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Nevanlinna-Pick interpolation

Classical Nevanlinna-Pick interpolation (Pick 1916, Nevanlinna 1929)
Given points λ1, . . . , λn in the unit disc D (or right half plane Π+) and values η1, . . . , ηn,
find an analytic function f that maps D into D (resp., Π+ into Π+) so that f (λk) = ηk
for k = 1, . . . , n. There exists a solution iff the Pick matrix P is positive semidefinite,
where P :=

[
1−ηi ηj
1−λi λj

]n

i,j=1
for the unit disc case and P :=

[
ηi +ηj
λi +λj

]n

i,j=1
for the right half

plane case.

Consider the class PRO of rational complex functions f for which
f (Π+) ⊆ Π+ (positive) , f (R) ⊆ R (real) , −f (z) = f (−z) (odd) .

Definition. A matrix A ∈ Fn×n is called Lyapunov regular if the eigenvalues λ1, . . . , λn
of A satisfy

λi + λj ̸= 0 for all i , j = 1, . . . , n.

The Cohen-Lewkowicz Nevanlinna-Pick problem
Given A, B ∈ Rn×n with A Lyapunov regular, when is there a f ∈ PRO s.t. f (A) = B?
Classical Nevanlinna-Pick interpolation occurs when A and B are diagonal. Evaluating a
(rational) function in a Jordan block Jk(λ) corresponds to evaluating f and derivatives up
to order k − 1 in λ. So, an interpolation condition f (A) = B in matrix point A can
combine derivative interpolation conditions at various points.
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Convex invertible cones

Definition. A subset C of a unital algebra A is called a convex invertible cone (cic for
short) if C is a convex cone that is closed under inversion. For A ⊂ A, C(A) denotes the
cic generated by A, written as C(a) if A = {a}.

Matrix cics: Let F = R or F = C (we follow notation of F = C). Write Hn for the
Hermitian matrices and Pn and Pn for the positive definite and positive semidefinite
matrices in Fn×n. Then:

• For X ⊂ Fn×n, {X }′
F := {Y ∈ Fn×n : YX = XY , X ∈ X } is a cic in Fn×n.

• For A ∈ Fn×n the non-strict and strict Lyapunov solutions of A:
H(A) := {H ∈ Hn : HA + A∗H ∈ Pn},

H(A) := {H ∈ Hn : HA + A∗H ∈ Pn};
are cics in Fn×n.

Function cics: PRO is a cic in the vector space of real rational functions, singly
generated by f (z) = z. Note also, PRO-functions have poles and zeros only on iR.
Corollary. If A ∈ Fn×n has no eigenvalues on iR, then

C(A) = PRO(A) := {f (A) : f ∈ PRO}.

Proposition. Let A, B ∈ Fn×n with A no eigenvalues on iR. Then f (A) = B for a
function f ∈ PRO if and only if B ∈ C(A).
Question. How does one determine if B ∈ C(A)? If B ∈ C(A), then B ∈ {A}′′

F .
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The Lyapunov order and operator

Definition. For A, B ∈ Fn×n we say B Lyapunov dominates A, denoted A ⪯L B, if each
(non-strict) Lyapunov solution for A is a Lyapunov solution for B, i.e., H(A) ⊂ H(B).

Lemma. The set of matrices that Lyapunov dominates A:
CL(A) := {B ∈ Fn×n : A ⪯L B}

is a matrix cic in Fn×n. Hence C(A) ⊂ {A}′′
F ∩ CL(A).

Conjecture (Cohen-Lewkowicz ‘09). For A ∈ Rn×n Lyapunov regular we have
C(A) = {A}′′

R ∩ CL(A).

Definition. For a matrix Y ∈ Fn×n we define the Lyapunov operator LY as
LY : Fn×n → Fn×n, LY : X 7→ XY + Y ∗X .

Lemma. For Y ∈ Fn×n, the Lyapunov operator LY is a linear map so that
LY (X ∗) = LY (X)∗. Moreover, Y is Lyapunov regular iff LY is bijective. In that case

H(Y ) = L−1
Y (Pn).

Corollary. For A, B ∈ Fn×n with A Lyapunov regular, we have
A ⪯L B ⇐⇒ LA,B := LB ◦ L−1

A : Pn → Pn.

So, B Lyapunov dominates A if and only if LA,B is a positive matrix map.
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Positivity and complete positivity of linear matrix maps
Definition. For positive integers q and n, the linear matrix map

L : Fq×q → Fn×n

is said to be ∗-linear if L(X ∗) = L(X)∗ for each X ∈ Fq×q.

Matrix representation 1: The Choi matrix L associated with L is given by

L = [Lij ] ∈ Fnq×nq, where Lij = L (Eij) ∈ Fn×n,

with Eij := eieT
j the standard basis elements in Fq×q.

Theorem. [R.D. Hill ’73] A linear matrix map L is ∗-linear iff L is in Hnq.

Theorem. [Choi ’75] A linear matrix map L is completely positive iff L is in Pnq.

Proposition. [Klep et al. ’19] A linear matrix map L is positive iff

(z ⊗ x)∗L(z ⊗ x) ≥ 0, x ∈ Fn, z ∈ Fq.

(Here ⊗ indicates the Kronecker product of vectors/matrices.)
Matrix representation 2: The matricization of L is the matrix L ∈ Fn2×q2

determined by

L : Fq2
→ Fn2

, L (vec(V )) = vec(L(V )), V ∈ Fq×q,

with vec the vectorization operator.
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Minimal Hill representations

Theorem. [Hill 1973, Poluikis-Hill 1981] A linear matrix map L : Fq×q → Fn×n is ∗-linear
(resp. completely positive) if and only if there exists Hkl ∈ F and C1, . . . , Cm ∈ Fn×q, that
are linearly independent, such that L is of the form

L(V ) =
m∑

k,l=1

Hkl ClVC∗
k , V ∈ Fq×q (0.1)

and the matrix H = [Hkl ]mk,l=1 ∈ Fm×m is in Hm (resp. in Pm).
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and the matrix H = [Hkl ]mk,l=1 ∈ Fm×m is in Hm (resp. in Pm).

• We call (0.1) a minimal Hill representation of L and H its Hill matrix.
• The matricization L and Choi matrix L of L take the form

L =
m∑

k,l=1

Hkl C k ⊗ Cl and L = Ĉ∗HT Ĉ ,

where Ĉ∗ := [vec (C1) . . . vec (Cm)] ∈ Fnq×m has full column rank. Furthermore,
decomposing L = [Lij ] with Lij ∈ Fn×q we have

span{C1, . . . , Cm} = span{Lij : i = 1, . . . , n, j = 1, . . . , q}.

• We have m = rankL and H is invertible.
• Minimal Hill representations are unique up to a change of basis of Fm.
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Positivity implying complete positivity
Proposition. [Klep et al. 2019] The ∗-linear map L : Fq×q → Fn×n is positive if and only
if the Choi matrix L of L satisfies

(z ⊗ x)∗ L (z ⊗ x) ≥ 0, x ∈ Fn, z ∈ Fq.
Note that

(z ⊗ x)∗ L (z ⊗ x) = (z ⊗ x)∗ Ĉ∗HT Ĉ (z ⊗ x) , x ∈ Fn, z ∈ Fq.

Thus positivity of L is equivalent to y∗HT y ≥ 0 for all y from the set

YĈ :=
{

yz,x = Ĉ(z ⊗ x) : x ∈ Fn, z ∈ Fq
}

.

Whether a positive L is also completely positive thus depends on the set YĈ containing
enough vectors to conclude H ∈ Pm from y∗HT y ≥ 0 for all y ∈ YĈ .

Some sufficient conditions
(1) Yes, if YĈ = Fm;

(2) Yes, if there exists a x ∈ Fn so that Ĉ(Iq ⊗ x) has full row-rank;
(3) Yes, if there exists a z ∈ Fq so that Ĉ(z ⊗ In) has full row-rank.
Note that the 1st is implied by the 2nd and 3rd condition since

Ĉ(z ⊗ x) = Ĉ(Iq ⊗ x)z = Ĉ(z ⊗ In)x .
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General analysis of 3rd condition
Theorem. Let L : Fq×q → Fn×n be ∗-linear, with matricization L = [Lij ] and Choi matrix
L. Set

W := span{Lij : i = 1, . . . , n, j = 1, . . . , q}.

Then for any minimal Hill representation of L, for Ĉ defined as before there exists a
vector z ∈ Fq such that Ĉ(z ⊗ In) has full row-rank if and only if

(C1) For any linearly independent X1, . . . , Xk in W, there exists a v ∈ Fq

such that X1v , . . . , Xkv is linearly independent in Fn.
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(i) W also satisfies (C1);
(ii) PWQ also satisfies (C1) for any invertible P ∈ Fn×n and Q ∈ Fq×q;
(iii) any subspace V of W satisfies (C1);
(iv) if Z is a subspace of Fn′×q′

which satisfies (C1), then W ⊕ Z is a subspace in
F(n+n′)×(q+q′) that satisfies (C1).
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which satisfies (C1), then W ⊕ Z is a subspace in
F(n+n′)×(q+q′) that satisfies (C1).

Proposition. For any matrix T ∈ Fn×n, {T}′′
F satisfies (C1).
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(iii) any subspace V of W satisfies (C1);
(iv) if Z is a subspace of Fn′×q′

which satisfies (C1), then W ⊕ Z is a subspace in
F(n+n′)×(q+q′) that satisfies (C1).

Theorem. Let L : Fq×q → Fn×n be ∗-linear, with matricization L. If there exists a matrix
C ∈ Fn×n such that L ∈ {C}′′

F ⊗ {C}′′
F , then positivity of L and complete positivity of L

coincide.
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Lyapunov operators revisited
The Lyapunov operator LY for Y ∈ Fn×n, is ∗-linear and has matricization LY given by

LY = Y T ⊗ In + In ⊗ Y ∗.

Therefore, for A, B ∈ Fn×n with A Lyapunov regular and B ∈ {A}′′
F , follows

LA, LB ∈ {A∗}′′
F ⊗ {A∗}′′

F and hence LA,B = LBL−1
A ∈ {A∗}′′

F ⊗ {A∗}′′
F ,

with LA,B the matricization of LA,B . Furthermore, for LA,B = [Lij ] each Lij ∈ {A∗}′′
F , so

for any minimal Hill representation LA,B(V ) =
∑m

k,l=1 Hkl ClVC∗
k , V ∈ Fn×n, with

matricization L =
∑m

k,l=1 Hkl C k ⊗ Cl , we have

span{C1, . . . , Cm} = span{Lij} ⊂ {A∗}′′
F .

We call the NP problem suboptimal if the inclusion is an equality, equivalently,

rankLA,B = dim{A}′′
F .

Theorem. Let A, B ∈ Fn×n with A Lyapunov regular and B ∈ {A}′′
F . Then

LA,B ∈ {A∗}′′
F ⊗ {A∗}′′

F , and thus LA,B is positive if and only if LA,B is completely
positive (i.e., iff H ∈ Pm for any Hill matrix H of LA,B).

Conclusion
For A, B ∈ Fn×n with A Lyapunov regular and B ∈ {A}′′

F , whether B Lyapunov dominates
A can be verified by checking positive definiteness of matrix H that can be constructed
concretely from A and B.
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Solution to the interpolation problem: suboptimal case
Let A ∈ Fn×n be Lyapunov regular and B ∈ {A}′′

F , and determine a minimal Hill
representation of LA,B = LB ◦ L−1

A :

LA,B(V ) =
m∑

k,l=1

HklCkVC∗
l = C∗(H ⊗ V )C, V ∈ Fn×n,

with C∗ =
[
C1 · · · Cm

]
.

Because of minimality, H is unique up to a transformation of
the basis of Fm, so in this case we will talk about the Hill-Pick matrix associated with
(A, B) and denote it as HA,B .
Recall that the NP problem for (A, B) is called suboptimal if

rankHA,B = rankLA,B = dim{A}′′
F .

Theorem. Let A ∈ Rn×n be Lyapunov regular and B ∈ {A}′′
R. Assume that

rankHA,B = dim{A}′′
R. Then the following statements are equivalent:

(i) f (A) = B for a function f ∈ PRO;
(ii) B ∈ C(A);
(iii) LA,B is a positive linear map (i.e., A ≤L B);
(iv) LA,B is a completely positive linear map;
(v) HA,B is a positive definite matrix.
We know: (i) ⇔ (ii) ⇒ (iii) ⇔ (iv) ⇔ (v). To do: (v) ⇒ (i).
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F , and determine a minimal Hill
representation of LA,B = LB ◦ L−1

A :

LA,B(V ) =
m∑

k,l=1

HklCkVC∗
l = C∗(H ⊗ V )C, V ∈ Fn×n,

with C∗ =
[
C1 · · · Cm

]
. Because of minimality, H is unique up to a transformation of

the basis of Fm, so in this case we will talk about the Hill-Pick matrix associated with
(A, B) and denote it as HA,B .

Recall that the NP problem for (A, B) is called suboptimal if

rankHA,B = rankLA,B = dim{A}′′
F .

Theorem. Let A ∈ Rn×n be Lyapunov regular and B ∈ {A}′′
R. Assume that

rankHA,B = dim{A}′′
R. Then the following statements are equivalent:

(i) f (A) = B for a function f ∈ PRO;
(ii) B ∈ C(A);
(iii) LA,B is a positive linear map (i.e., A ≤L B);
(iv) LA,B is a completely positive linear map;
(v) HA,B is a positive definite matrix.
We know: (i) ⇔ (ii) ⇒ (iii) ⇔ (iv) ⇔ (v). To do: (v) ⇒ (i).
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A skew-Hermitian Douglas lemma
For A, B ∈ Fn×n with A Lyapunov regular and X ∈ Fn×n:

XB + B∗X = LB(X) = LBL−1
A (LA(X)) = C∗ (HA,B ⊗ XA) C + C∗ (HA,B ⊗ A∗X) C.

Now assume HA,B ∈ Pm and factor HA,B = P∗P for P ∈ Fm×m invertible. Set
LR :=

[ R
(P⊗R)C

]
and MR :=

[ RB
−(P⊗RA)C

]
, R ∈ Fn×n.

In the above identity take X = R ′∗R, then we obtain M∗
R′ LR = −L∗

R′ MR . For any finite
collection R = {R1, . . . , Rk} ⊂ Fn×n set

LR =
[
LR1 · · · LRk

]
and MR =

[
MR1 · · · MRk

]
.

Since M∗
R′ LR = −L∗

R′ MR for all R, R ′ ∈ Fn×n, we also have

M∗
RLR = −L∗

RMR for any finite R ⊂ Fn×n.

Proposition. Let A, B ∈ Fn×n with A Lyapunov regular and B ∈ CL(A)
⋂

{A}′′
F . Then

there exists a matrix Ŝ ∈ F(1+m)n×(1+m)n so that
P1 : ŜLR = MR for each R ∈ Fn×n ⇐⇒ P2 : Ker LR ⊂ Ker MR for any finite R ⊂ Fn×n.

Moreover, if Ŝ ∈ F(1+m)n×(1+m)n satisfying P1 exists, then WLOG
Ŝ = S ⊗ In for − S∗ = S ∈ F(1+m)×(1+m).

Furthermore, it suffices to check P2 for a single R ⊂ Fn×n with the property that
Ran LR = span

{
LRx : R ∈ Fn×n, x ∈ Fn} .
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Why the skew-Hermitian Douglas lemma applies

Lemma. Let A, B ∈ Fn×n with A Lyapunov regular and B ∈ CL(A)
⋂

{A}′′
F . Assume that

the matrices C1, . . . , Cm ∈ {A∗}′′
F in the minimal Hill representation of LA,B are such that

span{C1, . . . , Cm, In} = {A∗}′′
F .

Then Ker LR ⊂ Ker MR for all finite collections R ⊂ Fn×n. In particular, this occurs in the
suboptimal case.

Proof for R = {R}

To show: Ker LR ⊂ Ker MR . Since LR =
[ R

(P⊗R)C
]

and MR =
[ RB

−(P⊗RA)C
]

and P is
invertible, x ∈ Ker LR iff

Rx = 0, RC∗
j x = 0, j = 1, . . . , m.

Then
RTx = 0 for all T ∈ span{C∗

1 , . . . , C∗
m, In} = {A}′′

F .

Since {A}′′
F is an algebra and B, C∗

1 , . . . , C∗
m ∈ {A}′′

F also

RBx = 0, RAC∗
j x = 0, j = 1, . . . , m,

from which LRx = 0 follows.
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Construction of solutions

Lemma. Let A, B ∈ Rn×n with A Lyapunov regular and B ∈ CL(A)
⋂

{A}′′
R. Assume that

there exists a matrix S ∈ R(1+m)×(1+m) so that
(S ⊗ In)LR = MR , R ∈ Rn×n, and ST = −S.

Decompose S as

S =
[

0 ℓ

−ℓT −M

]
for M = −MT ∈ Rm×m, ℓ ∈ R1×m

and set
f (z) = ℓ(zIm − M)−1ℓT .

Then f ∈ PRO and f (A) = B.

Sketch of proof. Restrict to R = In and solve in (S ⊗ In)LIn = MIn :
B = (ℓ ⊗ In) (P ⊗ In) C

(Im ⊗ A − M ⊗ In) (P ⊗ In) C =
(
ℓT ⊗ In

)
.

Further, (Im ⊗ A − M ⊗ In) is invertible and thus
B = (ℓ ⊗ In) (Im ⊗ A − M ⊗ In)−1 (

ℓT ⊗ In
)

= f (A).
That f ∈ PRO follows from basic realization theory.

This proves the remaining implication (v) ⇒ (i).
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Thank you.

December 6, 2022 14 / 14


