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Equivalence After Extension and Schur Coupling l@

Definition Let U € #(X) and V € %()) be bounded operators on Banach
spaces X and ). We say that:
e U and V are equivalent after extension, abbreviated EAE, if there exist
Banach spaces Xy and ), and isomorphisms E € B(Y @ Yo, X & Xp) and
F e B(X®X,Y &) such that

u o vV o0
{0 IXJ =F {0 Iyo} F
e U and V are Schur coupled, abbreviated SC, if there exist invertible
A€ B(X) and D € #B(Y) and operators B € B(Y,X) and C € B(X,))

such that
U=A—-—BD'C and V=D-CA'B.
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A€ B(X) and D € #B(Y) and operators B € B(Y,X) and C € B(X,))
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U=A—-—BD'C and V=D-CA'B.

Theorem [Bart-Tsekanovskii '92] If U and V are SC, then they are also EAE.
Question [BT '92]Is the converse also true, i.e., does EAE imply SC?
e Relevant for various applications, including integral equations.

e True for many special cases and classes of operators.

e tH-Messerschmidt-Ran-Roelands '19: No, when X and ) are essentially
incomparable.



When do EAE and SC coincide?

Partially confirmative answers

BT'94: Yes if U and V are Fredholm Hilbert space operators.
BT'94: Yes if U and V are Fredholm operators with index 0.
BGKR'05: Yes if SC is an equivalence relation (this is true for EAE).
tH-Ran'13: Yes for operators on separable Hilbert spaces.

Timotin'14: Yes for all Hilbert space operators. And a characterization for
EAE in terms of spectral resolutions of |U| and |V/|.

tH-Ran’13: Yes for operators in norm closure of the invertible operators.
tHMRRW '18: Yes for compact operators, and some larger operator ideals.

tHMR '20: X has complemented copy of ), or conversely, U, V Fredholm.

(BT=Bart-Tsekanovskii, BGKR=Bart-Gohberg-Kaashoek-Ran,
tHMRRW=tH-Messerschmidt-Ran-Roelands-Wortel)

Definition An operator T in B(X,)) is Fredholm if

a(T) :=dimKerW < oo and S(T):=dimY/ImT < oo,

and in this case the index of T is defined as Ind(T) = «(T) — 8(T) € Z.

We write ®(X,Y) for the Fredholm operators in B(X,Y) and ®,(X,)) for the
Fredholm operators in B(X,Y) of index k € Z.

When X = Y: &(X) := (X, X) and P (X) := O (X, X).




The case of essentially incomparable Banach spaces l[l" r

Definition Two Banach spaces X’ and ) are essentially incomparable if
Ix — ST € ®(X) for every S € B(Y,X) and T € B(X,)).

Pitt-Rosenthal Theorem
Any operator T € B(£P,£9), for 1 < g < p < 00, is compact.

Corollary (P and (9, p # q, are essentially incomparable.
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Pitt-Rosenthal Theorem
Any operator T € B(£P,£9), for 1 < g < p < 00, is compact.

Corollary (P and (9, p # q, are essentially incomparable.

Theorem Let U € B(X) and V € B(Y) with X and Y infinite dimensional,
essentially incomparable Banach spaces. Then
e U and V are SC if and only if U and V' are Fredholm with index 0 and
dimker U = dimker V' (and thus dim cokerU = dim cokerV/);
e U and V are EAE if and only if U and V are Fredholm with
dim ker U = dimker V' and dim cokerU = dim cokerV'.

Corollary In general the operators relation SC and EAE do not coincide:
Take for U and V both the forward shift on X = ¢ and Y = {9, p # q.
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Ix — ST € ®(X) for every S € B(Y,X) and T € B(X,)).

Pitt-Rosenthal Theorem
Any operator T € B(£P,£9), for 1 < g < p < 00, is compact.

Corollary (P and (9, p # q, are essentially incomparable.

Theorem Let U € B(X) and V € B(Y) with X and Y infinite dimensional,
essentially incomparable Banach spaces. Then
e U and V are SC if and only if U and V' are Fredholm with index 0 and
dimker U = dimker V' (and thus dim cokerU = dim cokerV/);
e U and V are EAE if and only if U and V are Fredholm with
dim ker U = dimker V' and dim cokerU = dim cokerV'.

Corollary In general the operators relation SC and EAE do not coincide:
Take for U and V both the forward shift on X = ¢ and Y = {9, p # q.

Remark For Fredholm operators on X and ), EAE and SC coincides when
X =~ ), (more generally when one has a complemented copy in the other),
while this conclusion can not be reached when U and ) are essentially
incomparable.



EAE for Fredholm operators l[l"

The equivalence relation EAE is well understood for Fredholm operators.

Theorem [Bart-Tsekanovskii '92] Let U € #(X) and V € A()).
e If U and V are EAE, then: U € &, (X) < V € (V).
e IfU e ®(X) and V € ®()), then:

U and V are EAE — «o(U) = (V) and p(U) = B(V).
In particular, Ind(U) = Ind(V') in case U and V are EAE Fredholm operators.
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Remark In '94 Gowers constructed a Banach space X that was not isomorphic
to any of its hyperplanes, which implies that

To(X) = {k € Z: ®4(X) # 0} = {0}.

In 97 Gowers and Maurey, for each ko € Z constructed a Banach space X so
that Io(X) = koZ.
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0 ifﬂq;(.)(')ﬂﬂq)(y)ﬂN:@,

No 3 eae(X, =
° (X.5) {min]lo(X)ﬁ]Iq,(y)ﬁN otherwise.



For which k € Z do we have EAE,(X,Y) = SCy(X,))?

Definition For Banach spaces X and ), set
EAEL(X,Y) = {(U, V) € ®«(X) x ®(Y) : U and V are EAE},
SC(X,Y) ={(U, V) € (X)) X ®,(Y) : U and V are SC}.
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EAEL(X,Y) = {(U, V) € ®«(X) x ®(Y) : U and V are EAE},
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spaces X and Y and every k € Z:
e There exists a pair of operators S € B(Y,X) and T € B(X,Y) such that
lx — ST € ¢k(X)
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o EAE((X,Y) = SCk(X,Y), and this set is non-empty.
o SCu(X,Y) #0.
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Remarks

e The set % (X) is closed under addition if J has a complemented subspace
that is isomorphic to Y & ).
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Corollary Isc(X,Y) = sc(X, V)Z iff Isc(X, ) is closed under addition.

Proposition Suppose that at least one of the sets 9y (X') and 9x(Y) is essentially
closed under addition. Then Isc(X,Y) is closed under addition.

Remarks

e The set % (X) is closed under addition if J has a complemented subspace
that is isomorphic to Y & ).

e Most Banach spaces ) satisfy Y ~ Y & ); Gowers and Maurey
constructed a Banach space Y ~ Y @Y Y but Y 2V D).

e For the quasi-reflexive James spaces J, and cJg, p# ¢, X = T, D T, D Tq

and Y = J, ® Jq ® Ty are such that ¥y (X) and ¥x () are not essentially
closed under addition, yet Isc(X,)) is closed under addition.
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Lemma The set Isc(X,Y) has the following properties:
e 0 andsc(X,)) are in Isc(X, D).
o k7 C Isc(X,Y) for every k € Isc(X,)).

Corollary Isc(X,Y) = sc(X, V)Z iff Isc(X, ) is closed under addition.
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only known counterexample so far.
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Theorem
e For every kg € N, there exists a pair of projectively incomparable Banach
spaces X and Y such that sc(X,)) = eae(X,Y) = ko.
e For every ko € N, there exists a pair of projectively incomparable Banach
spaces X and Y such that eae(X,Y) =1 and Isc(X,Y) = koZ, and
consequently sc(X,)) = ko.
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(if) X1 and X, are essentially incomparable, and Y1 and ) are essentially
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Remarks

e The spaces are constructed using ‘exotic’ Banach spaces constructed by
Gowers and Maurey in the 1990s.
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When & and ) are not projectively incomparability, then
X=X1®AX and Y=V ®I» with X5 ~ ) infinite dimensional. ()

Theorem
e For every ko € N, there exist Banach spaces X and ) as in (*) such that:
(i) X1 and Y1 are projectively incomparable.
(if) X1 and X, are essentially incomparable, and Y1 and ) are essentially
incomparable.

(iii) sc(X,Y) = eae(X,)) = ko.

e For every ko € N, there exist Banach spaces X and ) as in (x) that satisfy
(i) and (ii) above, and eae(X,Y) =1 and lopsc(X,)) = koZ, and
consequently sc(X,)) = ko.

Remarks

e The spaces are constructed using ‘exotic’ Banach spaces constructed by
Gowers and Maurey in the 1990s.

e Question: When X and ) are not projectively incomparable, can we always
find a decomposition as in (x) satisfying conditions (i) and (ii) above?




When X and ) are not projectively incomparability

When & and ) are not projectively incomparability, then
X=X1®A and Y=V ®I» with X5 ~ ) infinite dimensional. ()

Theorem
e For every ko € N, there exist Banach spaces X and ) as in (*) such that:

(i) X1 and Y1 are projectively incomparable.
(if) X1 and X, are essentially incomparable, and Y1 and ) are essentially

incomparable.
(i) se(X,Y) = eae(X,Y) = ko.
e For every ko € N, there exist Banach spaces X and ) as in (x) that satisfy
(i) and (ii) above, and eae(X,Y) =1 and lopsc(X,)) = koZ, and

consequently sc(X,)) = ko.

Remarks

e The spaces are constructed using ‘exotic’ Banach spaces constructed by
Gowers and Maurey in the 1990s.

e Question: When X and ) are not projectively incomparable, can we always
find a decomposition as in (x) satisfying conditions (i) and (ii) above?

e Answer: No. Take X = (B;°, Z{’)CO and Y = (2, ZS)CO. Both contain
co as complemented copy. For Z = X or Z =), if W is a complemented
subspace of Z, then W ~ ¢y or W ~ Z.
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