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Aim

Surjective isometries of L1+L∞[0,∞) were characterized in
1992 by Grza±lewicz and Schaefer.

The aim of this talk is to present a non-commutative analogue
of this result.
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Outline

1 L1+L∞-spaces
Commutative L1+L∞-spaces
Non-commutative L1+L∞-spaces

2 Extreme points of the unit balls of L1+L∞-spaces
Extreme points of the unit balls of commutative
L1+L∞-spaces
Extreme points of the unit balls of non-commutative
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Ingredients:

(Ω,Σ,µ) - a measure space

L(Ω) - the space of all (equivalence classes of) measurable
functions on Ω

L0∞(Ω) - functions in L(Ω) which are bounded, except possibly
on a set of �nite measure

The linear space
L1+L∞(Ω) = {f ∈ L0∞(Ω) : f = g +h,g ∈ L1(Ω),h ∈ L∞(Ω)}
Equipped with the norm∥∥f ∥∥

L1+L∞(Ω)
= inf{

∥∥g∥∥
1
+
∥∥h∥∥

∞
: f = g+h,g ∈ L1(Ω),h∈ L∞(Ω)}
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The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite
ones!)

Faithful normal semi-�nite (fns) trace: τ : A + → [0,∞]

τ-measurable operators: L0∞(A ) (also denoted S(A,τ) or
S(τ)).

closed, densely de�ned operators
a�liated with the von Neumann algebra
τ(e |x |(λ ,∞))< ∞ for some λ > 0

Note that the trace can be extended to L0∞(A )+.

P. de Jager J. Conradie Extreme point methods in the study of isometries on certain noncommutative spaces



L1+L∞-spaces
Extreme points of the unit balls of L1+L∞-spaces

Isometries on L1+L∞-spaces

Commutative L1+L∞-spaces
Non-commutative L1+L∞-spaces

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite
ones!)

Faithful normal semi-�nite (fns) trace: τ : A + → [0,∞]

τ-measurable operators: L0∞(A ) (also denoted S(A,τ) or
S(τ)).

closed, densely de�ned operators
a�liated with the von Neumann algebra
τ(e |x |(λ ,∞))< ∞ for some λ > 0

Note that the trace can be extended to L0∞(A )+.

P. de Jager J. Conradie Extreme point methods in the study of isometries on certain noncommutative spaces



L1+L∞-spaces
Extreme points of the unit balls of L1+L∞-spaces

Isometries on L1+L∞-spaces

Commutative L1+L∞-spaces
Non-commutative L1+L∞-spaces

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite
ones!)

Faithful normal semi-�nite (fns) trace: τ : A + → [0,∞]

τ-measurable operators: L0∞(A ) (also denoted S(A,τ) or
S(τ)).

closed, densely de�ned operators
a�liated with the von Neumann algebra
τ(e |x |(λ ,∞))< ∞ for some λ > 0

Note that the trace can be extended to L0∞(A )+.

P. de Jager J. Conradie Extreme point methods in the study of isometries on certain noncommutative spaces



L1+L∞-spaces
Extreme points of the unit balls of L1+L∞-spaces

Isometries on L1+L∞-spaces

Commutative L1+L∞-spaces
Non-commutative L1+L∞-spaces

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite
ones!)

Faithful normal semi-�nite (fns) trace: τ : A + → [0,∞]

τ-measurable operators: L0∞(A ) (also denoted S(A,τ) or
S(τ)).

closed, densely de�ned operators
a�liated with the von Neumann algebra
τ(e |x |(λ ,∞))< ∞ for some λ > 0

Note that the trace can be extended to L0∞(A )+.

P. de Jager J. Conradie Extreme point methods in the study of isometries on certain noncommutative spaces



L1+L∞-spaces
Extreme points of the unit balls of L1+L∞-spaces

Isometries on L1+L∞-spaces

Commutative L1+L∞-spaces
Non-commutative L1+L∞-spaces

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite
ones!)

Faithful normal semi-�nite (fns) trace: τ : A + → [0,∞]

τ-measurable operators: L0∞(A ) (also denoted S(A,τ) or
S(τ)).

closed, densely de�ned operators
a�liated with the von Neumann algebra
τ(e |x |(λ ,∞))< ∞ for some λ > 0

Note that the trace can be extended to L0∞(A )+.

P. de Jager J. Conradie Extreme point methods in the study of isometries on certain noncommutative spaces



L1+L∞-spaces
Extreme points of the unit balls of L1+L∞-spaces

Isometries on L1+L∞-spaces

Commutative L1+L∞-spaces
Non-commutative L1+L∞-spaces

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite
ones!)

Faithful normal semi-�nite (fns) trace: τ : A + → [0,∞]

τ-measurable operators: L0∞(A ) (also denoted S(A,τ) or
S(τ)).

closed, densely de�ned operators
a�liated with the von Neumann algebra
τ(e |x |(λ ,∞))< ∞ for some λ > 0

Note that the trace can be extended to L0∞(A )+.

P. de Jager J. Conradie Extreme point methods in the study of isometries on certain noncommutative spaces



L1+L∞-spaces
Extreme points of the unit balls of L1+L∞-spaces

Isometries on L1+L∞-spaces

Commutative L1+L∞-spaces
Non-commutative L1+L∞-spaces

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite
ones!)

Faithful normal semi-�nite (fns) trace: τ : A + → [0,∞]

τ-measurable operators: L0∞(A ) (also denoted S(A,τ) or
S(τ)).

closed, densely de�ned operators
a�liated with the von Neumann algebra
τ(e |x |(λ ,∞))< ∞ for some λ > 0

Note that the trace can be extended to L0∞(A )+.

P. de Jager J. Conradie Extreme point methods in the study of isometries on certain noncommutative spaces



L1+L∞-spaces
Extreme points of the unit balls of L1+L∞-spaces

Isometries on L1+L∞-spaces

Commutative L1+L∞-spaces
Non-commutative L1+L∞-spaces

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite
ones!)

Faithful normal semi-�nite (fns) trace: τ : A + → [0,∞]

τ-measurable operators: L0∞(A ) (also denoted S(A,τ) or
S(τ)).

closed, densely de�ned operators
a�liated with the von Neumann algebra
τ(e |x |(λ ,∞))< ∞ for some λ > 0

Note that the trace can be extended to L0∞(A )+.

P. de Jager J. Conradie Extreme point methods in the study of isometries on certain noncommutative spaces



L1+L∞-spaces
Extreme points of the unit balls of L1+L∞-spaces

Isometries on L1+L∞-spaces

Commutative L1+L∞-spaces
Non-commutative L1+L∞-spaces

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite
ones!)

Faithful normal semi-�nite (fns) trace: τ : A + → [0,∞]

τ-measurable operators: L0∞(A ) (also denoted S(A,τ) or
S(τ)).

closed, densely de�ned operators
a�liated with the von Neumann algebra
τ(e |x |(λ ,∞))< ∞ for some λ > 0

Note that the trace can be extended to L0∞(A )+.

P. de Jager J. Conradie Extreme point methods in the study of isometries on certain noncommutative spaces



L1+L∞-spaces
Extreme points of the unit balls of L1+L∞-spaces

Isometries on L1+L∞-spaces

Commutative L1+L∞-spaces
Non-commutative L1+L∞-spaces

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite
ones!)

Faithful normal semi-�nite (fns) trace: τ : A + → [0,∞]

τ-measurable operators: L0∞(A ) (also denoted S(A,τ) or
S(τ)).

closed, densely de�ned operators
a�liated with the von Neumann algebra
τ(e |x |(λ ,∞))< ∞ for some λ > 0

Note that the trace can be extended to L0∞(A )+.

P. de Jager J. Conradie Extreme point methods in the study of isometries on certain noncommutative spaces



L1+L∞-spaces
Extreme points of the unit balls of L1+L∞-spaces

Isometries on L1+L∞-spaces

Commutative L1+L∞-spaces
Non-commutative L1+L∞-spaces

The non-commutative setting

Ingredients:

von Neumann algebra: A ⊆ B(H) (we will stick to semi-�nite
ones!)

Faithful normal semi-�nite (fns) trace: τ : A + → [0,∞]

τ-measurable operators: L0∞(A ) (also denoted S(A,τ) or
S(τ)).

closed, densely de�ned operators
a�liated with the von Neumann algebra
τ(e |x |(λ ,∞))< ∞ for some λ > 0

Note that the trace can be extended to L0∞(A )+.

P. de Jager J. Conradie Extreme point methods in the study of isometries on certain noncommutative spaces



L1+L∞-spaces
Extreme points of the unit balls of L1+L∞-spaces

Isometries on L1+L∞-spaces

Commutative L1+L∞-spaces
Non-commutative L1+L∞-spaces

Example

Let (Ω,Σ,µ) be a σ -�nite measure space and H = L2(Ω).

For f ∈ L(Ω), de�ne

Mf (g) = f .g ∀g ∈ L2(µ) : fg ∈ L2(µ)

Let A = {Mf : f ∈ L∞(µ)}
De�ning a trace:

τ(Mf ) :=
∫
Ω
f dµ ∀Mf ∈ A +

The set of trace-measurable operators:

L0∞(A ) = {Mf : f ∈ L0∞(Ω)}
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Proposition (Hudzik (1993))

Suppose (Ω,Σ,µ) is a nonatomic measure space. If µ(Ω)≤ 1, then
the unit ball of L1+L∞(Ω) does not have any extreme points. If

µ(Ω)> 1, then f is an extreme point of the unit ball of L1+L∞(Ω)
if and only if |f (t)|= 1 for µ-a.e. t ∈ Ω.
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Proposition (-,Conradie (2022))

Suppose (A ,τ) is a non-atomic semi-�nite von Neumann algebra.

If τ(1)≤ 1, then the unit ball of L1+L∞(A ) does not have any

extreme points. If τ(1)> 1, then an element x is an extreme point

of the unit ball of L1+L∞(A ) if and only if x is a partial isometry

with n(x)A n(x∗) = {0}.
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Isometries on commutative L1+L∞-spaces

Theorem (Grza±lewicz (1992(b)))

Let T be a surjective isometry of L1+L∞[0,∞). Then T is of the

form

(Tf )(t) = r(t)f (φ(t)),

where |r(t)|= 1 m-a.e and φ : [0,∞)→ [0,∞) is an invertible

measure preserving transformation.
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Theorem (-,Conradie (2022))

Suppose (A ,τ) and (B,ν) are non-atomic semi-�nite von

Neumann algebras with τ(1),ν(1)> 1. If
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Idea of the proof

Suppose U is a surjective isometry from L1+L∞(A ) onto
L1+L∞(B).

Suppose x ∈ BA . Then x = 1
2
(v +w) for some

v ,w ∈ ext(BA ), by [Theorem 3, Choda (1970)].

It follows from the characterization of the extreme points that
the unit ball of A and the unit ball of L1+L∞(A) have the
same extreme points

Therefore U(v) and U(w) are extreme points of BB.
One can use this to show that U maps A onto B
L∞-isometrically
By Kadison's Theorem [Kadison (1951)], there exists a Jordan
∗-isomorphism from A onto B and a unitary operator u ∈ B
such that U(x) = uJ(x) for all x ∈ A .

Extend this representation of U to all of L1+L∞(A ).
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Comments

Some comments regarding the assumption 1< τ(1),ν(1):

If τ(1A )< ∞, then L1+L∞(A ) = L1(A ).

If, in addition τ(1A )≤ 1, then
∥∥x∥∥

1+∞
=
∥∥x∥∥

1
for every

x ∈ L1+L∞(A ).

Consequently, if τ(1A ),ν(1B)≤ 1, then surjective isometries
from L1+L∞(A ) onto L1+L∞(B) are characterized by
Yeadon's Theorem ([Theorem 2, Yeadon (1981)]).
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The End

Thank you for your attention.
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