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Classical Nevanlinna-Pick interpolation (Pick 1916, Nevanlinna 1929)

Given points Ay, ..., A, in the unit disc D (or right half plane I) and values 71, ..., 7,,
find an analytic functlon f that maps D into D (resp., My into M) so that f(Ax) = 7k

for k =1,...,n. There exists a solution iff the Pick matrix P is positive semidefinite,
p— n p— n
where P := [ﬂ} for the unit disc case and P := [M} for the right half
1=2%2%; 1] 5 p=n AitAjl =1
plane case.
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Classical Nevanlinna-Pick interpolation (Pick 1916, Nevanlinna 1929)

Given points Ay, ..., A, in the unit disc D (or right half plane I) and values 71, ..., 7,,
find an analytic functlon f that maps D into D (resp., My into M) so that f(Ax) = 7k

for k =1,...,n. There exists a solution iff the Pick matrix P is positive semidefinite,
p— n p— n
where P := [ﬂ} for the unit disc case and P := [T”Jr"f] for the right half
1=2%2%; 1] 5 p=n AitAj ] =1
plane case.

Consider the class PRO of rational complex functions f for which
f(N;) C M, (positive), f(R) C R (real), —f(z) = f (—2) (odd).
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Classical Nevanlinna-Pick interpolation (Pick 1916, Nevanlinna 1929)

Given points Ay, ..., A, in the unit disc D (or right half plane I) and values 71, ..., 7,,
find an analytic functlon f that maps D into D (resp., My into M) so that f(Ax) = 7k

for k =1,...,n. There exists a solution iff the Pick matrix P is positive semidefinite,
p— n p— n
where P := [ﬂ} for the unit disc case and P := [M] for the right half
-3 ] AitAj =1
plane case.

Consider the class PRO of rational complex functions f for which
f (M) C N, (positive), f(R) C R (real), —f(z) = f (—Z) (odd).
Definition. A matrix A € F"*" is called Lyapunov regular if the eigenvalues A1, ..., \n

of A satisfy B
Ai+A#0 foralli,j=1,...,n
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Classical Nevanlinna-Pick interpolation (Pick 1916, Nevanlinna 1929)

Given points A1,..., A, in the unit disc D (or right half plane I'I+) and values 71, ..., 7,
find an analytic functlon f that maps D into D (resp., My into M) so that f(Ax) = 7k

for k =1,...,n. There exists a solution iff the Pick matrix P is positive semidefinite,
p— n p— n
where P := [ﬂ} for the unit disc case and P := [M] for the right half
1=2ij 1 =1 AitAj =1
plane case.

Consider the class PRO of rational complex functions f for which
f (M) C N, (positive), f(R) C R (real), —f(z) = f (—Z) (odd).
Definition. A matrix A € F"*" is called Lyapunov regular if the eigenvalues A1, ..., \n
of A satisfy B
Ai+A#0 foralli,j=1,...,n
The Cohen-Lewkowicz Nevanlinna-Pick problem

Given A, B € R™" with A Lyapunov regular, when is there a f € PRO s.t. f(A) =
Classical Nevanlinna-Pick interpolation occurs when A and B are diagonal. Evaluating a
(rational) function in a Jordan block Jx(\) corresponds to evaluating 7 and derivatives up
to order k — 1 in A. So, an interpolation condition f(A) = B in matrix point A can
combine derivative interpolation conditions at various points.
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Definition. A subset C of a unital algebra 2 is called a convex invertible cone (cic for
short) if C is a convex cone that is closed under inversion. For A C 2, C(A) denotes the
cic generated by A, written as C(a) if A = {a}.
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Definition. A subset C of a unital algebra 2 is called a convex invertible cone (cic for
short) if C is a convex cone that is closed under inversion. For A C 2, C(A) denotes the
cic generated by A, written as C(a) if A = {a}.

Matrix cics: Let F = R or F = C (we follow notation of F = C). Write H, for the

Hermitian matrices and P, and P, for the positive definite and positive semidefinite
matrices in F"*". Then:

o For X CF™" {X}p:={Y €F™": YX =XY, X € X} is a cicin F"*".
e For A € F"™*" the non-strict and strict Lyapunov solutions of A:
H(A):={H € H,: HA+ A"H € P},
H(A):={H € Hp: HA+ A"H € P, };
are cics in F"*",
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Definition. A subset C of a unital algebra 2 is called a convex invertible cone (cic for
short) if C is a convex cone that is closed under inversion. For A C 2, C(A) denotes the
cic generated by A, written as C(a) if A = {a}.

Matrix cics: Let F = R or F = C (we follow notation of F = C). Write H, for the

Hermitian matrices and P, and P, for the positive definite and positive semidefinite
matrices in F"*". Then:

o For X CF™" {X}p:={Y €F™": YX =XY, X € X} is a cicin F"*".
e For A € F"™*" the non-strict and strict Lyapunov solutions of A:
H(A):={H € H,: HA+ A"H € P},
H(A):={H € Hp: HA+ A"H € P, };
are cics in F"*",

Function cics: PRO is a cic in the vector space of real rational functions, singly
generated by f(z) = z.
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Definition. A subset C of a unital algebra 2 is called a convex invertible cone (cic for
short) if C is a convex cone that is closed under inversion. For A C 2, C(A) denotes the
cic generated by A, written as C(a) if A = {a}.

Matrix cics: Let F =R or F = C (we follow notation of F = C). Write H, for the
Hermitian matrices and P, and P, for the positive definite and positive semidefinite
matrices in F"*". Then:

o For X CF™" {X}p:={Y €F™": YX =XY, X € X} is a cicin F"*".
e For A € F"™*" the non-strict and strict Lyapunov solutions of A:
H(A) :={H € Hn: HA+ A"H € P,},
H(A) :={HEH,: HA+ A"H € P,};
are cics in F™*".
Function cics: PRO is a cic in the vector space of real rational functions, singly

generated by f(z) = z. Note also, PRO-functions have poles and zeros only on iR.
Corollary. If A€ F"™*" has no eigenvalues on iR, then

C(A) = PRO(A) := {f(A): f € PRO}.
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Definition. A subset C of a unital algebra 2 is called a convex invertible cone (cic for
short) if C is a convex cone that is closed under inversion. For A C 2, C(A) denotes the
cic generated by A, written as C(a) if A = {a}.

Matrix cics: Let F = R or F = C (we follow notation of F = C). Write H, for the
Hermitian matrices and P, and P, for the positive definite and positive semidefinite
matrices in F"*". Then:

o For X CF™" {X}p:={Y €F™": YX =XY, X € X} is a cicin F"*".
e For A € F"™*" the non-strict and strict Lyapunov solutions of A:
H(A) :={H € Hn: HA+ A"H € P,},
H(A) :={HEH,: HA+ A"H € P,};
are cics in F™*".
Function cics: PRO is a cic in the vector space of real rational functions, singly

generated by f(z) = z. Note also, PRO-functions have poles and zeros only on iR.
Corollary. If A€ F"™*" has no eigenvalues on iR, then

C(A) = PRO(A) := {f(A): f € PRO}.

Proposition. Let A, B € F"™*" with A no eigenvalues on iR. Then f(A) = B for a
function f € PRQO if and only if B € C(A).
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Definition. A subset C of a unital algebra 2 is called a convex invertible cone (cic for
short) if C is a convex cone that is closed under inversion. For A C 2, C(A) denotes the
cic generated by A, written as C(a) if A = {a}.

Matrix cics: Let F = R or F = C (we follow notation of F = C). Write H, for the

Hermitian matrices and P, and P, for the positive definite and positive semidefinite
matrices in F"*". Then:

o For X CF™" {X}p:={Y €F™": YX =XY, X € X} is a cicin F"*".
e For A € F"™*" the non-strict and strict Lyapunov solutions of A:
H(A) :={H € Hn: HA+ A"H € P,},
H(A) :={HEH,: HA+ A"H € P,};
are cics in F™*".
Function cics: PRO is a cic in the vector space of real rational functions, singly

generated by f(z) = z. Note also, PRO-functions have poles and zeros only on iR.
Corollary. If A€ F"™*" has no eigenvalues on iR, then

C(A) = PRO(A) := {f(A): f € PRO}.
Proposition. Let A, B € F"™*" with A no eigenvalues on iR. Then f(A) = B for a
function f € PRQO if and only if B € C(A).
Question. How does one determine if B € C(A)? If B € C(A), then B € {A}y.
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Definition. For A, B € F"*" we say B Lyapunov dominates A, denoted_A <r B_, if each
(non-strict) Lyapunov solution for A is a Lyapunov solution for B, i.e., H(A) C H(B).
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Definition. For A, B € F"*" we say B Lyapunov dominates A, denoted_A <r B_, if each
(non-strict) Lyapunov solution for A is a Lyapunov solution for B, i.e., H(A) C H(B).
Lemma. The set of matrices that Lyapunov dominates A:

Cz(A) :={BeF™": A=<, B}
is a matrix cic in F"™*". Hence C(A) C {A}y NC(A).
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Definition. For A, B € F"*" we say B Lyapunov dominates A, denoted_A <r B_, if each
(non-strict) Lyapunov solution for A is a Lyapunov solution for B, i.e., H(A) C H(B).

Lemma. The set of matrices that Lyapunov dominates A:
Cz(A) :={BeF™": A=<, B}
is a matrix cic in F™". Hence C(A) C {A}y NC.(A).

Conjecture (Cohen-Lewkowicz ‘09). For A € R"*" Lyapunov regular we have
C(A) = {A}z N Cc(A).
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Definition. For A, B € F"*" we say B Lyapunov dominates A, denoted A <. B, if each
(non-strict) Lyapunov solution for A is a Lyapunov solution for B, i.e., H(A) C H(B).

Lemma. The set of matrices that Lyapunov dominates A:
C[;(A) = {B ceF™": A <z B}
is a matrix cic in F™". Hence C(A) C {A}y NC.(A).

Conjecture (Cohen-Lewkowicz ‘09). For A € R"*" Lyapunov regular we have
C(A) = {A}z N Cc(A).

Definition. For a matrix Y € F"*" we define the Lyapunov operator Ly as

Ly :F™" S F™" Ly X XY + Y*X.
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Definition. For A, B € F"*" we say B Lyapunov dominates A, denoted A <. B, if each
(non-strict) Lyapunov solution for A is a Lyapunov solution for B, i.e., H(A) C H(B).

Lemma. The set of matrices that Lyapunov dominates A:
Cc(A):={BeF™": A=, B}
is a matrix cic in F"™*". Hence C(A) C {A}y NC(A).
Conjecture (Cohen-Lewkowicz ‘09). For A € R"*" Lyapunov regular we have
C(A) = {A} N Cc(A).
Definition. For a matrix Y € F"*" we define the Lyapunov operator Ly as
Ly :F™" 5 " Ly : X—= XY +Y*X.

Lemma. For Y € F"*", the Lyapunov operator Ly is a linear map so that
Ly(X*) = Ly(X)*. Moreover, Y is Lyapunov regular iff Ly is bijective. In that case

H(Y) = LH(P,).

D 4 4 December 6, 2022 4/14



The Lyapunov order and operator W?{,ﬁi?g{éﬁﬁﬁ@
JOHANNESBURG

Definition. For A, B € F"*" we say B Lyapunov dominates A, denoted A <. B, if each
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Definition. For a matrix Y € F"*" we define the Lyapunov operator Ly as

Ly F™" S F™" Ly X XY + Y*X.

Lemma. For Y € F"*", the Lyapunov operator Ly is a linear map so that
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H(Y) = LH(P,).

Corollary. For A, B € F"*" with A Lyapunov regular, we have
A= B <= Lag:=~LgoL, :P,— P,

D 4 4 December 6, 2022 4/14



The Lyapunov order and operator W?{,ﬁi?g{éﬁﬁﬁ@
JOHANNESBURG

Definition. For A, B € F"*" we say B Lyapunov dominates A, denoted A <. B, if each
(non-strict) Lyapunov solution for A is a Lyapunov solution for B, i.e., H(A) C H(B).

Lemma. The set of matrices that Lyapunov dominates A:
C[;(A) = {B ceF™": A <z B}
is a matrix cic in F™". Hence C(A) C {A}y NC.(A).

Conjecture (Cohen-Lewkowicz ‘09). For A € R"*" Lyapunov regular we have
C(A) = {A}z N Cc(A).

Definition. For a matrix Y € F"*" we define the Lyapunov operator Ly as

Ly F™" S F™" Ly X XY + Y*X.

Lemma. For Y € F"*", the Lyapunov operator Ly is a linear map so that
Ly(X*) = Ly(X)*. Moreover, Y is Lyapunov regular iff Ly is bijective. In that case

H(Y) = LH(P,).

Corollary. For A, B € F"*" with A Lyapunov regular, we have
A= B <= Lag:=~LgoL, :P,— P,

So, B Lyapunov dominates A if and only if £La g is a positive matrix map.
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Definition. For positive integers g and n, the linear matrix map
L F9%9 5 Fmxn

is said to be *-linear if £(X*) = L(X)* for each X € F9*9.
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Definition. For positive integers g and n, the linear matrix map

LR — 70
is said to be *-linear if £(X*) = L(X)* for each X € F9*9.

Matrix representation 1: The Choi matrix L. associated with L is given by

L = [Ly] € F"*"  where Lj;=L(&;)eF™",

with £ := eje/ the standard basis elements in F99.
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Definition. For positive integers g and n, the linear matrix map

LR — 70

is said to be *-linear if £(X*) = L(X)* for each X € F9*9.
Matrix representation 1: The Choi matrix L. associated with L is given by

L = [Ly] € F"*"  where Lj;=L(&;)eF™",

with £ := eje/ the standard basis elements in F99.
Theorem. [R.D. Hill '73] A linear matrix map L is -linear iff L is in Hnq.
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Definition. For positive integers g and n, the linear matrix map

LR — 70

is said to be *-linear if £(X*) = L(X)* for each X € F9*9.
Matrix representation 1: The Choi matrix L. associated with L is given by

L = [Ly] € F"*"  where Lj;=L(&;)eF™",

with £ := eje/ the standard basis elements in F99.
Theorem. [R.D. Hill '73] A linear matrix map L is -linear iff L is in Hnq.

Theorem. [Choi '75] A linear matrix map L is completely positive iff L is in Prq.
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Definition. For positive integers g and n, the linear matrix map

L F9%9 5 Fmxn

is said to be *-linear if £(X*) = L(X)* for each X € F9*9.
Matrix representation 1: The Choi matrix L. associated with L is given by

L =[L;] € anan, where L; = L (&) € FHX",
y y y

with &; := eje/ the standard basis elements in F7*9.
Theorem. [R.D. Hill '73] A linear matrix map L is -linear iff L is in Hnq.

Theorem. [Choi '75] A linear matrix map L is completely positive iff L is in Png.
Proposition. [Klep et al. '19] A linear matrix map L is positive iff
(z@x)'L(z®x) >0, xeF" zeF".

(Here ® indicates the Kronecker product of vectors/matrices.)
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Definition. For positive integers g and n, the linear matrix map

L F9%9 5 Fmxn

is said to be *-linear if £(X*) = L(X)* for each X € F9*9.
Matrix representation 1: The Choi matrix L. associated with L is given by

L= [LU] S ]anan, where Lj = [’(SU) € FHX",

with &; := eje/ the standard basis elements in F7*9.
Theorem. [R.D. Hill '73] A linear matrix map L is -linear iff L is in Hnq.

Theorem. [Choi '75] A linear matrix map L is completely positive iff L is in Png.
Proposition. [Klep et al. '19] A linear matrix map L is positive iff
(z@x)'L(z®x) >0, xeF" zeF".

(Here ® indicates the Kronecker product of vectors/matrices.)
2 2
Matrix representation 2: The matricization of L is the matrix L € F” *9 determined by

L:FT B, L(vec(V)) = vec(L(V)), V € F9*9,

with vec the vectorization operator.
D 4 4 December 6, 2022 5/14
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Theorem. [Hill 1973, Poluikis-Hill 1981] A linear matrix map L : F9*9 — F"*" js x-linear
(resp. completely positive) if and only if there exists Hy € F and G, ..., Cn € F"*9, that
are linearly independent, such that L is of the form

LV)=Y H4GVC, VeF™ (0.1)
k,I=1
and the matrix H = [Hy]y' =y € F™ ™ is in Hm (resp. in Pm).
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Theorem. [Hill 1973, Poluikis-Hill 1981] A linear matrix map L : F9*9 — F"*" js x-linear
(resp. completely positive) if and only if there exists Hy € F and G, ..., Cn € F"*9, that
are linearly independent, such that L is of the form

L(V) = Z Hy GVC;, V eF™ (0.1)
k=1
and the matrix H = [Hy] =, € F™" is in Hm (resp. in Pm).
e We call (0.1) a minimal Hill representation of £ and H its Hill matrix.

e The matricization L and Choi matrix L of £ take the form

L= Z Hy Ek ®C and L= E*HTE,

k,l=1

where C* := [vec (G1) ... vec(Cp)] € F™*™ has full column rank. Furthermore,
decomposing L = [L;] with L; € F"*? we have

span{Ci,...,Cn} =span{l;:i=1,...,n,j=1,...,q}.

e We have m = rankL and H is invertible.

e Minimal Hill representations are unique up to a change of basis of F.
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Proposition. [Klep et al. 2019] The x-linear map L : F9*9 — F"*" js positive if and only

if the Choi matrix L of L satisfies
(zox)"L(z®x) >0, x €F", zeF9.
Note that
(zox)'L(z®x)=(z®@x)" C'H' C(z®x), xeF" zeFI.
Thus positivity of £ is equivalent to y*H"y > 0 for all y from the set
Y= {}/z,x = E(z@x) ix €T, z GFQ}.

Whether a positive L is also completely positive thus depends on the set QJ? containing
enough vectors to conclude H € P,, from y*H"y >0 for all y € Ve
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Proposition. [Klep et al. 2019] The x-linear map L : F9*9 — F"*" js positive if and only

if the Choi matrix L of L satisfies
(zox)"L(z®x) >0, x€F" zeFI.
Note that
(z@x)'L(zox)=(z®x)" C'H' C(z®x), xeF" zeFI.
Thus positivity of £ is equivalent to y*H"y > 0 for all y from the set
Q)?:: {yz’x = E(z@x) x e, z EFq}.

Whether a positive L is also completely positive thus depends on the set 2]? containing
enough vectors to conclude H € P, from y*H'y >0 for all y € Ve

Some sufficient conditions
(1) Yes, if 9= =F";
(2) Yes, if there exists a x € F” so that E(Iq ® x) has full row-rank;

(3) Yes, if there exists a z € F? so that E(z ® In) has full row-rank.
Note that the 1% is implied by the 2" and 3™ condition since

E(z ® x) = E(Iq ®x)z = E'(z ® In)x.

™7 i - =
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Theorem. Let £ : F9*9 — F"™*" be x-linear, with matricization L = [L;] and Choi matrix
L. Set

Wi:=span{L;:i=1,...,n,j=1,...,q}.

Then for any minimal Hill representation of L, for C defined as before there exists a
vector z € F9 such that C(z ® I,) has full row-rank if and only if

(C1) For any linearly independent X1, ..., Xk in W, there exists a v € F?

such that Xyv,...,Xkv is linearly independent in F".
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Theorem. Let £ : F9*9 — F"™*" be x-linear, with matricization L = [L;] and Choi matrix
L. Set

Wi:=span{L;:i=1,...,n,j=1,...,q}.

Then for any minimal Hill representation of L, for C defined as before there exists a
vector z € F? such that C(z ® I,) has full row-rank if and only if

(C1) For any linearly independent X1, ..., Xk in W, there exists a v € F?
such that Xyv,...,Xkv is linearly independent in F".

Lemma. The subspaces of upper triangular and lower triangular Toeplitz matrices in F"*"
satisfy condition (C1).
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Theorem. Let £ : F9*9 — F"™*" be x-linear, with matricization L = [L;] and Choi matrix

L. Set
Wi:=span{L;:i=1,...,n,j=1,...,q}.

Then for any minimal Hill representation of L, for C defined as before there exists a
vector z € F? such that C(z ® I,) has full row-rank if and only if

(C1) For any linearly independent X1, ..., Xk in W, there exists a v € F?
such that Xyv,...,Xkv is linearly independent in F".

Lemma. The subspaces of upper triangular and lower triangular Toeplitz matrices in F"*"
satisfy condition (C1).

Lemma. Let W be a subspace of F"*9 that satisfies the condition (C1). Then:
(i) W also satisfies (C1);

(i) PWQ also satisfies (C1) for any invertible P € F"*" and Q € F9*9;

(iii) any subspace V of W satisfies (C1);

(iv) if Z is a subspace of F” *9" which satisfies (C1), then W & Z is a subspace in

F()%(@49) that satisfies (C1).
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Theorem. Let £ : F9*9 — F"™*" be x-linear, with matricization L = [L;] and Choi matrix

L. Set
Wi:=span{L;:i=1,...,n,j=1,...,q}.

Then for any minimal Hill representation of L, for C defined as before there exists a
vector z € F? such that C(z ® I,) has full row-rank if and only if

(C1) For any linearly independent Xy, ..., X« in W, there exists a v € F?

such that Xyv,...,Xkv is linearly independent in F".

Lemma. The subspaces of upper triangular and lower triangular Toeplitz matrices in F"*"
satisfy condition (C1).

Lemma. Let W be a subspace of F"*9 that satisfies the condition (C1). Then:
(i) W also satisfies (C1);
(i) PWQ also satisfies (C1) for any invertible P € F"*" and Q € F9*9;
(iii) any subspace V of W satisfies (C1);
(iv) if Z is a subspace of F” *9" which satisfies (C1), then W & Z is a subspace in
F()%(@49) that satisfies (C1).

Proposition. For any matrix T € F™*", { T}/ satisfies (C1).
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Theorem. Let £ : F9*9 — F"™*" be x-linear, with matricization L = [L;] and Choi matrix
L. Set

Wi:=span{L;:i=1,...,n,j=1,...,q}.
Then for any minimal Hill representation of L, for C defined as before there exists a
vector z € F? such that C(z ® I,) has full row-rank if and only if
(C1) For any linearly independent Xy, ..., X« in W, there exists a v € F?
such that Xyv,...,Xkv is linearly independent in F".
Lemma. The subspaces of upper triangular and lower triangular Toeplitz matrices in F"*"
satisfy condition (C1).
Lemma. Let W be a subspace of F"*9 that satisfies the condition (C1). Then:
(i) W also satisfies (C1);
(i) PWQ also satisfies (C1) for any invertible P € F"*" and Q € F9*9;
(iii) any subspace V of W satisfies (C1);
(iv)

if Z is a subspace of F" %9 which satisfies (C1), then W @ Z is a subspace in
F()%(@49) that satisfies (C1).

Theorem. Let £ : F9%9 — F"*" be %-linear, with matricization L. If there exists a matrix
C € F"™*" such that L € {C}}! @ {C}g, then positivity of L and complete positivity of L
coincide.
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The Lyapunov operator Ly for Y € F"*", is *-linear and has matricization Ly given by
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Lyapunov operators revisited ‘V’\,N,'T‘(fvi?g{é}{i,ﬁ‘é@
JOHANNESBURG
The Lyapunov operator Ly for Y € F"*", is *-linear and has matricization Ly given by
Ly=Y"@hLh+LoY"
Therefore, for A, B € F"*" with A Lyapunov regular and B € {A}{, follows
La,Lg € (A} @ {A"} and hence Lag = Lgl,' € (A} @ {A"}Y,

with La g the matricization of La 5.

s Bz & S0P T



Lyapunov operators revisited WITWATERSRAND, @
JOHANNESBURG

The Lyapunov operator Ly for Y € F"*", is *-linear and has matricization Ly given by
Ly=Y"@hL+hoY"
Therefore, for A, B € F"*" with A Lyapunov regular and B € {A}{, follows
La,Lg € (A} @ {A"} and hence Lag = Lgl,' € (A} @ {A"}Y,

with La g the matricization of L4 g. Furthermore, for La g = [L;j] each L; € {A*}{, so
for any minimal Hill representation La5(V) =Y., ,_, Hu GVC;, V € F"™*", with

matricization L = ZT/:l Hy Ck ® C;, we have
span{Ci,..., Cn} = span{L;} C {A*}.
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The Lyapunov operator Ly for Y € F"*", is *-linear and has matricization Ly given by

Ly=Y"@hL+hoY"
Therefore, for A, B € F"*" with A Lyapunov regular and B € {A}{, follows
La,Lg € (A} @ {A"} and hence Lag = Lgl,' € (A} @ {A"}Y,

with La g the matricization of L4 g. Furthermore, for La g = [L;j] each L; € {A*}{, so
for any minimal Hill representation La5(V) =Y., ,_, Hu GVC;, V € F"™*", with

matricization L = ka/:1 Hy Ck ® C;, we have
span{Ci,..., Cn} = span{L;} C {A*}.
We call the NP problem suboptimal if the inclusion is an equality, equivalently,

rankLa g = dim{A}5.
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The Lyapunov operator Ly for Y € F"*", is *-linear and has matricization Ly given by

Ly=Y"@hL+hoY"
Therefore, for A, B € F"*" with A Lyapunov regular and B € {A}{, follows
La,Lg € (A} @ {A"} and hence Lag = Lgl,' € (A} @ {A"}Y,
with La g the matricization of L4 g. Furthermore, for La g = [L;j] each L; € {A*}{, so
for any minimal Hill representation La5(V) =Y., ,_, Hu GVC;, V € F"™*", with
matricization L = ka,/:1 Hy Ck ® C;, we have
span{Ci,..., Cn} = span{L;} C {A*}.
We call the NP problem suboptimal if the inclusion is an equality, equivalently,
rankLa g = dim{A}5.
Theorem. Let A, B € F"*" with A Lyapunov regular and B € {A}{. Then

Lag € {A*} ® {A*}¢, and thus La g is positive if and only if La g is completely
positive (i.e., iff Hl € Pn, for any Hill matrix H of La g).
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The Lyapunov operator Ly for Y € F"*", is x-linear and has matricization Ly given by

Ly=Y"@hL+hLeY"
Therefore, for A, B € F"*" with A Lyapunov regular and B € {A}{, follows
La,Lg € (A} @ {A"} and hence Lag = Lgl,' € (A} @ {A"}Y,
with La g the matricization of L4 g. Furthermore, for La g = [L;j] each L; € {A*}{, so
for any minimal Hill representation La5(V) =Y., ,_, Hu GVC;, V € F"™*", with
matricization L = ka,/:1 Hy Ck ® C;, we have
span{Ci,..., Cn} = span{L;} C {A*}.
We call the NP problem suboptimal if the inclusion is an equality, equivalently,
rankLa g = dim{A}]/F'.
Theorem. Let A, B € F"*" with A Lyapunov regular and B € {A}{. Then

Lag € {A*} ® {A*}¢, and thus La g is positive if and only if La g is completely
positive (i.e., iff Hl € Pn, for any Hill matrix H of La g).

Conclusion

For A, B € F"*" with A Lyapunov regular and B € {A}{, whether B Lyapunov dominates
A can be verified by checking positive definiteness of matrix H that can be constructed
concretely from A and B.
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Solution to the interpolation problem: suboptimal case SVN,'TV\,[&?E{SO{AT,S‘S,@
JOHANNESBURG
Let A € F"™*" be Lyapunov regular and B € {A}/, and determine a minimal Hill

representation of Lap = Lgo L,
Las(V)=) HyGVC =C(Ha V)C, VeF™",

k,I=1

withC* =[G -+ Gal.
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Let A € F"™*" be Lyapunov regular and B € {A}/, and determine a minimal Hill
representation of Lap = Lgo L,

. . . . . UNIVERSITY OF THE
Solution to the interpolation problem: suboptimal case @

Las(V)=) HyGVC =C(Ha V)C, VeF™",
k,1=1

with C* = [C1 Cm]. Because of minimality, H is unique up to a transformation of
the basis of F, so in this case we will talk about the Hill-Pick matrix associated with
(A, B) and denote it as Ha s.
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JOHANNESBURG
Let A € F"™*" be Lyapunov regular and B € {A}/, and determine a minimal Hill

representation of Lap = Lgo L,

Las(V) =) HyGVCG =C(H®V)C, VR,
k,I=1

with C* = [C1 Cm]. Because of minimality, H is unique up to a transformation of
the basis of I, so in this case we will talk about the Hill-Pick matrix associated with
(A, B) and denote it as Ha s.

Recall that the NP problem for (A, B) is called suboptimal if

rankHa g = rankLa g = dim{A}fF/.

Theorem. Let A € R"™" be Lyapunov regular and B € {A}i. Assume that

rankHa g = dim{A}g. Then the following statements are equivalent:
(i) f(A) = B for a function f € PRO;
(i) B e C(A),
(iii) La,g is a positive linear map (i.e., A<, B);
(iv) La,g is a completely positive linear map;
)

(v) Ha,s is a positive definite matrix.
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Solution to the interpolation problem: suboptimal case W?{,ﬁi?g{;{[ﬁg@
JOHANNESBURG
Let A € F"*" be Lyapunov regular and B € {A}{, and determine a minimal Hill
yap g F
representation of Lap = Lgo L,

Las(V) =) HyGVCG =C(H®V)C, VR,
k,I=1

with C* = [C1 Cm]. Because of minimality, H is unique up to a transformation of
the basis of I, so in this case we will talk about the Hill-Pick matrix associated with
(A, B) and denote it as Ha s.

Recall that the NP problem for (A, B) is called suboptimal if

rankHa g = rankLa g = dim{A}]/F/.
Theorem. Let A € R"™" be Lyapunov regular and B € {A}i. Assume that
rankHa g = dim{A}g. Then the following statements are equivalent:
(i) f(A) = B for a function f € PRO;
(i) B e C(A),
(iii) La,g is a positive linear map (i.e., A<, B);
(iv) La,g is a completely positive linear map;
(v) Ha,g is a positive definite matrix.
We know: (i) < (ii) = (iii) < (iv) < (v). To do: (v) = (i),
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A skew-Hermitian Douglas lemma &ﬁ;‘@i}'g{g{;ﬁg@
For A, B € F"™*" with A Lyapunov regular and X € F"*": JOHANNESBURS
XB+ B*X = Ls(X) = LeLy" (La(X)) = C* (Hap ® XA)C + C* (Hap ® A*X) C.
Now assume Ha g € P and factor Ha g = P*P for P € F™ "™ invertible. Set
Lr == [ (paric| and Mg := [ _(phkac], REF™".

In the above identity take X = R R, then we obtain Mg, Lg = —Lj Mg. For any finite
collection R = {Ry,..., R} CF™" set

Ll =[Lr, -+ Lg] and Mg = [Mg, -+ Mg].
Since Mj, Lg = —Lk Mg for all R, R" € F™*", we also have

Mglg = —LgMg | for any finite R C F"*".

Proposition. Let A, B € F"*" with A Lyapunov regular and B € C.(A) [ {A}s. Then
there exists a matrix S € FATmMnxQtmin o5 ¢pat

Py gLR = Mg for each R € F"™*" <= P, : KerLg C Ker MR for any finite R C F"*".
Moreover, if S € FUHMn<(+mn oaricfiine Py exists, then WLOG
S=S5S®l, for —S =§eFttmxtm
Furthermore, it suffices to check P, for a single R C F"*" with the property that
Ran Lgr = span {LRX cReF™" x e IF"} .
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Why the skew-Hermitian Douglas lemma applies SVN]'T‘{,E&ST'E{;{ATSS,@
JOHANNESBURG

Lemma. Let A, B € F™" with A Lyapunov regular and B € C.(A) [ \{A}r. Assume that
the matrices Ci, ..., Cy € {A*}§ in the minimal Hill representation of La g are such that

span{Ci, ..., Cn, In} = {A"}¥.

Then Ker Lg C Ker Mg for all finite collections R C F"*". In particular, this occurs in the
suboptimal case.

Proof for R = {R}

To show: Ker Lg C Ker Mg. Since Lr = [(Pe;R)c] and Mg = [-(P%%A)c] and P is
invertible, x € Ker Ly iff

Rx=0, RC'x=0, j=1,....m.

Then
RTx =0 forall T €span{C;,...,Cn,ln} = {A}p.

Since {A}{ is an algebra and B, (7, ..., G € {A}y also

RBx =0, RAC'x=0, j=1,...,m,

from which Lgx = 0 follows. O

o
— =T = = = _ET
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Construction of solutions WITWATERSRAND, @
JOHANNESBURG

Lemma. Let A, B € R"™" with A Lyapunov regular and B € C.(A) [ {A}g. Assume that
there exists a matrix S € RUHMXAm) g5 that

(S® I)Lg = Mg, RER™" and S” = —S.

Decompose S as

_ 0 l _ T mxm Ixm
5—|:_£T —I\/I] for M=-M"eR , £eR

and set
f(z) = (zlm — M) ",

Then f € PRO and f(A) = B.
Sketch of proof. Restrict to R = I, and solve in (S® I,)L;, = M,,:

B=(U(xl)(Pel)C

(In®@A=M® L) (P ) C=(t"&1).
Further, (In ® A— M & I,) is invertible and thus

B=(&h)(ln®@A-Ma )" (€7 @) =f(A).

That f € PRO follows from basic realization theory. O

This proves the remaining implication (v) = (i).
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Thank you.



