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Equivalence After Extension and Schur Coupling

Definition Let U ∈ B(X ) and V ∈ B(Y) be bounded operators on Banach
spaces X and Y. We say that:

• U and V are equivalent after extension, abbreviated EAE, if there exist
Banach spaces X0 and Y0 and isomorphisms E ∈ B(Y ⊕ Y0,X ⊕ X0) and
F ∈ B(X ⊕ X0,Y ⊕ Y0) such that[

U 0
0 IX0

]
= E

[
V 0
0 IY0

]
F .

• U and V are Schur coupled, abbreviated SC, if there exist invertible
A ∈ B(X ) and D ∈ B(Y) and operators B ∈ B(Y,X ) and C ∈ B(X ,Y)
such that

U = A− BD−1C and V = D − CA−1B.

Theorem [Bart-Tsekanovskii ’92] If U and V are SC, then they are also EAE.

Question [BT ’92] Is the converse also true, i.e., does EAE imply SC?

• Relevant for various applications, including integral equations.

• True for many special cases and classes of operators.

• tH-Messerschmidt-Ran-Roelands ’19: No, when X and Y are essentially
incomparable.
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When do EAE and SC coincide?

Partially confirmative answers

• BT’94: Yes if U and V are Fredholm Hilbert space operators.

• BT’94: Yes if U and V are Fredholm operators with index 0.

• BGKR’05: Yes if SC is an equivalence relation (this is true for EAE).

• tH-Ran’13: Yes for operators on separable Hilbert spaces.

• Timotin’14: Yes for all Hilbert space operators. And a characterization for
EAE in terms of spectral resolutions of |U| and |V |.
• tH-Ran’13: Yes for operators in norm closure of the invertible operators.

• tHMRRW ’18: Yes for compact operators, and some larger operator ideals.

• tHMR ’20: X has complemented copy of Y, or conversely, U, V Fredholm.

(BT=Bart-Tsekanovskii, BGKR=Bart-Gohberg-Kaashoek-Ran,
tHMRRW=tH-Messerschmidt-Ran-Roelands-Wortel)

Definition An operator T in B(X ,Y) is Fredholm if

α(T ) := dim KerW <∞ and β(T ) := dimY/ImT <∞,
and in this case the index of T is defined as Ind(T ) = α(T )− β(T ) ∈ Z.
We write Φ(X ,Y) for the Fredholm operators in B(X ,Y) and Φk(X ,Y) for the
Fredholm operators in B(X ,Y) of index k ∈ Z.
When X = Y: Φ(X ) := Φ(X ,X ) and Φk(X ) := Φk(X ,X ).



The case of essentially incomparable Banach spaces

Definition Two Banach spaces X and Y are essentially incomparable if
IX − ST ∈ Φ(X ) for every S ∈ B(Y,X ) and T ∈ B(X ,Y).

Pitt-Rosenthal Theorem
Any operator T ∈ B(`p, `q), for 1 ≤ q < p <∞, is compact.

Corollary `p and `q, p 6= q, are essentially incomparable.

Theorem Let U ∈ B(X ) and V ∈ B(Y) with X and Y infinite dimensional,
essentially incomparable Banach spaces. Then

• U and V are SC if and only if U and V are Fredholm with index 0 and
dim kerU = dim kerV (and thus dim cokerU = dim cokerV);
• U and V are EAE if and only if U and V are Fredholm with

dim kerU = dim kerV and dim cokerU = dim cokerV .

Corollary In general the operators relation SC and EAE do not coincide:
Take for U and V both the forward shift on X = `p and Y = `q, p 6= q.

Remark For Fredholm operators on X and Y, EAE and SC coincides when
X ' Y, (more generally when one has a complemented copy in the other),
while this conclusion can not be reached when U and Y are essentially
incomparable.
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EAE for Fredholm operators

The equivalence relation EAE is well understood for Fredholm operators.

Theorem [Bart-Tsekanovskii ’92] Let U ∈ B(X ) and V ∈ B(Y).

• If U and V are EAE, then: U ∈ Φk(X ) ⇐⇒ V ∈ Φk(Y).
• If U ∈ Φ(X ) and V ∈ Φ(Y), then:

U and V are EAE ⇐⇒ α(U) = α(V ) and β(U) = β(V ).

In particular, Ind(U) = Ind(V ) in case U and V are EAE Fredholm operators.

Proposition For Banach spaces X and Y define

EAEk(X ,Y) = {(U,V ) ∈ Φk(X )× Φk(Y) : U and V are EAE}
= {(U,V ) ∈ Φk(X )× Φk(Y) : α(U) = α(V )}.

Then
EAEk(X ,Y) 6= ∅ ⇔ Φk(X ) 6= ∅ and Φk(Y) 6= ∅.
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Remark In ’94 Gowers constructed a Banach space X that was not isomorphic
to any of its hyperplanes, which implies that

IΦ(X ) := {k ∈ Z : Φk(X ) 6= ∅} = {0}.

In ’97 Gowers and Maurey, for each k0 ∈ Z constructed a Banach space X so
that IΦ(X ) = k0Z.
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IEAE(X ,Y) = {k ∈ Z : EAEk(X ,Y) 6= ∅}.

Then IEAE(X ,Y) = eae(X ,Y)Z where

N0 3 eae(X ,Y) :=

{
0 if IΦ(X ) ∩ IΦ(Y) ∩ N = ∅,
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For which k ∈ Z do we have EAEk(X ,Y) = SCk(X ,Y)?

Definition For Banach spaces X and Y, set

EAEk(X ,Y) = {(U,V ) ∈ Φk(X )× Φk(Y) : U and V are EAE},
SCk(X ,Y) = {(U,V ) ∈ Φk(X )× Φk(Y) : U and V are SC}.

Theorem The following four conditions are equivalent for every pair of Banach
spaces X and Y and every k ∈ Z :

• There exists a pair of operators S ∈ B(Y,X ) and T ∈ B(X ,Y) such that
IX − ST ∈ Φk(X ).
• There exists a pair of operators S ∈ B(Y,X ) and T ∈ B(X ,Y) such that

IY − TS ∈ Φk(Y).
• EAEk(X ,Y) = SCk(X ,Y), and this set is non-empty.
• SCk(X ,Y) 6= ∅.

Corollary For every pair of Banach spaces X and Y and every k ∈ Z :

SCk(X ,Y) = ∅ or EAEk(X ,Y) = SCk(X ,Y).

If k ∈ eae(X ,Y)Z, so that EAEk(X ,Y) 6= ∅, precisely one of the two occurs.

Corollary For Banach spaces X and Y set

IEAE(X ,Y) = {k ∈ Z : EAEk(X ,Y) 6= ∅}, ISC(X ,Y) = {k ∈ Z : SCk(X ,Y) 6= ∅}.
Then EAE and SC coincide for Banach spaces iff IEAE(X ,Y) = ISC(X ,Y).
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Do we have ISC(X ,Y) = sc(X ,Y)Z for some sc(X ,Y) ∈ N0?

The obvious candidate for sc(X ,Y) is:

sc(X ,Y) =

{
0 if ISC(X ,Y) ∩ N = ∅,
min ISC(X ,Y) ∩ N otherwise.

Lemma The set ISC(X ,Y) has the following properties:

• 0 and sc(X ,Y) are in ISC(X ,Y).
• kZ ⊂ ISC(X ,Y) for every k ∈ ISC(X ,Y).

Corollary ISC(X ,Y) = sc(X ,Y)Z iff ISC(X ,Y) is closed under addition.
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• An operator T ∈ B(X ,Y) is inessential if IX − ST ∈ Φ(X ) for every

S ∈ B(Y,X ); we write E (X ,Y) for the inessential operators in B(X ,Y).

• We say that a subset Σ of B(X ,Y) is essentially closed under addition if,
for every pair of operators U,V ∈ Σ, there exists an inessential operator
R ∈ E (X ,Y) such that U + V − R ∈ Σ.

• Set GY(X ) = {ST : S ∈ B(Y,X ), T ∈ B(X ,Y)}.
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that is isomorphic to Y ⊕ Y.

• Most Banach spaces Y satisfy Y ' Y ⊕ Y; Gowers and Maurey
constructed a Banach space Y ' Y ⊕ Y ⊕ Y but Y 6' Y ⊕ Y.

• For the quasi-reflexive James spaces Jp and cJq, p 6= q, X = Jp ⊕Jp ⊕Jq

and Y = Jp ⊕Jq ⊕Jq are such that GY(X ) and GX (Y) are not essentially
closed under addition, yet ISC(X ,Y) is closed under addition.
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min ISC(X ,Y) ∩ N otherwise.

Lemma The set ISC(X ,Y) has the following properties:

• 0 and sc(X ,Y) are in ISC(X ,Y).
• kZ ⊂ ISC(X ,Y) for every k ∈ ISC(X ,Y).

Corollary ISC(X ,Y) = sc(X ,Y)Z iff ISC(X ,Y) is closed under addition.

Proposition For Banach spaces X and Y we have:

• sc(X ,Y) = n eae(X ,Y) for some n ∈ N0;

• sc(X ,Y)Z ⊆ ISC(X ,Y) = {k ∈ Z : SCk(X ,Y) = EAEk(X ,Y) 6= ∅}
⊆ eae(X ,Y)Z = {k ∈ Z : EAEk(X ,Y) 6= ∅} = IΦ(X ) ∩ IΦ(Y).

• Suppose that sc(X ,Y) ∈ {0, eae(X ,Y)}. Then ISC(X ,Y) = sc(X ,Y)Z.

Corollary For Banach spaces X and Y we have ISC(X ,Y) = IEAE(X ,Y) if and
only if sc(X ,Y) = eae(X ,Y).



Essential and projectively incomparability

Definition Two Banach spaces X and Y are called

• essentially incomparable if IX − ST ∈ Φ(X ) for every S ∈ B(Y,X ) and
T ∈ B(X ,Y);
• totally incomparable if no closed, infinite-dimensional subspace of X

embeds isomorphically into Y;
• projectively incomparable if no infinite-dimensional, complemented

subspace of X is isomorphic to a complemented subspace of Y.

Theorem We have the following implications:
total incomparability =⇒ essential incomparability =⇒ projective incomparability.

Remark A converse to the reverse of the first implication is well known.
Tarafdar asked in 1972 whether essential and projective incomparability might
be the same. This was only disproved in 2000 by Aiena and González, using a
sophisticated Banach space constructed by Gowers and Maurey, and that is the
only known counterexample so far.

Theorem
• For every k0 ∈ N, there exists a pair of projectively incomparable Banach

spaces X and Y such that sc(X ,Y) = eae(X ,Y) = k0.
• For every k0 ∈ N, there exists a pair of projectively incomparable Banach

spaces X and Y such that eae(X ,Y) = 1 and ISC(X ,Y) = k0Z, and
consequently sc(X ,Y) = k0.
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When X and Y are not projectively incomparability

When X and Y are not projectively incomparability, then

X = X1 ⊕X2 and Y = Y1 ⊕ Y2 with X2 ' Y2 infinite dimensional. (∗)

Theorem
• For every k0 ∈ N, there exist Banach spaces X and Y as in (∗) such that:

(i) X1 and Y1 are projectively incomparable.
(ii) X1 and X2 are essentially incomparable, and Y1 and Y2 are essentially

incomparable.
(iii) sc(X ,Y) = eae(X ,Y) = k0.

• For every k0 ∈ N, there exist Banach spaces X and Y as in (∗) that satisfy
(i) and (ii) above, and eae(X ,Y) = 1 and IopSC (X ,Y) = k0Z, and
consequently sc(X ,Y) = k0.

Remarks

• The spaces are constructed using ‘exotic’ Banach spaces constructed by
Gowers and Maurey in the 1990s.

• Question: When X and Y are not projectively incomparable, can we always
find a decomposition as in (∗) satisfying conditions (i) and (ii) above?

• Answer: No. Take X =
(⊕∞

n=1 `
n
1

)
c0

and Y =
(⊕∞

n=1 `
n
2

)
c0

. Both contain

c0 as complemented copy. For Z = X or Z = Y, if W is a complemented
subspace of Z, then W ' c0 or W ' Z.
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