\ \mathsf{matrix}\ \mathbb{L}\ \mathsf{associated}\ \mathsf{with}\ \mathcal{L}\ \mathsf{is}\ \mathsf{given}\ \mathsf{by}$

$$\mathbb{L} = \left[\mathbb{L}_{\mathit{ij}} \right] \in \mathbb{F}^{\mathit{nq} \times \mathit{nq}}, \quad \text{where} \quad \mathbb{L}_{\mathit{ij}} = \mathcal{L} \left(\mathcal{E}_{\mathit{ij}} \right) \in \mathbb{F}^{\mathit{n} \times \mathit{n}},$$

with $\mathcal{E}_{ij} := e_i e_i^T$ the standard basis elements in $\mathbb{F}^{q \times q}$.

Theorem. [R.D. Hill '73] A linear matrix map \mathcal{L} is *-linear iff \mathbb{L} is in \mathcal{H}_{nq} .

Definition. For positive integers q and n, the linear matrix map

$$\mathcal{L}: \mathbb{F}^{q \times q} \to \mathbb{F}^{n \times n}$$

is said to be *-linear if $\mathcal{L}(X^*) = \mathcal{L}(X)^*$ for each $X \in \mathbb{F}^{q \times q}$.

Matrix representation 1: The Choi matrix $\mathbb L$ associated with $\mathcal L$ is given by

$$\mathbb{L} = \left[\mathbb{L}_{\mathit{ij}} \right] \in \mathbb{F}^{\mathit{nq} \times \mathit{nq}}, \quad \text{where} \quad \mathbb{L}_{\mathit{ij}} = \mathcal{L} \left(\mathcal{E}_{\mathit{ij}} \right) \in \mathbb{F}^{\mathit{n} \times \mathit{n}},$$

with $\mathcal{E}_{ij} := e_i e_i^T$ the standard basis elements in $\mathbb{F}^{q \times q}$.

Theorem. [R.D. Hill '73] A linear matrix map \mathcal{L} is *-linear iff \mathbb{L} is in \mathcal{H}_{nq} .

Theorem. [Choi '75] A linear matrix map \mathcal{L} is completely positive iff \mathbb{L} is in $\overline{\mathcal{P}}_{nq}$.

Definition. For positive integers q and n, the linear matrix map

$$\mathcal{L}: \mathbb{F}^{q \times q} \to \mathbb{F}^{n \times n}$$

is said to be *-linear if $\mathcal{L}(X^*) = \mathcal{L}(X)^*$ for each $X \in \mathbb{F}^{q \times q}$.

Matrix representation 1: The Choi matrix $\mathbb L$ associated with $\mathcal L$ is given by

$$\mathbb{L} = \left[\mathbb{L}_{ij} \right] \in \mathbb{F}^{nq \times nq}, \quad \text{where} \quad \mathbb{L}_{ij} = \mathcal{L} \left(\mathcal{E}_{ij} \right) \in \mathbb{F}^{n \times n},$$

with $\mathcal{E}_{ij} := e_i e_i^T$ the standard basis elements in $\mathbb{F}^{q \times q}$.

Theorem. [R.D. Hill '73] A linear matrix map \mathcal{L} is *-linear iff \mathbb{L} is in \mathcal{H}_{nq} .

Theorem. [Choi '75] A linear matrix map $\mathcal L$ is completely positive iff $\mathbb L$ is in $\overline{\mathcal P}_{nq}$.

Proposition. [Klep et al. '19] A linear matrix map $\mathcal L$ is positive iff

$$(z \otimes x)^* \mathbb{L}(z \otimes x) \geq 0, \quad x \in \mathbb{F}^n, \ z \in \mathbb{F}^q.$$

(Here \otimes indicates the Kronecker product of vectors/matrices.)

Definition. For positive integers q and n, the linear matrix map

$$\mathcal{L}: \mathbb{F}^{q \times q} \to \mathbb{F}^{n \times n}$$

is said to be *-linear if $\mathcal{L}(X^*) = \mathcal{L}(X)^*$ for each $X \in \mathbb{F}^{q \times q}$.

Matrix representation 1: The Choi matrix $\mathbb L$ associated with $\mathcal L$ is given by

$$\mathbb{L} = \left[\mathbb{L}_{ij} \right] \in \mathbb{F}^{nq \times nq}, \quad \text{where} \quad \mathbb{L}_{ij} = \mathcal{L} \left(\mathcal{E}_{ij} \right) \in \mathbb{F}^{n \times n},$$

with $\mathcal{E}_{ii} := e_i e_i^T$ the standard basis elements in $\mathbb{F}^{q \times q}$.

Theorem. [R.D. Hill '73] A linear matrix map \mathcal{L} is *-linear iff \mathbb{L} is in \mathcal{H}_{nq} .

Theorem. [Choi '75] A linear matrix map $\mathcal L$ is completely positive iff $\mathbb L$ is in $\overline{\mathcal P}_{nq}$.

Proposition. [Klep et al. '19] A linear matrix map \mathcal{L} is positive iff

$$(z \otimes x)^* \mathbb{L}(z \otimes x) \geq 0, \quad x \in \mathbb{F}^n, \ z \in \mathbb{F}^q.$$

(Here \otimes indicates the Kronecker product of vectors/matrices.)

Matrix representation 2: The matricization of $\mathcal L$ is the matrix $L\in\mathbb F^{n^2 imes q^2}$ determined by

$$L: \mathbb{F}^{q^2} \to \mathbb{F}^{n^2}, \quad L(\text{vec}(V)) = \text{vec}(\mathcal{L}(V)), \quad V \in \mathbb{F}^{q \times q},$$

with vec the vectorization operator.

Minimal Hill representations

Theorem. [Hill 1973, Poluikis-Hill 1981] A linear matrix map $\mathcal{L}: \mathbb{F}^{q \times q} \to \mathbb{F}^{n \times n}$ is *-linear (resp. completely positive) if and only if there exists $\mathbb{H}_{kl} \in \mathbb{F}$ and $C_1, \ldots, C_m \in \mathbb{F}^{n \times q}$, that are linearly independent, such that \mathcal{L} is of the form

$$\mathcal{L}(V) = \sum_{k,l=1}^{m} \mathbb{H}_{kl} C_l V C_k^*, \quad V \in \mathbb{F}^{q \times q}$$

$$\tag{0.1}$$

and the matrix $\mathbb{H} = [\mathbb{H}_{kl}]_{k,l=1}^m \in \mathbb{F}^{m \times m}$ is in \mathcal{H}_m (resp. in $\overline{\mathcal{P}}_m$).

Minimal Hill representations

Theorem. [Hill 1973, Poluikis-Hill 1981] A linear matrix map $\mathcal{L}: \mathbb{F}^{q \times q} \to \mathbb{F}^{n \times n}$ is *-linear (resp. completely positive) if and only if there exists $\mathbb{H}_{kl} \in \mathbb{F}$ and $C_1, \ldots, C_m \in \mathbb{F}^{n \times q}$, that are linearly independent, such that \mathcal{L} is of the form

$$\mathcal{L}(V) = \sum_{k,l=1}^{m} \mathbb{H}_{kl} C_l V C_k^*, \quad V \in \mathbb{F}^{q \times q}$$

$$\tag{0.1}$$

and the matrix $\mathbb{H} = [\mathbb{H}_{kl}]_{k,l=1}^m \in \mathbb{F}^{m \times m}$ is in \mathcal{H}_m (resp. in $\overline{\mathcal{P}}_m$).

- \bullet We call (0.1) a minimal Hill representation of ${\mathcal L}$ and ${\mathbb H}$ its Hill matrix.
- ullet The matricization L and Choi matrix $\mathbb L$ of $\mathcal L$ take the form

$$L = \sum_{k,l=1}^{m} \mathbb{H}_{kl} \, \overline{C}_k \otimes C_l \quad \text{and} \quad \mathbb{L} = \widehat{C}^* \mathbb{H}^T \widehat{C},$$

where $\widehat{C}^* := [\text{vec}(C_1) \dots \text{vec}(C_m)] \in \mathbb{F}^{nq \times m}$ has full column rank. Furthermore, decomposing $L = [L_{ij}]$ with $L_{ij} \in \mathbb{F}^{n \times q}$ we have

$$\mathsf{span}\{C_1,\ldots,C_m\}=\mathsf{span}\{L_{ij}\colon i=1,\ldots,n,\,j=1,\ldots,q\}.$$

- We have $m = \operatorname{rank} \mathbb{L}$ and \mathbb{H} is invertible.
- Minimal Hill representations are unique up to a change of basis of \mathbb{F}^m .

Positivity implying complete positivity

Proposition. [Klep et al. 2019] The *-linear map $\mathcal{L}: \mathbb{F}^{q \times q} \to \mathbb{F}^{n \times n}$ is positive if and only if the Choi matrix \mathbb{L} of \mathcal{L} satisfies $(z \otimes x)^* \mathbb{L}(z \otimes x) > 0, \qquad x \in \mathbb{F}^n, z \in \mathbb{F}^q.$

Note that

$$(z \otimes x)^* \mathbb{L}(z \otimes x) = (z \otimes x)^* \widehat{C}^* \mathbb{H}^T \widehat{C}(z \otimes x), \qquad x \in \mathbb{F}^n, z \in \mathbb{F}^q.$$

Thus positivity of \mathcal{L} is equivalent to $y^*\mathbb{H}^T y \geq 0$ for all y from the set

$$\mathfrak{Y}_{\widehat{C}} := \left\{ y_{z,x} = \widehat{C}(z \otimes x) : x \in \mathbb{F}^n, z \in \mathbb{F}^q \right\}.$$

Whether a positive $\mathcal L$ is also completely positive thus depends on the set $\mathfrak Y_{\widehat{\mathcal C}}$ containing enough vectors to conclude $\mathbb H\in\overline{\mathcal P}_m$ from $y^*\mathbb H^Ty\ge 0$ for all $y\in\mathfrak Y_{\widehat{\mathcal C}}$.

7/14

Positivity implying complete positivity

Proposition. [Klep et al. 2019] The *-linear map $\mathcal{L}: \mathbb{F}^{q \times q} \to \mathbb{F}^{n \times n}$ is positive if and only if the Choi matrix \mathbb{L} of \mathcal{L} satisfies

$$(z \otimes x)^* \mathbb{L}(z \otimes x) \geq 0, \qquad x \in \mathbb{F}^n, \ z \in \mathbb{F}^q.$$

Note that

$$(z \otimes x)^* \mathbb{L}(z \otimes x) = (z \otimes x)^* \widehat{C}^* \mathbb{H}^T \widehat{C}(z \otimes x), \qquad x \in \mathbb{F}^n, z \in \mathbb{F}^q.$$

Thus positivity of \mathcal{L} is equivalent to $y^*\mathbb{H}^T y \geq 0$ for all y from the set

$$\mathfrak{Y}_{\widehat{C}} := \left\{ y_{z,x} = \widehat{C}(z \otimes x) : x \in \mathbb{F}^n, z \in \mathbb{F}^q \right\}.$$

Whether a positive \mathcal{L} is also completely positive thus depends on the set $\mathfrak{Y}_{\widehat{\mathcal{C}}}$ containing enough vectors to conclude $\mathbb{H} \in \overline{\mathcal{P}}_m$ from $y^*\mathbb{H}^T y \geq 0$ for all $y \in \mathfrak{Y}_{\widehat{\mathcal{C}}}$.

Some sufficient conditions

- (1) Yes, if $\mathfrak{Y}_{\widehat{C}} = \mathbb{F}^m$;
- (2) Yes, if there exists a $x \in \mathbb{F}^n$ so that $\widehat{C}(I_q \otimes x)$ has full row-rank;
- (3) Yes, if there exists a $z \in \mathbb{F}^q$ so that $\widehat{C}(z \otimes I_n)$ has full row-rank.

Note that the $\mathbf{1}^{\text{st}}$ is implied by the $\mathbf{2}^{\text{nd}}$ and $\mathbf{3}^{\text{rd}}$ condition since

$$\widehat{C}(z \otimes x) = \widehat{C}(I_q \otimes x)z = \widehat{C}(z \otimes I_n)x.$$

Theorem. Let $\mathcal{L}: \mathbb{F}^{q \times q} \to \mathbb{F}^{n \times n}$ be *-linear, with matricization $L = [L_{ij}]$ and Choi matrix \mathbb{L} . Set

$$\mathcal{W} := \mathsf{span}\{L_{ij} \colon i = 1, \ldots, n, j = 1, \ldots, q\}.$$

Then for any minimal Hill representation of \mathcal{L} , for \widehat{C} defined as before there exists a vector $z \in \mathbb{F}^q$ such that $\widehat{C}(z \otimes I_n)$ has full row-rank if and only if

(C1) For any linearly independent X_1,\ldots,X_k in $\mathcal{W},$ there exists a $v\in\mathbb{F}^q$ such that X_1v,\ldots,X_kv is linearly independent in \mathbb{F}^n .

Theorem. Let $\mathcal{L}: \mathbb{F}^{q \times q} \to \mathbb{F}^{n \times n}$ be *-linear, with matricization $L = [L_{ij}]$ and Choi matrix \mathbb{L} . Set

$$\mathcal{W} := \operatorname{\mathsf{span}}\{L_{ij} \colon i = 1, \dots, n, j = 1, \dots, q\}.$$

Then for any minimal Hill representation of \mathcal{L} , for \widehat{C} defined as before there exists a vector $z \in \mathbb{F}^q$ such that $\widehat{C}(z \otimes I_n)$ has full row-rank if and only if

(C1) For any linearly independent X_1, \ldots, X_k in \mathcal{W} , there exists a $v \in \mathbb{F}^q$ such that X_1v, \ldots, X_kv is linearly independent in \mathbb{F}^n .

Lemma. The subspaces of upper triangular and lower triangular Toeplitz matrices in $\mathbb{F}^{n\times n}$ satisfy condition (C1).

Theorem. Let $\mathcal{L}: \mathbb{F}^{q \times q} \to \mathbb{F}^{n \times n}$ be *-linear, with matricization $L = [L_{ij}]$ and Choi matrix \mathbb{L} . Set

$$\mathcal{W} := \operatorname{\mathsf{span}}\{L_{ij} \colon i = 1, \dots, n, j = 1, \dots, q\}.$$

Then for any minimal Hill representation of \mathcal{L} , for \widehat{C} defined as before there exists a vector $z \in \mathbb{F}^q$ such that $\widehat{C}(z \otimes I_n)$ has full row-rank if and only if

(C1) For any linearly independent X_1, \ldots, X_k in \mathcal{W} , there exists a $v \in \mathbb{F}^q$ such that X_1v, \ldots, X_kv is linearly independent in \mathbb{F}^n .

Lemma. The subspaces of upper triangular and lower triangular Toeplitz matrices in $\mathbb{F}^{n \times n}$ satisfy condition (C1).

Lemma. Let W be a subspace of $\mathbb{F}^{n\times q}$ that satisfies the condition (C1). Then:

- (i) \overline{W} also satisfies (C1);
- (ii) PWQ also satisfies (C1) for any invertible $P \in \mathbb{F}^{n \times n}$ and $Q \in \mathbb{F}^{q \times q}$;
- (iii) any subspace V of W satisfies (C1);
- (iv) if $\mathcal Z$ is a subspace of $\mathbb F^{n'\times q'}$ which satisfies (C1), then $\mathcal W\oplus\mathcal Z$ is a subspace in $\mathbb F^{(n+n')\times (q+q')}$ that satisfies (C1).

Theorem. Let $\mathcal{L}: \mathbb{F}^{q \times q} \to \mathbb{F}^{n \times n}$ be *-linear, with matricization $L = [L_{ij}]$ and Choi matrix \mathbb{L} . Set

$$\mathcal{W} := \operatorname{\mathsf{span}}\{L_{ij} \colon i = 1, \dots, n, j = 1, \dots, q\}.$$

Then for any minimal Hill representation of \mathcal{L} , for \widehat{C} defined as before there exists a vector $z \in \mathbb{F}^q$ such that $\widehat{C}(z \otimes I_n)$ has full row-rank if and only if

(C1) For any linearly independent X_1, \ldots, X_k in \mathcal{W} , there exists a $v \in \mathbb{F}^q$ such that X_1v, \ldots, X_kv is linearly independent in \mathbb{F}^n .

Lemma. The subspaces of upper triangular and lower triangular Toeplitz matrices in $\mathbb{F}^{n \times n}$ satisfy condition (C1).

Lemma. Let W be a subspace of $\mathbb{F}^{n\times q}$ that satisfies the condition (C1). Then:

- (i) $\overline{\mathcal{W}}$ also satisfies (C1);
- (ii) PWQ also satisfies (C1) for any invertible $P \in \mathbb{F}^{n \times n}$ and $Q \in \mathbb{F}^{q \times q}$;
- (iii) any subspace V of W satisfies (C1);
- (iv) if $\mathcal Z$ is a subspace of $\mathbb F^{n'\times q'}$ which satisfies (C1), then $\mathcal W\oplus\mathcal Z$ is a subspace in $\mathbb F^{(n+n')\times (q+q')}$ that satisfies (C1).

Proposition. For any matrix $T \in \mathbb{F}^{n \times n}$, $\{T\}_{\mathbb{F}}^{"}$ satisfies (C1).

Theorem. Let $\mathcal{L}: \mathbb{F}^{q \times q} \to \mathbb{F}^{n \times n}$ be *-linear, with matricization $L = [L_{ij}]$ and Choi matrix \mathbb{L} . Set

$$\mathcal{W} := \operatorname{\mathsf{span}}\{L_{ij} \colon i = 1, \dots, n, j = 1, \dots, q\}.$$

Then for any minimal Hill representation of \mathcal{L} , for \widehat{C} defined as before there exists a vector $z \in \mathbb{F}^q$ such that $\widehat{C}(z \otimes I_n)$ has full row-rank if and only if

(C1) For any linearly independent X_1, \ldots, X_k in \mathcal{W} , there exists a $v \in \mathbb{F}^q$ such that X_1v, \ldots, X_kv is linearly independent in \mathbb{F}^n .

Lemma. The subspaces of upper triangular and lower triangular Toeplitz matrices in $\mathbb{F}^{n \times n}$ satisfy condition (C1).

Lemma. Let W be a subspace of $\mathbb{F}^{n\times q}$ that satisfies the condition (C1). Then:

- (i) \overline{W} also satisfies (C1);
- (ii) PWQ also satisfies (C1) for any invertible $P \in \mathbb{F}^{n \times n}$ and $Q \in \mathbb{F}^{q \times q}$;
- (iii) any subspace V of W satisfies (C1);
- (iv) if $\mathcal Z$ is a subspace of $\mathbb F^{n'\times q'}$ which satisfies (C1), then $\mathcal W\oplus\mathcal Z$ is a subspace in $\mathbb F^{(n+n')\times (q+q')}$ that satisfies (C1).

Theorem. Let $\mathcal{L}: \mathbb{F}^{q \times q} \to \mathbb{F}^{n \times n}$ be *-linear, with matricization L. If there exists a matrix $C \in \mathbb{F}^{n \times n}$ such that $L \in \overline{\{C\}_{\mathbb{F}}^{\prime\prime}} \otimes \{C\}_{\mathbb{F}}^{\prime\prime}$, then positivity of \mathcal{L} and complete positivity of \mathcal{L} coincide.

The Lyapunov operator \mathcal{L}_Y for $Y \in \mathbb{F}^{n \times n}$, is *-linear and has matricization L_Y given by

$$L_Y = Y^T \otimes I_n + I_n \otimes Y^*.$$

The Lyapunov operator \mathcal{L}_Y for $Y \in \mathbb{F}^{n \times n}$, is *-linear and has matricization L_Y given by

$$L_Y = Y^T \otimes I_n + I_n \otimes Y^*.$$

Therefore, for $A,B\in\mathbb{F}^{n\times n}$ with A Lyapunov regular and $B\in\{A\}_{\mathbb{F}}''$, follows

$$L_A,L_B\in\overline{\{A^*\}_{\mathbb{F}}''}\otimes\{A^*\}_{\mathbb{F}}'' \text{ and hence } L_{A,B}=L_BL_A^{-1}\in\overline{\{A^*\}_{\mathbb{F}}''}\otimes\{A^*\}_{\mathbb{F}}'',$$

with $L_{A,B}$ the matricization of $\mathcal{L}_{A,B}$.

The Lyapunov operator \mathcal{L}_Y for $Y \in \mathbb{F}^{n \times n}$, is *-linear and has matricization L_Y given by

$$L_Y = Y^T \otimes I_n + I_n \otimes Y^*.$$

Therefore, for $A,B\in\mathbb{F}^{n\times n}$ with A Lyapunov regular and $B\in\{A\}_{\mathbb{F}}''$, follows

$$L_A, L_B \in \overline{\{A^*\}_{\mathbb{F}}''} \otimes \{A^*\}_{\mathbb{F}}'' \text{ and hence } L_{A,B} = L_B L_A^{-1} \in \overline{\{A^*\}_{\mathbb{F}}''} \otimes \{A^*\}_{\mathbb{F}}'',$$

with $L_{A,B}$ the matricization of $\mathcal{L}_{A,B}$. Furthermore, for $L_{A,B} = [L_{ij}]$ each $L_{ij} \in \{A^*\}_{\mathbb{F}}^{"}$, so for any minimal Hill representation $\mathcal{L}_{A,B}(V) = \sum_{k,l=1}^{m} \mathbb{H}_{kl} \ C_l V C_k^*, \quad V \in \mathbb{F}^{n \times n}$, with matricization $L = \sum_{k,l=1}^{m} \mathbb{H}_{kl} \ \overline{C}_k \otimes C_l$, we have

$$\mathsf{span}\{\mathit{C}_1,\ldots,\mathit{C}_m\} = \mathsf{span}\{\mathit{L}_{ij}\} \subset \{\mathit{A}^*\}''_{\mathbb{F}}.$$

The Lyapunov operator \mathcal{L}_Y for $Y \in \mathbb{F}^{n \times n}$, is *-linear and has matricization L_Y given by

$$L_Y = Y^T \otimes I_n + I_n \otimes Y^*.$$

Therefore, for $A,B\in\mathbb{F}^{n\times n}$ with A Lyapunov regular and $B\in\{A\}_{\mathbb{F}}''$, follows

$$L_A, L_B \in \overline{\{A^*\}_{\mathbb{F}}''} \otimes \{A^*\}_{\mathbb{F}}'' \text{ and hence } L_{A,B} = L_B L_A^{-1} \in \overline{\{A^*\}_{\mathbb{F}}''} \otimes \{A^*\}_{\mathbb{F}}'',$$

with $L_{A,B}$ the matricization of $\mathcal{L}_{A,B}$. Furthermore, for $L_{A,B} = [L_{ij}]$ each $L_{ij} \in \{A^*\}_{\mathbb{F}}^{"}$, so for any minimal Hill representation $\mathcal{L}_{A,B}(V) = \sum_{k,l=1}^{m} \mathbb{H}_{kl} \ C_l V C_k^*, \quad V \in \mathbb{F}^{n \times n}$, with matricization $L = \sum_{k,l=1}^{m} \mathbb{H}_{kl} \ \overline{C}_k \otimes C_l$, we have

$$\mathsf{span}\{C_1,\ldots,C_m\}=\mathsf{span}\{L_{ij}\}\subset\{A^*\}_{\mathbb{F}}''.$$

We call the NP problem suboptimal if the inclusion is an equality, equivalently,

$$\operatorname{\mathsf{rank}} \mathbb{L}_{A,B} = \dim\{A\}_{\mathbb{F}}''.$$

The Lyapunov operator \mathcal{L}_Y for $Y \in \mathbb{F}^{n \times n}$, is *-linear and has matricization L_Y given by

$$L_Y = Y^T \otimes I_n + I_n \otimes Y^*.$$

Therefore, for $A,B\in\mathbb{F}^{n\times n}$ with A Lyapunov regular and $B\in\{A\}_{\mathbb{F}}''$, follows

$$L_A, L_B \in \overline{\{A^*\}_{\mathbb{F}}''} \otimes \{A^*\}_{\mathbb{F}}'' \text{ and hence } L_{A,B} = L_B L_A^{-1} \in \overline{\{A^*\}_{\mathbb{F}}''} \otimes \{A^*\}_{\mathbb{F}}'',$$

with $L_{A,B}$ the matricization of $\mathcal{L}_{A,B}$. Furthermore, for $L_{A,B} = [L_{ij}]$ each $L_{ij} \in \{A^*\}_{\mathbb{F}}^{n'}$, so for any minimal Hill representation $\mathcal{L}_{A,B}(V) = \sum_{k,l=1}^m \mathbb{H}_{kl} \ C_l V C_k^*$, $V \in \mathbb{F}^{n \times n}$, with matricization $L = \sum_{k,l=1}^m \mathbb{H}_{kl} \ \overline{C}_k \otimes C_l$, we have

$$\mathsf{span}\{C_1,\ldots,C_m\}=\mathsf{span}\{L_{ij}\}\subset\{A^*\}_{\mathbb{F}}''.$$

We call the NP problem suboptimal if the inclusion is an equality, equivalently,

$$\operatorname{\mathsf{rank}} \mathbb{L}_{A,B} = \dim\{A\}_{\mathbb{F}}''.$$

Theorem. Let $A, B \in \mathbb{F}^{n \times n}$ with A Lyapunov regular and $B \in \{A\}_{\mathbb{F}}^{n'}$. Then $L_{A,B} \in \overline{\{A^*\}_{\mathbb{F}}^{n'}} \otimes \{A^*\}_{\mathbb{F}}^{n'}$, and thus $\mathcal{L}_{A,B}$ is positive if and only if $\mathcal{L}_{A,B}$ is completely positive (i.e., iff $\mathbb{H} \in \mathcal{P}_m$ for any Hill matrix \mathbb{H} of $\mathcal{L}_{A,B}$).

The Lyapunov operator \mathcal{L}_Y for $Y \in \mathbb{F}^{n \times n}$, is *-linear and has matricization L_Y given by

$$L_Y = Y^T \otimes I_n + I_n \otimes Y^*.$$

Therefore, for $A,B\in\mathbb{F}^{n\times n}$ with A Lyapunov regular and $B\in\{A\}_{\mathbb{F}}''$, follows

$$L_A, L_B \in \overline{\{A^*\}_{\mathbb{F}}''} \otimes \{A^*\}_{\mathbb{F}}'' \ \ \text{and hence} \ \ L_{A,B} = L_B L_A^{-1} \in \overline{\{A^*\}_{\mathbb{F}}''} \otimes \{A^*\}_{\mathbb{F}}'',$$

with $L_{A,B}$ the matricization of $\mathcal{L}_{A,B}$. Furthermore, for $L_{A,B} = [L_{ij}]$ each $L_{ij} \in \{A^*\}_{\mathbb{F}}^{"}$, so for any minimal Hill representation $\mathcal{L}_{A,B}(V) = \sum_{k,l=1}^{m} \mathbb{H}_{kl} \ C_l V C_k^*, \quad V \in \mathbb{F}^{n \times n}$, with matricization $L = \sum_{k,l=1}^{m} \mathbb{H}_{kl} \ \overline{C}_k \otimes C_l$, we have

$$\mathsf{span}\{C_1,\ldots,C_m\}=\mathsf{span}\{L_{ij}\}\subset\{A^*\}_{\mathbb{F}}''.$$

We call the NP problem suboptimal if the inclusion is an equality, equivalently,

$$\operatorname{rank} \mathbb{L}_{A,B} = \dim \{A\}_{\mathbb{F}}''.$$

Theorem. Let $A, B \in \mathbb{F}^{n \times n}$ with A Lyapunov regular and $B \in \{A\}_{\mathbb{F}}^{n}$. Then $L_{A,B} \in \overline{\{A^*\}_{\mathbb{F}}^{n'}} \otimes \{A^*\}_{\mathbb{F}}^{n'}$, and thus $\mathcal{L}_{A,B}$ is positive if and only if $\mathcal{L}_{A,B}$ is completely positive (i.e., iff $\mathbb{H} \in \mathcal{P}_m$ for any Hill matrix \mathbb{H} of $\mathcal{L}_{A,B}$).

Conclusion

For $A,B\in\mathbb{F}^{n\times n}$ with A Lyapunov regular and $B\in\{A\}_{\mathbb{F}}^{n\prime}$, whether B Lyapunov dominates A can be verified by checking positive definiteness of matrix \mathbb{H} that can be constructed concretely from A and B.

Let $A \in \mathbb{F}^{n \times n}$ be Lyapunov regular and $B \in \{A\}_{\mathbb{F}}^{n}$, and determine a minimal Hill representation of $\mathcal{L}_{A,B} = \mathcal{L}_{B} \circ \mathcal{L}_{a}^{-1}$:

$$\mathcal{L}_{A,B}(V) = \sum_{k,l=1}^{m} \mathbb{H}_{kl} C_k V C_l^* = \mathbf{C}^* (\mathbb{H} \otimes V) \mathbf{C}, \quad V \in \mathbb{F}^{n \times n},$$

with
$$\mathbf{C}^* = \begin{bmatrix} C_1 & \cdots & C_m \end{bmatrix}$$
.

Let $A \in \mathbb{F}^{n \times n}$ be Lyapunov regular and $B \in \{A\}_{\mathbb{F}}^{"}$, and determine a minimal Hill representation of $\mathcal{L}_{A,B} = \mathcal{L}_{B} \circ \mathcal{L}_{A}^{-1}$:

$$\mathcal{L}_{A,B}(V) = \sum_{k,l=1}^m \mathbb{H}_{kl} C_k V C_l^* = \mathbf{C}^* (\mathbb{H} \otimes V) \mathbf{C}, \quad V \in \mathbb{F}^{n \times n},$$

with $\mathbf{C}^* = \begin{bmatrix} C_1 & \cdots & C_m \end{bmatrix}$. Because of minimality, $\mathbb H$ is unique up to a transformation of the basis of $\mathbb F^m$, so in this case we will talk about *the* Hill-Pick matrix associated with (A,B) and denote it as $\mathbb H_{A,B}$.

Let $A \in \mathbb{F}^{n \times n}$ be Lyapunov regular and $B \in \{A\}_{\mathbb{F}}^{"}$, and determine a minimal Hill representation of $\mathcal{L}_{A,B} = \mathcal{L}_{B} \circ \mathcal{L}_{A}^{-1}$:

$$\mathcal{L}_{A,B}(V) = \sum_{k,l=1}^{m} \mathbb{H}_{kl} C_k V C_l^* = \textbf{C}^* (\mathbb{H} \otimes V) \textbf{C}, \quad V \in \mathbb{F}^{n \times n},$$

with $\mathbf{C}^* = \begin{bmatrix} C_1 & \cdots & C_m \end{bmatrix}$. Because of minimality, $\mathbb H$ is unique up to a transformation of the basis of $\mathbb F^m$, so in this case we will talk about *the* Hill-Pick matrix associated with (A,B) and denote it as $\mathbb H_{A,B}$.

Recall that the NP problem for (A, B) is called suboptimal if

$$\operatorname{\mathsf{rank}} \mathbb{H}_{A,B} = \operatorname{\mathsf{rank}} \mathbb{L}_{A,B} = \dim \{A\}_{\mathbb{F}}''.$$

Theorem. Let $A \in \mathbb{R}^{n \times n}$ be Lyapunov regular and $B \in \{A\}_{\mathbb{R}}^{n'}$. Assume that rank $\mathbb{H}_{A,B} = \dim\{A\}_{\mathbb{R}}^{n'}$. Then the following statements are equivalent:

- (i) f(A) = B for a function $f \in \mathcal{PRO}$;
- (ii) $B \in C(A)$;
- (iii) $\mathcal{L}_{A,B}$ is a positive linear map (i.e., $A \leq_{\mathcal{L}} B$);
- (iv) $\mathcal{L}_{A,B}$ is a completely positive linear map;
- (v) $\mathbb{H}_{A,B}$ is a positive definite matrix.

Let $A \in \mathbb{F}^{n \times n}$ be Lyapunov regular and $B \in \{A\}_{\mathbb{F}}^{n'}$, and determine a minimal Hill representation of $\mathcal{L}_{A,B} = \mathcal{L}_{B} \circ \mathcal{L}_{A}^{-1}$:

$$\mathcal{L}_{A,B}(V) = \sum_{k,l=1}^{m} \mathbb{H}_{kl} C_k V C_l^* = \mathbf{C}^* (\mathbb{H} \otimes V) \mathbf{C}, \quad V \in \mathbb{F}^{n \times n},$$

with $\mathbf{C}^* = \begin{bmatrix} C_1 & \cdots & C_m \end{bmatrix}$. Because of minimality, $\mathbb H$ is unique up to a transformation of the basis of $\mathbb F^m$, so in this case we will talk about *the* Hill-Pick matrix associated with (A,B) and denote it as $\mathbb H_{A,B}$.

Recall that the NP problem for (A, B) is called suboptimal if

$$\operatorname{\mathsf{rank}} \mathbb{H}_{A,B} = \operatorname{\mathsf{rank}} \mathbb{L}_{A,B} = \dim \{A\}_{\mathbb{F}}''.$$

Theorem. Let $A \in \mathbb{R}^{n \times n}$ be Lyapunov regular and $B \in \{A\}_{\mathbb{R}}^n$. Assume that rank $\mathbb{H}_{A,B} = \dim\{A\}_{\mathbb{R}}^n$. Then the following statements are equivalent:

- (i) f(A) = B for a function $f \in \mathcal{PRO}$;
- (ii) $B \in C(A)$;
- (iii) $\mathcal{L}_{A,B}$ is a positive linear map (i.e., $A \leq_{\mathcal{L}} B$);
- (iv) $\mathcal{L}_{A,B}$ is a completely positive linear map;
- (v) $\mathbb{H}_{A,B}$ is a positive definite matrix.

We know: $(i) \Leftrightarrow (ii) \Rightarrow (iii) \Leftrightarrow (iv) \Leftrightarrow (v)$. To do: $(v) \Rightarrow (i)$

A skew-Hermitian Douglas lemma

For $A,B\in\mathbb{F}^{n\times n}$ with A Lyapunov regular and $X\in\mathbb{F}^{n\times n}$:

$$XB + B^*X = \mathcal{L}_B(X) = \mathcal{L}_B\mathcal{L}_A^{-1}(\mathcal{L}_A(X)) = \mathbf{C}^*\left(\mathbb{H}_{A,B} \otimes XA\right)\mathbf{C} + \mathbf{C}^*\left(\mathbb{H}_{A,B} \otimes A^*X\right)\mathbf{C}.$$

Now assume $\mathbb{H}_{A,B}\in\mathcal{P}_m$ and factor $\mathbb{H}_{A,B}=P^*P$ for $P\in\mathbb{F}^{m\times m}$ invertible. Set

$$L_R := \left[\begin{smallmatrix} R \\ (P \otimes R) \mathbf{C} \end{smallmatrix} \right] \text{ and } M_R := \left[\begin{smallmatrix} RB \\ -(P \otimes RA) \mathbf{C} \end{smallmatrix} \right], \ R \in \mathbb{F}^{n \times n}.$$

In the above identity take $X=R'^*R$, then we obtain $M_{R'}^*L_R=-L_{R'}^*M_R$. For any finite collection $\mathbf{R}=\{R_1,\ldots,R_k\}\subset\mathbb{F}^{n\times n}$ set

$$L_{\mathbf{R}} = \begin{bmatrix} L_{R_1} & \cdots & L_{R_k} \end{bmatrix}$$
 and $M_{\mathbf{R}} = \begin{bmatrix} M_{R_1} & \cdots & M_{R_k} \end{bmatrix}$.

Since $M_{R'}^*L_R=-L_{R'}^*M_R$ for all $R,R'\in\mathbb{F}^{n imes n}$, we also have

$$M_{\mathsf{R}}^* L_{\mathsf{R}} = -L_{\mathsf{R}}^* M_{\mathsf{R}}$$
 for any finite $\mathsf{R} \subset \mathbb{F}^{n \times n}$.

Proposition. Let $A, B \in \mathbb{F}^{n \times n}$ with A Lyapunov regular and $B \in \mathcal{C}_{\mathcal{L}}(A) \bigcap \{A\}_{\mathbb{F}}^{n}$. Then there exists a matrix $\widehat{S} \in \mathbb{F}^{(1+m)n \times (1+m)n}$ so that

 $P_1: \widehat{S}L_R = M_R \text{ for each } R \in \mathbb{F}^{n \times n} \iff P_2: \operatorname{Ker} L_R \subset \operatorname{Ker} M_R \text{ for any finite } \mathbf{R} \subset \mathbb{F}^{n \times n}.$

Moreover, if $\widehat{S} \in \mathbb{F}^{(1+m)n \times (1+m)n}$ satisfying P_1 exists, then WLOG

$$\widehat{S} = S \otimes I_n$$
 for $-S^* = S \in \mathbb{F}^{(1+m) \times (1+m)}$.

Furthermore, it suffices to check P_2 for a single $\mathbf{R} \subset \mathbb{F}^{n \times n}$ with the property that

Why the skew-Hermitian Douglas lemma applies

Lemma. Let $A, B \in \mathbb{F}^{n \times n}$ with A Lyapunov regular and $B \in \mathcal{C}_{\mathcal{L}}(A) \bigcap \{A\}_{\mathbb{F}}''$. Assume that the matrices $C_1, \ldots, C_m \in \{A^*\}_{\mathbb{F}}''$ in the minimal Hill representation of $\mathcal{L}_{A,B}$ are such that

$$\mathsf{span}\{\mathit{C}_1,\ldots,\mathit{C}_m,\mathit{I}_n\}=\{\mathit{A}^*\}_{\mathbb{F}}''.$$

Then $\operatorname{Ker} L_R \subset \operatorname{Ker} M_R$ for all finite collections $R \subset \mathbb{F}^{n \times n}$. In particular, this occurs in the suboptimal case.

Proof for $\mathbf{R} = \{R\}$

To show: $\operatorname{Ker} L_R \subset \operatorname{Ker} M_R$. Since $L_R = \left[\begin{smallmatrix} R \\ (P \otimes R) \mathbf{C} \end{smallmatrix} \right]$ and $M_R = \left[\begin{smallmatrix} RB \\ -(P \otimes RA) \mathbf{C} \end{smallmatrix} \right]$ and P is invertible, $x \in \operatorname{Ker} L_R$ iff

$$Rx = 0, \quad RC_j^*x = 0, \quad j = 1, \dots, m.$$

Then

$$RTx = 0$$
 for all $T \in \text{span}\{C_1^*, \dots, C_m^*, I_n\} = \{A\}_{\mathbb{F}}''$.

Since $\{A\}''_{\mathbb{F}}$ is an algebra and $B, C_1^*, \ldots, C_m^* \in \{A\}''_{\mathbb{F}}$ also

$$RBx = 0$$
, $RAC_{j}^{*}x = 0$, $j = 1, ..., m$,

from which $L_R x = 0$ follows.

Construction of solutions

Lemma. Let $A, B \in \mathbb{R}^{n \times n}$ with A Lyapunov regular and $B \in \mathcal{C}_{\mathcal{L}}(A) \cap \{A\}_{\mathbb{R}}^{n}$. Assume that there exists a matrix $S \in \mathbb{R}^{(1+m) \times (1+m)}$ so that

$$(S \otimes I_n)L_R = M_R, \ R \in \mathbb{R}^{n \times n}, \ \text{and} \ S^T = -S.$$

Decompose S as

$$S = \begin{bmatrix} 0 & \ell \\ -\ell^T & -M \end{bmatrix} \quad \text{for} \quad M = -M^T \in \mathbb{R}^{m \times m}, \quad \ell \in \mathbb{R}^{1 \times m}$$

and set

$$f(z) = \ell(zI_m - M)^{-1}\ell^T.$$

Then $f \in \mathcal{PRO}$ and f(A) = B.

Sketch of proof. Restrict to $R = I_n$ and solve in $(S \otimes I_n)L_{I_n} = M_{I_n}$:

$$B = (\ell \otimes I_n) (P \otimes I_n) \mathbf{C}$$
$$(I_m \otimes A - M \otimes I_n) (P \otimes I_n) \mathbf{C} = (\ell^T \otimes I_n).$$

Further, $(I_m \otimes A - M \otimes I_n)$ is invertible and thus

$$B = (\ell \otimes I_n) (I_m \otimes A - M \otimes I_n)^{-1} (\ell^T \otimes I_n) = f(A).$$

That $f \in \mathcal{PRO}$ follows from basic realization theory.

December 6, 2022

Thank you.