Extreme point methods in the study of isometries on certain noncommutative spaces

- P. de Jager
- J. Conradie

Unisa University of Cape Town

SAMS 2022 - Stellenbosch University

Aim

- Surjective isometries of $L^1 + L^{\infty}[0,\infty)$ were characterized in 1992 by Grzaślewicz and Schaefer.
- The aim of this talk is to present a non-commutative analogue of this result

Aim

- Surjective isometries of $L^1 + L^{\infty}[0,\infty)$ were characterized in 1992 by Grzaślewicz and Schaefer.
- The aim of this talk is to present a non-commutative analogue of this result

Aim

- Surjective isometries of $L^1 + L^{\infty}[0,\infty)$ were characterized in 1992 by Grzaślewicz and Schaefer.
- The aim of this talk is to present a non-commutative analogue of this result.

Outline

- - Commutative $L^1 + L^{\infty}$ -spaces
 - Non-commutative $L^1 + L^{\infty}$ -spaces
- 2 Extreme points of the unit balls of $L^1 + L^{\infty}$ -spaces
 - Extreme points of the unit balls of commutative $L^1 + L^\infty$ -spaces
 - Extreme points of the unit balls of non-commutative $L^1 + L^\infty$ -spaces
- 3 Isometries on $L^1 + L^{\infty}$ -spaces
 - Isometries on commutative $L^1 + L^{\infty}$ -spaces
 - Isometries on non-commutative $L^1 + L^{\infty}$ -spaces

- (Ω, Σ, μ) a measure space
- $L(\Omega)$ the space of all (equivalence classes of) measurable functions on Ω
- $L^0_\infty(\Omega)$ functions in $L(\Omega)$ which are bounded, except possibly on a set of finite measure
- The linear space $L^1+L^\infty(\Omega)=\{f\in L^0_\infty(\Omega): f=g+h, g\in L^1(\Omega), h\in L^\infty(\Omega)\}$
- Equipped with the norm

$$||f||_{L^1+L^{\infty}(\Omega)} = \inf\{||g||_1 + ||h||_{\infty} : f = g+h, g \in L^1(\Omega), h \in L^{\infty}(\Omega)\}$$

- (Ω, Σ, μ) a measure space
- $L(\Omega)$ the space of all (equivalence classes of) measurable functions on Ω
- $L^0_\infty(\Omega)$ functions in $L(\Omega)$ which are bounded, except possibly on a set of finite measure
- The linear space $L^1+L^\infty(\Omega)=\{f\in L^0_\infty(\Omega): f=g+h, g\in L^1(\Omega), h\in L^\infty(\Omega)\}$
- Equipped with the norm

$$||f||_{L^1+L^{\infty}(\Omega)} = \inf\{||g||_1 + ||h||_{\infty} : f = g+h, g \in L^1(\Omega), h \in L^{\infty}(\Omega)\}$$

- \bullet (Ω, Σ, μ) a measure space
- $L(\Omega)$ the space of all (equivalence classes of) measurable functions on Ω
- $L^0_\infty(\Omega)$ functions in $L(\Omega)$ which are bounded, except possibly on a set of finite measure
- The linear space $L^1+L^\infty(\Omega)=\{f\in L^0_\infty(\Omega): f=g+h, g\in L^1(\Omega), h\in L^\infty(\Omega)\}$
- Equipped with the norm

$$||f||_{L^1+L^{\infty}(\Omega)} = \inf\{||g||_1 + ||h||_{\infty} : f = g+h, g \in L^1(\Omega), h \in L^{\infty}(\Omega)\}$$

- \bullet (Ω, Σ, μ) a measure space
- $L(\Omega)$ the space of all (equivalence classes of) measurable functions on Ω
- $L^0_\infty(\Omega)$ functions in $L(\Omega)$ which are bounded, except possibly on a set of finite measure
- The linear space $L^1+L^\infty(\Omega)=\{f\in L^0_\infty(\Omega): f=g+h, g\in L^1(\Omega), h\in L^\infty(\Omega)\}$
- Equipped with the norm

$$||f||_{L^1+L^\infty(\Omega)} = \inf\{||g||_1 + ||h||_\infty : f = g+h, g \in L^1(\Omega), h \in L^\infty(\Omega)\}$$

- \bullet (Ω, Σ, μ) a measure space
- $L(\Omega)$ the space of all (equivalence classes of) measurable functions on Ω
- $L^0_\infty(\Omega)$ functions in $L(\Omega)$ which are bounded, except possibly on a set of finite measure
- The linear space $L^1+L^\infty(\Omega)=\{f\in L^0_\infty(\Omega): f=g+h, g\in L^1(\Omega), h\in L^\infty(\Omega)\}$
- Equipped with the norm

$$||f||_{L^1+L^{\infty}(\Omega)} = \inf\{||g||_1 + ||h||_{\infty} : f = g+h, g \in L^1(\Omega), h \in L^{\infty}(\Omega)\}$$

- \bullet (Ω, Σ, μ) a measure space
- $L(\Omega)$ the space of all (equivalence classes of) measurable functions on Ω
- $L^0_\infty(\Omega)$ functions in $L(\Omega)$ which are bounded, except possibly on a set of finite measure
- The linear space $L^1+L^\infty(\Omega)=\{f\in L^0_\infty(\Omega): f=g+h, g\in L^1(\Omega), h\in L^\infty(\Omega)\}$
- Equipped with the norm

$$||f||_{L^1+L^{\infty}(\Omega)} = \inf\{||g||_1 + ||h||_{\infty} : f = g+h, g \in L^1(\Omega), h \in L^{\infty}(\Omega)\}$$

- \bullet (Ω, Σ, μ) a measure space
- $L(\Omega)$ the space of all (equivalence classes of) measurable functions on Ω
- $L^0_\infty(\Omega)$ functions in $L(\Omega)$ which are bounded, except possibly on a set of finite measure
- The linear space $L^1+L^\infty(\Omega)=\{f\in L^0_\infty(\Omega): f=g+h, g\in L^1(\Omega), h\in L^\infty(\Omega)\}$
- Equipped with the norm

$$||f||_{L^1+L^{\infty}(\Omega)} = \inf\{||g||_1 + ||h||_{\infty} : f = g+h, g \in L^1(\Omega), h \in L^{\infty}(\Omega)\}$$

- von Neumann algebra: $\mathscr{A} \subseteq B(H)$ (we will stick to semi-finite ones!)
- Faithful normal semi-finite (fns) trace: $au: \mathscr{A}^+ o [0,\infty]$
- au-measurable operators: $L^0_\infty(\mathscr{A})$ (also denoted S(A, au) or S(au)).
 - closed, densely defined operators
 - affiliated with the von Neumann algebra
 - $\tau(e^{|x|}(\lambda,\infty)) < \infty$ for some $\lambda > 0$
- Note that the trace can be extended to $L^0_{\infty}(\mathscr{A})^+$.

- von Neumann algebra: $\mathscr{A} \subseteq B(H)$ (we will stick to semi-finite ones!)
- Faithful normal semi-finite (fns) trace: $au: \mathscr{A}^+ o [0,\infty]$
- τ -measurable operators: $L^0_\infty(\mathscr{A})$ (also denoted $S(A,\tau)$ or $S(\tau)$).
 - closed, densely defined operators
 - affiliated with the von Neumann algebra
 - $\tau(e^{|x|}(\lambda,\infty)) < \infty$ for some $\lambda > 0$
- Note that the trace can be extended to $L^0_{\infty}(\mathscr{A})^+$.

- von Neumann algebra: $\mathscr{A} \subseteq B(H)$ (we will stick to semi-finite ones!)
- Faithful normal semi-finite (fns) trace: $au: \mathscr{A}^+ o [0,\infty]$
- τ -measurable operators: $L^0_\infty(\mathscr{A})$ (also denoted $S(A,\tau)$ or $S(\tau)$).
 - closed, densely defined operators
 - affiliated with the von Neumann algebra
 - $\tau(e^{|x|}(\lambda,\infty)) < \infty$ for some $\lambda > 0$
- Note that the trace can be extended to $L^0_{\infty}(\mathscr{A})^+$.

- von Neumann algebra: $\mathscr{A} \subseteq B(H)$ (we will stick to semi-finite ones!)
- Faithful normal semi-finite (fns) trace: $au: \mathscr{A}^+ \to [0,\infty]$
- τ -measurable operators: $L^0_\infty(\mathscr{A})$ (also denoted $S(A,\tau)$ or $S(\tau)$).
 - closed, densely defined operators
 - affiliated with the von Neumann algebra
 - $\tau(e^{|x|}(\lambda,\infty)) < \infty$ for some $\lambda > 0$
- Note that the trace can be extended to $L^0_{\infty}(\mathscr{A})^+$.

- von Neumann algebra: $\mathscr{A} \subseteq B(H)$ (we will stick to semi-finite ones!)
- ullet Faithful normal semi-finite (fns) trace: $au:\mathscr{A}^+ o [0,\infty]$
- τ -measurable operators: $L^0_\infty(\mathscr{A})$ (also denoted $S(A,\tau)$ or $S(\tau)$).
 - closed, densely defined operators
 - affiliated with the von Neumann algebra
 - $\tau(e^{|x|}(\lambda,\infty)) < \infty$ for some $\lambda > 0$
- Note that the trace can be extended to $L^0_{\infty}(\mathscr{A})^+$.

- von Neumann algebra: $\mathscr{A} \subseteq B(H)$ (we will stick to semi-finite ones!)
- ullet Faithful normal semi-finite (fns) trace: $au:\mathscr{A}^+ o [0,\infty]$
- τ -measurable operators: $L^0_\infty(\mathscr{A})$ (also denoted $S(A, \tau)$ or $S(\tau)$).
 - closed, densely defined operators
 - affiliated with the von Neumann algebra
 - $\tau(e^{|x|}(\lambda,\infty)) < \infty$ for some $\lambda > 0$
- Note that the trace can be extended to $L^0_{\infty}(\mathscr{A})^+$.

- von Neumann algebra: $\mathscr{A} \subseteq B(H)$ (we will stick to semi-finite ones!)
- ullet Faithful normal semi-finite (fns) trace: $au:\mathscr{A}^+ o [0,\infty]$
- τ -measurable operators: $L^0_\infty(\mathscr{A})$ (also denoted $S(A, \tau)$ or $S(\tau)$).
 - closed, densely defined operators
 - affiliated with the von Neumann algebra
 - $\tau(e^{|x|}(\lambda,\infty)) < \infty$ for some $\lambda > 0$
- Note that the trace can be extended to $L^0_{\infty}(\mathscr{A})^+$.

- von Neumann algebra: $\mathscr{A} \subseteq B(H)$ (we will stick to semi-finite ones!)
- Faithful normal semi-finite (fns) trace: $au: \mathscr{A}^+ o [0,\infty]$
- τ -measurable operators: $L^0_\infty(\mathscr{A})$ (also denoted $S(A,\tau)$ or $S(\tau)$).
 - closed, densely defined operators
 - affiliated with the von Neumann algebra
 - $\tau(e^{|x|}(\lambda,\infty)) < \infty$ for some $\lambda > 0$
- Note that the trace can be extended to $L^0_{\infty}(\mathscr{A})^+$.

- von Neumann algebra: $\mathscr{A} \subseteq B(H)$ (we will stick to semi-finite ones!)
- ullet Faithful normal semi-finite (fns) trace: $au:\mathscr{A}^+ o [0,\infty]$
- τ -measurable operators: $L^0_\infty(\mathscr{A})$ (also denoted $S(A, \tau)$ or $S(\tau)$).
 - closed, densely defined operators
 - affiliated with the von Neumann algebra
 - $\tau(e^{|x|}(\lambda,\infty)) < \infty$ for some $\lambda > 0$
- Note that the trace can be extended to $L^0_{\infty}(\mathscr{A})^+$.

- von Neumann algebra: $\mathscr{A} \subseteq B(H)$ (we will stick to semi-finite ones!)
- ullet Faithful normal semi-finite (fns) trace: $au:\mathscr{A}^+ o [0,\infty]$
- τ -measurable operators: $L^0_\infty(\mathscr{A})$ (also denoted $S(A, \tau)$ or $S(\tau)$).
 - closed, densely defined operators
 - affiliated with the von Neumann algebra
 - $\tau(e^{|x|}(\lambda,\infty)) < \infty$ for some $\lambda > 0$
- Note that the trace can be extended to $L^0_{\infty}(\mathscr{A})^+$.

- von Neumann algebra: $\mathscr{A} \subseteq B(H)$ (we will stick to semi-finite ones!)
- Faithful normal semi-finite (fns) trace: $au: \mathscr{A}^+ o [0,\infty]$
- τ -measurable operators: $L^0_\infty(\mathscr{A})$ (also denoted $S(A, \tau)$ or $S(\tau)$).
 - closed, densely defined operators
 - affiliated with the von Neumann algebra
 - $\tau(e^{|x|}(\lambda,\infty)) < \infty$ for some $\lambda > 0$
- Note that the trace can be extended to $L^0_\infty(\mathscr{A})^+$.

- Let (Ω, Σ, μ) be a σ -finite measure space and $H = L^2(\Omega)$.
- For $f \in L(\Omega)$, define

$$M_f(g) = f.g$$
 $\forall g \in L^2(\mu) : fg \in L^2(\mu)$

- Let $\mathscr{A} = \{M_f : f \in L^{\infty}(\mu)\}$
- Defining a trace:

$$\tau(M_f) := \int_{\Omega} f \, d\mu \qquad \forall M_f \in \mathscr{A}^+$$

$$L^0_\infty(\mathscr{A}) = \{ M_f : f \in L^0_\infty(\Omega) \}$$

- Let (Ω, Σ, μ) be a σ -finite measure space and $H = L^2(\Omega)$.
- For $f \in L(\Omega)$, define

$$M_f(g) = f.g$$
 $\forall g \in L^2(\mu) : fg \in L^2(\mu)$

- Let $\mathscr{A} = \{M_f : f \in L^{\infty}(\mu)\}$
- Defining a trace:

$$\tau(M_f) := \int_{\Omega} f \, d\mu \qquad \forall M_f \in \mathscr{A}^+$$

$$L_{\infty}(\mathcal{A}) = \{ NI_f : I \in L_{\infty}(\Sigma) \}$$

- Let (Ω, Σ, μ) be a σ -finite measure space and $H = L^2(\Omega)$.
- For $f \in L(\Omega)$, define

$$M_f(g) = f.g$$
 $\forall g \in L^2(\mu) : fg \in L^2(\mu)$

- Let $\mathscr{A} = \{M_f : f \in L^{\infty}(\mu)\}$
- Defining a trace:

$$\tau(M_f) := \int_{\Omega} f \, d\mu \qquad \forall M_f \in \mathscr{A}^+$$

$$L_{\infty}(\mathcal{A}) = \{ M_f : T \in L_{\infty}(\Omega) \}$$

- Let (Ω, Σ, μ) be a σ -finite measure space and $H = L^2(\Omega)$.
- For $f \in L(\Omega)$, define

$$M_f(g) = f.g$$
 $\forall g \in L^2(\mu) : fg \in L^2(\mu)$

- Let $\mathscr{A} = \{M_f : f \in L^{\infty}(\mu)\}$
- Defining a trace:

$$\tau(M_f) := \int_{\Omega} f \, d\mu \qquad \forall M_f \in \mathscr{A}^+$$

$$L_{\infty}(\mathcal{A}) = \{ M_f : I \in L_{\infty}(M_f) \}$$

- Let (Ω, Σ, μ) be a σ -finite measure space and $H = L^2(\Omega)$.
- For $f \in L(\Omega)$, define

$$M_f(g) = f.g$$
 $\forall g \in L^2(\mu) : fg \in L^2(\mu)$

- Let $\mathscr{A} = \{M_f : f \in L^{\infty}(\mu)\}$
- Defining a trace:

$$\tau(M_f) := \int_{\Omega} f \, d\mu \qquad \forall M_f \in \mathscr{A}^+$$

$$L_{\infty}(\mathcal{A}) = \{ M_f : I \in L_{\infty}(M_f) \}$$

- Let (Ω, Σ, μ) be a σ -finite measure space and $H = L^2(\Omega)$.
- For $f \in L(\Omega)$, define

$$M_f(g) = f.g$$
 $\forall g \in L^2(\mu) : fg \in L^2(\mu)$

- Let $\mathscr{A} = \{M_f : f \in L^{\infty}(\mu)\}$
- Defining a trace:

$$\tau(M_f) := \int_{\Omega} f \, d\mu \qquad \forall M_f \in \mathscr{A}^+$$

$$L_{\infty}(\mathcal{A}) = \{ N_{f} : I \in L_{\infty}(\Sigma) \}$$

- Let (Ω, Σ, μ) be a σ -finite measure space and $H = L^2(\Omega)$.
- For $f \in L(\Omega)$, define

$$M_f(g) = f.g$$
 $\forall g \in L^2(\mu) : fg \in L^2(\mu)$

- Let $\mathscr{A} = \{M_f : f \in L^{\infty}(\mu)\}$
- Defining a trace:

$$\tau(M_f) := \int_{\Omega} f \, d\mu \qquad \forall M_f \in \mathscr{A}^+$$

$$L_{\infty}(\mathcal{A}) = \{ M_f : I \in L_{\infty}(M) \}$$

- Let (Ω, Σ, μ) be a σ -finite measure space and $H = L^2(\Omega)$.
- For $f \in L(\Omega)$, define

$$M_f(g) = f.g$$
 $\forall g \in L^2(\mu) : fg \in L^2(\mu)$

- Let $\mathscr{A} = \{M_f : f \in L^{\infty}(\mu)\}$
- Defining a trace:

$$\tau(M_f) := \int_{\Omega} f \, d\mu \qquad \forall M_f \in \mathscr{A}^+$$

$$L_{\infty}(\mathcal{A}) = \{ NI_f : I \in L_{\infty}(\Omega) \}$$

- Let (Ω, Σ, μ) be a σ -finite measure space and $H = L^2(\Omega)$.
- For $f \in L(\Omega)$, define

$$M_f(g) = f.g$$
 $\forall g \in L^2(\mu) : fg \in L^2(\mu)$

- Let $\mathscr{A} = \{M_f : f \in L^{\infty}(\mu)\}$
- Defining a trace:

$$\tau(M_f) := \int_{\Omega} f \, d\mu \qquad \forall M_f \in \mathscr{A}^+$$

$$L^0_\infty(\mathscr{A}) = \{ M_f : f \in L^0_\infty(\Omega) \}$$

- Suppose (\mathscr{A}, τ) is a semi-finite von Neumann algebra
- $L^1(\mathscr{A}) = \{x \in L^0_\infty(\mathscr{A}) : \tau(|x|) < \infty\}, \ \|x\|_1 = \tau(|x|)$
- $L^{\infty}(\mathscr{A}) = \mathscr{A}, \|x\|_{\infty} = \|x\|_{\mathscr{A}}$
- $(L^1 + L^{\infty})(\mathscr{A})$ is the linear space $\{x \in L^0_{\infty}(\mathscr{A}) : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$
- Equipped with the norm

$$||x||_{1+\infty} = \inf\{||y||_1 + ||z||_{\infty} : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$$

- ullet Suppose (\mathscr{A}, au) is a semi-finite von Neumann algebra
- $L^{1}(\mathscr{A}) = \{x \in L^{0}_{\infty}(\mathscr{A}) : \tau(|x|) < \infty\}, \ ||x||_{1} = \tau(|x|)$
- $L^{\infty}(\mathscr{A}) = \mathscr{A}, \|x\|_{\infty} = \|x\|_{\mathscr{A}}$
- $(L^1 + L^{\infty})(\mathscr{A})$ is the linear space $\{x \in L^0_{\infty}(\mathscr{A}) : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$
- Equipped with the norm

$$||x||_{1+\infty} = \inf\{||y||_1 + ||z||_{\infty} : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$$

- Suppose (\mathscr{A}, τ) is a semi-finite von Neumann algebra
- $L^{1}(\mathscr{A}) = \{x \in L^{0}_{\infty}(\mathscr{A}) : \tau(|x|) < \infty\}, \ ||x||_{1} = \tau(|x|)$
- $L^{\infty}(\mathscr{A}) = \mathscr{A}, \|x\|_{\infty} = \|x\|_{\mathscr{A}}$
- $(L^1 + L^{\infty})(\mathscr{A})$ is the linear space $\{x \in L^0_{\infty}(\mathscr{A}) : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$
- Equipped with the norm

$$||x||_{1+\infty} = \inf\{||y||_1 + ||z||_{\infty} : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$$

- Suppose (\mathscr{A}, τ) is a semi-finite von Neumann algebra
- $L^{1}(\mathscr{A}) = \{x \in L^{0}_{\infty}(\mathscr{A}) : \tau(|x|) < \infty\}, \ ||x||_{1} = \tau(|x|)$
- $L^{\infty}(\mathscr{A}) = \mathscr{A}, \|x\|_{\infty} = \|x\|_{\mathscr{A}}$
- $(L^1 + L^{\infty})(\mathscr{A})$ is the linear space $\{x \in L^0_{\infty}(\mathscr{A}) : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$
- Equipped with the norm

$$||x||_{1+\infty} = \inf\{||y||_1 + ||z||_{\infty} : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$$

- Suppose (\mathscr{A}, τ) is a semi-finite von Neumann algebra
- $L^{1}(\mathscr{A}) = \{x \in L^{0}_{\infty}(\mathscr{A}) : \tau(|x|) < \infty\}, \ ||x||_{1} = \tau(|x|)$
- $L^{\infty}(\mathscr{A}) = \mathscr{A}$, $\|x\|_{\infty} = \|x\|_{\mathscr{A}}$
- $(L^1 + L^{\infty})(\mathscr{A})$ is the linear space $\{x \in L^0_{\infty}(\mathscr{A}) : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$
- Equipped with the norm

$$||x||_{1+\infty} = \inf\{||y||_1 + ||z||_{\infty} : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$$

- Suppose (\mathscr{A}, τ) is a semi-finite von Neumann algebra
- $L^{1}(\mathscr{A}) = \{x \in L^{0}_{\infty}(\mathscr{A}) : \tau(|x|) < \infty\}, \ ||x||_{1} = \tau(|x|)$
- $L^{\infty}(\mathscr{A}) = \mathscr{A}, \|x\|_{\infty} = \|x\|_{\mathscr{A}}$
- $(L^1 + L^{\infty})(\mathscr{A})$ is the linear space $\{x \in L^0_{\infty}(\mathscr{A}) : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$
- Equipped with the norm

$$||x||_{1+\infty} = \inf\{||y||_1 + ||z||_{\infty} : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$$

- Suppose (\mathscr{A}, τ) is a semi-finite von Neumann algebra
- $L^{1}(\mathscr{A}) = \{x \in L^{0}_{\infty}(\mathscr{A}) : \tau(|x|) < \infty\}, \ ||x||_{1} = \tau(|x|)$
- $L^{\infty}(\mathscr{A}) = \mathscr{A}, \|x\|_{\infty} = \|x\|_{\mathscr{A}}$
- $(L^1 + L^{\infty})(\mathscr{A})$ is the linear space $\{x \in L^0_{\infty}(\mathscr{A}) : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$
- Equipped with the norm

$$||x||_{1+\infty} = \inf\{||y||_1 + ||z||_{\infty} : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$$

- Suppose (\mathscr{A}, τ) is a semi-finite von Neumann algebra
- $L^{1}(\mathscr{A}) = \{x \in L^{0}_{\infty}(\mathscr{A}) : \tau(|x|) < \infty\}, \ ||x||_{1} = \tau(|x|)$
- $L^{\infty}(\mathscr{A}) = \mathscr{A}, \|x\|_{\infty} = \|x\|_{\mathscr{A}}$
- $(L^1 + L^{\infty})(\mathscr{A})$ is the linear space $\{x \in L^0_{\infty}(\mathscr{A}) : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$
- Equipped with the norm

$$||x||_{1+\infty} = \inf\{||y||_1 + ||z||_{\infty} : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$$

- Suppose (\mathscr{A}, τ) is a semi-finite von Neumann algebra
- $L^{1}(\mathscr{A}) = \{x \in L^{0}_{\infty}(\mathscr{A}) : \tau(|x|) < \infty\}, \ ||x||_{1} = \tau(|x|)$
- $L^{\infty}(\mathscr{A}) = \mathscr{A}, \|x\|_{\infty} = \|x\|_{\mathscr{A}}$
- $(L^1 + L^{\infty})(\mathscr{A})$ is the linear space $\{x \in L^0_{\infty}(\mathscr{A}) : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$
- Equipped with the norm

$$||x||_{1+\infty} = \inf\{||y||_1 + ||z||_{\infty} : x = y + z, y \in L^1(\mathscr{A}), z \in L^{\infty}(\mathscr{A})\}$$

Proposition (Hudzik (1993))

Proposition (-, Conradie (2022))

Theorem (Grzaślewicz (1992(b)))

Let T be a surjective isometry of $L^1 + L^{\infty}[0,\infty)$. Then T is of the form

$$(Tf)(t) = r(t)f(\phi(t)),$$

where |r(t)| = 1 m-a.e and $\phi : [0, \infty) \to [0, \infty)$ is an invertible measure preserving transformation.

Theorem (Grzaślewicz (1992(b)))

Let T be a surjective isometry of $L^1 + L^{\infty}[0,\infty)$. Then T is of the form

$$(Tf)(t) = r(t)f(\phi(t)),$$

where |r(t)| = 1 m-a.e and $\phi : [0, \infty) \to [0, \infty)$ is an invertible measure preserving transformation.

Theorem (Grzaślewicz (1992(b)))

Let T be a surjective isometry of $L^1 + L^{\infty}[0,\infty)$. Then T is of the form

$$(Tf)(t) = r(t)f(\phi(t)),$$

where |r(t)| = 1 m-a.e and $\phi: [0,\infty) \to [0,\infty)$ is an invertible measure preserving transformation.

Theorem (Grzaślewicz (1992(b)))

Let T be a surjective isometry of $L^1 + L^{\infty}[0,\infty)$. Then T is of the form

$$(Tf)(t) = r(t)f(\phi(t)),$$

where |r(t)| = 1 m-a.e and $\phi : [0, \infty) \to [0, \infty)$ is an invertible measure preserving transformation.

Theorem (Grzaślewicz (1992(b)))

Let T be a surjective isometry of $L^1 + L^{\infty}[0,\infty)$. Then T is of the form

$$(Tf)(t) = r(t)f(\phi(t)),$$

where |r(t)| = 1 m-a.e and $\phi : [0, \infty) \to [0, \infty)$ is an invertible measure preserving transformation.

Theorem (-, Conradie (2022))

Neumann algebras with $\tau(1), v(1) > 1$. If $U: L^1 + L^{\infty}(\mathscr{A}) \to L^1 + L^{\infty}(\mathscr{B})$ is a surjective isometry, then there exist a unique trace-preserving Jordan *-isomorphism J from $S(\mathscr{A},\tau)$ onto $S(\mathscr{B},\nu)$ and a unitary operator $u=U(1)\in\mathscr{B}$ such that U(x) = uJ(x) for all $x \in L^1 + L^\infty(\mathscr{A})$. Furthermore, $U \upharpoonright_\mathscr{A}$ is an L^{∞} -isometry from \mathscr{A} onto \mathscr{B} and $U \upharpoonright_{L^{1}(\mathscr{A})}$ is an L^{1} -isometry from $L^1(\mathscr{A})$ onto $L^1(\mathscr{B})$. Conversely, if $J: S(\mathscr{A}, \tau) \to S(\mathscr{B}, v)$ is a trace-preserving Jordan *-isomorphism and $u \in \mathcal{B}$ is a unitary operator, then letting U(x) = uJ(x) for $x \in L^1 + L^{\infty}(\mathcal{A})$ yields a surjective isometry from $L^1 + L^{\infty}(\mathscr{A})$ onto $L^1 + L^{\infty}(\mathscr{B})$.

Theorem (-, Conradie (2022))

Suppose (\mathscr{A}, τ) and (\mathscr{B}, v) are non-atomic semi-finite von Neumann algebras with $\tau(1), v(1) > 1$. If

Theorem (-, Conradie (2022))

Suppose (\mathscr{A}, τ) and (\mathscr{B}, v) are non-atomic semi-finite von Neumann algebras with $\tau(1), v(1) > 1$. If

 $U: L^1 + L^{\infty}(\mathscr{A}) \to L^1 + L^{\infty}(\mathscr{B})$ is a surjective isometry, then there exist a unique trace-preserving Jordan *-isomorphism J from $S(\mathscr{A},\tau)$ onto $S(\mathscr{B},v)$ and a unitary operator $u=U(1)\in \mathscr{B}$ such that U(x)=uJ(x) for all $x\in L^1+L^{\infty}(\mathscr{A})$. Furthermore, $U\upharpoonright_{\mathscr{A}}$ is an L^{∞} -isometry from \mathscr{A} onto \mathscr{B} and $U\upharpoonright_{L^1(\mathscr{A})}$ is an L^1 -isometry from $L^1(\mathscr{A})$ onto $L^1(\mathscr{B})$. Conversely, if $J:S(\mathscr{A},\tau)\to S(\mathscr{B},v)$ is a trace-preserving Jordan *-isomorphism and $u\in \mathscr{B}$ is a unitary operator, then letting U(x)=uJ(x) for $x\in L^1+L^{\infty}(\mathscr{A})$ yields a surjective isometry from $L^1+L^{\infty}(\mathscr{A})$ onto $L^1+L^{\infty}(\mathscr{B})$.

Theorem (-, Conradie (2022))

Suppose (\mathscr{A}, τ) and (\mathscr{B}, v) are non-atomic semi-finite von Neumann algebras with $\tau(1), v(1) > 1$. If $U: L^1 + L^{\infty}(\mathscr{A}) \to L^1 + L^{\infty}(\mathscr{B})$ is a surjective isometry, then there

Theorem (-, Conradie (2022))

Suppose (\mathscr{A}, τ) and (\mathscr{B}, v) are non-atomic semi-finite von Neumann algebras with $\tau(1), v(1) > 1$. If $U: L^1 + L^{\infty}(\mathscr{A}) \to L^1 + L^{\infty}(\mathscr{B})$ is a surjective isometry, then there exist a unique trace-preserving Jordan *-isomorphism J from $S(\mathscr{A},\tau)$ onto $S(\mathscr{B},\nu)$ and a unitary operator $u=U(1)\in\mathscr{B}$ such

Theorem (-, Conradie (2022))

Suppose (\mathscr{A}, τ) and (\mathscr{B}, v) are non-atomic semi-finite von Neumann algebras with $\tau(1), v(1) > 1$. If $U: L^1 + L^{\infty}(\mathscr{A}) \to L^1 + L^{\infty}(\mathscr{B})$ is a surjective isometry, then there exist a unique trace-preserving Jordan *-isomorphism J from $S(\mathscr{A},\tau)$ onto $S(\mathscr{B},\nu)$ and a unitary operator $u=U(1)\in\mathscr{B}$ such

Theorem (-, Conradie (2022))

Suppose (\mathscr{A}, τ) and (\mathscr{B}, v) are non-atomic semi-finite von Neumann algebras with $\tau(1), v(1) > 1$. If $U: L^1 + L^{\infty}(\mathscr{A}) \to L^1 + L^{\infty}(\mathscr{B})$ is a surjective isometry, then there exist a unique trace-preserving Jordan *-isomorphism J from $S(\mathscr{A},\tau)$ onto $S(\mathscr{B},\nu)$ and a unitary operator $u=U(1)\in\mathscr{B}$ such that U(x) = uJ(x) for all $x \in L^1 + L^\infty(\mathscr{A})$. Furthermore, $U \upharpoonright_\mathscr{A}$ is

Theorem (-, Conradie (2022))

Suppose (\mathscr{A}, τ) and (\mathscr{B}, v) are non-atomic semi-finite von Neumann algebras with $\tau(1), v(1) > 1$. If $U: L^1 + L^{\infty}(\mathscr{A}) \to L^1 + L^{\infty}(\mathscr{B})$ is a surjective isometry, then there exist a unique trace-preserving Jordan *-isomorphism J from $S(\mathscr{A},\tau)$ onto $S(\mathscr{B},\nu)$ and a unitary operator $u=U(1)\in\mathscr{B}$ such that U(x) = uJ(x) for all $x \in L^1 + L^{\infty}(\mathcal{A})$. Furthermore, $U \upharpoonright_{\mathcal{A}}$ is an L^{∞} -isometry from \mathscr{A} onto \mathscr{B} and $U \upharpoonright_{L^{1}(\mathscr{A})}$ is an L^{1} -isometry

Theorem (-, Conradie (2022))

Suppose (\mathscr{A}, τ) and (\mathscr{B}, v) are non-atomic semi-finite von Neumann algebras with $\tau(1), v(1) > 1$. If $U: L^1 + L^{\infty}(\mathscr{A}) \to L^1 + L^{\infty}(\mathscr{B})$ is a surjective isometry, then there exist a unique trace-preserving Jordan *-isomorphism J from $S(\mathscr{A},\tau)$ onto $S(\mathscr{B},\nu)$ and a unitary operator $u=U(1)\in\mathscr{B}$ such that U(x) = uJ(x) for all $x \in L^1 + L^{\infty}(\mathcal{A})$. Furthermore, $U \upharpoonright_{\mathcal{A}}$ is an L^{∞} -isometry from \mathscr{A} onto \mathscr{B} and $U \upharpoonright_{L^{1}(\mathscr{A})}$ is an L^{1} -isometry from $L^1(\mathscr{A})$ onto $L^1(\mathscr{B})$. Conversely, if $J: S(\mathscr{A}, \tau) \to S(\mathscr{B}, v)$ is a

Theorem (-, Conradie (2022))

Suppose (\mathscr{A}, τ) and (\mathscr{B}, v) are non-atomic semi-finite von Neumann algebras with $\tau(1), v(1) > 1$. If $U: L^1 + L^{\infty}(\mathscr{A}) \to L^1 + L^{\infty}(\mathscr{B})$ is a surjective isometry, then there exist a unique trace-preserving Jordan *-isomorphism J from $S(\mathscr{A},\tau)$ onto $S(\mathscr{B},\nu)$ and a unitary operator $u=U(1)\in\mathscr{B}$ such that U(x) = uJ(x) for all $x \in L^1 + L^\infty(\mathscr{A})$. Furthermore, $U \upharpoonright_\mathscr{A}$ is an L^{∞} -isometry from \mathscr{A} onto \mathscr{B} and $U \upharpoonright_{L^{1}(\mathscr{A})}$ is an L^{1} -isometry from $L^1(\mathscr{A})$ onto $L^1(\mathscr{B})$. Conversely, if $J: S(\mathscr{A}, \tau) \to S(\mathscr{B}, v)$ is a trace-preserving Jordan *-isomorphism and $u \in \mathcal{B}$ is a unitary

Theorem (-, Conradie (2022))

Suppose (\mathscr{A}, τ) and (\mathscr{B}, v) are non-atomic semi-finite von Neumann algebras with $\tau(1), v(1) > 1$. If $U: L^1 + L^{\infty}(\mathscr{A}) \to L^1 + L^{\infty}(\mathscr{B})$ is a surjective isometry, then there exist a unique trace-preserving Jordan *-isomorphism J from $S(\mathscr{A},\tau)$ onto $S(\mathscr{B},\nu)$ and a unitary operator $u=U(1)\in\mathscr{B}$ such that U(x) = uJ(x) for all $x \in L^1 + L^\infty(\mathscr{A})$. Furthermore, $U \upharpoonright_\mathscr{A}$ is an L^{∞} -isometry from \mathscr{A} onto \mathscr{B} and $U \upharpoonright_{L^{1}(\mathscr{A})}$ is an L^{1} -isometry from $L^1(\mathscr{A})$ onto $L^1(\mathscr{B})$. Conversely, if $J: S(\mathscr{A}, \tau) \to S(\mathscr{B}, v)$ is a trace-preserving Jordan *-isomorphism and $u \in \mathcal{B}$ is a unitary operator, then letting U(x) = uJ(x) for $x \in L^1 + L^\infty(\mathscr{A})$ yields a

Isometries on non-commutative $L^1 + L^{\infty}$ -spaces

Theorem (-, Conradie (2022))

Suppose (\mathscr{A}, τ) and (\mathscr{B}, v) are non-atomic semi-finite von Neumann algebras with $\tau(1), v(1) > 1$. If $U: L^1 + L^{\infty}(\mathscr{A}) \to L^1 + L^{\infty}(\mathscr{B})$ is a surjective isometry, then there exist a unique trace-preserving Jordan *-isomorphism J from $S(\mathscr{A},\tau)$ onto $S(\mathscr{B},v)$ and a unitary operator $u=U(1)\in\mathscr{B}$ such that U(x) = uJ(x) for all $x \in L^1 + L^{\infty}(\mathcal{A})$. Furthermore, $U \upharpoonright_{\mathcal{A}}$ is an L^{∞} -isometry from \mathscr{A} onto \mathscr{B} and $U \upharpoonright_{L^{1}(\mathscr{A})}$ is an L^{1} -isometry from $L^1(\mathscr{A})$ onto $L^1(\mathscr{B})$. Conversely, if $J: S(\mathscr{A}, \tau) \to S(\mathscr{B}, v)$ is a trace-preserving Jordan *-isomorphism and $u \in \mathcal{B}$ is a unitary operator, then letting U(x) = uJ(x) for $x \in L^1 + L^{\infty}(\mathcal{A})$ yields a

Isometries on non-commutative $L^1 + L^{\infty}$ -spaces

Theorem (-, Conradie (2022))

Suppose (\mathscr{A}, τ) and (\mathscr{B}, v) are non-atomic semi-finite von Neumann algebras with $\tau(1), v(1) > 1$. If $U: L^1 + L^{\infty}(\mathscr{A}) \to L^1 + L^{\infty}(\mathscr{B})$ is a surjective isometry, then there exist a unique trace-preserving Jordan *-isomorphism J from $S(\mathscr{A},\tau)$ onto $S(\mathscr{B},v)$ and a unitary operator $u=U(1)\in\mathscr{B}$ such that U(x) = uJ(x) for all $x \in L^1 + L^{\infty}(\mathscr{A})$. Furthermore, $U \upharpoonright_{\mathscr{A}}$ is an L^{∞} -isometry from \mathscr{A} onto \mathscr{B} and $U \upharpoonright_{L^{1}(\mathscr{A})}$ is an L^{1} -isometry from $L^1(\mathscr{A})$ onto $L^1(\mathscr{B})$. Conversely, if $J: S(\mathscr{A}, \tau) \to S(\mathscr{B}, v)$ is a trace-preserving Jordan *-isomorphism and $u \in \mathcal{B}$ is a unitary operator, then letting U(x) = uJ(x) for $x \in L^1 + L^{\infty}(\mathcal{A})$ yields a surjective isometry from $L^1 + L^{\infty}(\mathscr{A})$ onto $L^1 + L^{\infty}(\mathscr{B})$.

- Suppose $x \in B_{\mathscr{A}}$. Then $x = \frac{1}{2}(v+w)$ for some $v, w \in \text{ext}(B_{\mathscr{A}})$, by [Theorem 3, Choda (1970)].
- It follows from the characterization of the extreme points that the unit ball of $\mathscr A$ and the unit ball of $L^1+L^\infty(A)$ have the same extreme points
 - Therefore U(v) and U(w) are extreme points of $B_{\mathscr{B}}$.
 - One can use this to show that U maps $\mathscr A$ onto $\mathscr B$ L^∞ -isometrically
 - By Kadison's Theorem [Kadison (1951)], there exists a Jordan *-isomorphism from $\mathscr A$ onto B and a unitary operator $u \in B$ such that U(x) = uJ(x) for all $x \in \mathscr A$.
- Extend this representation of U to all of $L^1 + L^{\infty}(\mathscr{A})$.

- Suppose $x \in B_{\mathscr{A}}$. Then $x = \frac{1}{2}(v+w)$ for some $v, w \in \text{ext}(B_{\mathscr{A}})$, by [Theorem 3, Choda (1970)].
- It follows from the characterization of the extreme points that the unit ball of $\mathscr A$ and the unit ball of $L^1+L^\infty(A)$ have the same extreme points
 - Therefore U(v) and U(w) are extreme points of $B_{\mathscr{B}}$.
 - One can use this to show that U maps $\mathscr A$ onto $\mathscr B$ L^∞ -isometrically
 - By Kadison's Theorem [Kadison (1951)], there exists a Jordan *-isomorphism from $\mathscr A$ onto B and a unitary operator $u \in B$ such that U(x) = uJ(x) for all $x \in \mathscr A$.
- Extend this representation of U to all of $L^1 + L^{\infty}(\mathscr{A})$.

- Suppose $x \in B_{\mathscr{A}}$. Then $x = \frac{1}{2}(v+w)$ for some $v, w \in \text{ext}(B_{\mathscr{A}})$, by [Theorem 3, Choda (1970)].
- It follows from the characterization of the extreme points that the unit ball of $\mathscr A$ and the unit ball of $L^1+L^\infty(A)$ have the same extreme points
 - Therefore U(v) and U(w) are extreme points of $B_{\mathscr{B}}$.
 - One can use this to show that U maps $\mathscr A$ onto $\mathscr B$ L^∞ -isometrically
 - By Kadison's Theorem [Kadison (1951)], there exists a Jordan *-isomorphism from $\mathscr A$ onto B and a unitary operator $u \in B$ such that U(x) = uJ(x) for all $x \in \mathscr A$.
- Extend this representation of U to all of $L^1 + L^{\infty}(\mathscr{A})$.

- Suppose $x \in B_{\mathscr{A}}$. Then $x = \frac{1}{2}(v + w)$ for some $v, w \in \text{ext}(B_{\mathscr{A}})$, by [Theorem 3, Choda (1970)].
- It follows from the characterization of the extreme points that the unit ball of $\mathscr A$ and the unit ball of $L^1+L^\infty(A)$ have the same extreme points
 - Therefore U(v) and U(w) are extreme points of $B_{\mathscr{B}}$.
 - One can use this to show that U maps $\mathscr A$ onto $\mathscr B$ L^∞ -isometrically
 - By Kadison's Theorem [Kadison (1951)], there exists a Jordan *-isomorphism from $\mathscr A$ onto B and a unitary operator $u \in B$ such that U(x) = uJ(x) for all $x \in \mathscr A$.
- Extend this representation of U to all of $L^1 + L^{\infty}(\mathscr{A})$.

- Suppose $x \in B_{\mathscr{A}}$. Then $x = \frac{1}{2}(v+w)$ for some $v, w \in \text{ext}(B_{\mathscr{A}})$, by [Theorem 3, Choda (1970)].
- It follows from the characterization of the extreme points that the unit ball of $\mathscr A$ and the unit ball of $L^1 + L^\infty(A)$ have the same extreme points
 - Therefore U(v) and U(w) are extreme points of $B_{\mathscr{B}}$.
 - One can use this to show that U maps $\mathscr A$ onto $\mathscr B$ L^∞ -isometrically
 - By Kadison's Theorem [Kadison (1951)], there exists a Jordan *-isomorphism from $\mathscr A$ onto B and a unitary operator $u \in B$ such that U(x) = uJ(x) for all $x \in \mathscr A$.
- Extend this representation of U to all of $L^1 + L^{\infty}(\mathscr{A})$.

- Suppose $x \in B_{\mathscr{A}}$. Then $x = \frac{1}{2}(v+w)$ for some $v, w \in \text{ext}(B_{\mathscr{A}})$, by [Theorem 3, Choda (1970)].
- It follows from the characterization of the extreme points that the unit ball of $\mathscr A$ and the unit ball of $L^1 + L^\infty(A)$ have the same extreme points
 - Therefore U(v) and U(w) are extreme points of $B_{\mathcal{B}}$.
 - One can use this to show that U maps $\mathscr A$ onto $\mathscr B$ L^∞ -isometrically
 - By Kadison's Theorem [Kadison (1951)], there exists a Jordan *-isomorphism from $\mathscr A$ onto B and a unitary operator $u \in B$ such that U(x) = uJ(x) for all $x \in \mathscr A$.
- Extend this representation of U to all of $L^1 + L^{\infty}(\mathscr{A})$.

- Suppose $x \in B_{\mathscr{A}}$. Then $x = \frac{1}{2}(v + w)$ for some $v, w \in \text{ext}(B_{\mathscr{A}})$, by [Theorem 3, Choda (1970)].
- It follows from the characterization of the extreme points that the unit ball of $\mathscr A$ and the unit ball of $L^1 + L^\infty(A)$ have the same extreme points
 - Therefore U(v) and U(w) are extreme points of $B_{\mathscr{B}}$.
 - One can use this to show that U maps $\mathscr A$ onto $\mathscr B$ L^∞ -isometrically
 - By Kadison's Theorem [Kadison (1951)], there exists a Jordan *-isomorphism from $\mathscr A$ onto B and a unitary operator $u \in B$ such that U(x) = uJ(x) for all $x \in \mathscr A$.
- Extend this representation of U to all of $L^1 + L^{\infty}(\mathscr{A})$.

- Suppose $x \in B_{\mathscr{A}}$. Then $x = \frac{1}{2}(v+w)$ for some $v, w \in \text{ext}(B_{\mathscr{A}})$, by [Theorem 3, Choda (1970)].
- It follows from the characterization of the extreme points that the unit ball of $\mathscr A$ and the unit ball of $L^1 + L^\infty(A)$ have the same extreme points
 - Therefore U(v) and U(w) are extreme points of $B_{\mathscr{B}}$.
 - One can use this to show that U maps $\mathscr A$ onto $\mathscr B$ L^∞ -isometrically
 - By Kadison's Theorem [Kadison (1951)], there exists a Jordan *-isomorphism from $\mathscr A$ onto B and a unitary operator $u \in B$ such that U(x) = uJ(x) for all $x \in \mathscr A$.
- Extend this representation of U to all of $L^1 + L^{\infty}(\mathscr{A})$.

- Suppose $x \in B_{\mathscr{A}}$. Then $x = \frac{1}{2}(v+w)$ for some $v, w \in \text{ext}(B_{\mathscr{A}})$, by [Theorem 3, Choda (1970)].
- It follows from the characterization of the extreme points that the unit ball of $\mathscr A$ and the unit ball of $L^1 + L^\infty(A)$ have the same extreme points
 - Therefore U(v) and U(w) are extreme points of $B_{\mathscr{B}}$.
 - One can use this to show that U maps $\mathscr A$ onto $\mathscr B$ L^∞ -isometrically
 - By Kadison's Theorem [Kadison (1951)], there exists a Jordan *-isomorphism from $\mathscr A$ onto B and a unitary operator $u \in B$ such that U(x) = uJ(x) for all $x \in \mathscr A$.
- Extend this representation of U to all of $L^1 + L^{\infty}(\mathscr{A})$.

- Suppose $x \in B_{\mathscr{A}}$. Then $x = \frac{1}{2}(v + w)$ for some $v, w \in \text{ext}(B_{\mathscr{A}})$, by [Theorem 3, Choda (1970)].
- It follows from the characterization of the extreme points that the unit ball of $\mathscr A$ and the unit ball of $L^1 + L^\infty(A)$ have the same extreme points
 - Therefore U(v) and U(w) are extreme points of $B_{\mathscr{B}}$.
 - One can use this to show that U maps $\mathscr A$ onto $\mathscr B$ L^∞ -isometrically
 - By Kadison's Theorem [Kadison (1951)], there exists a Jordan *-isomorphism from $\mathscr A$ onto B and a unitary operator $u \in B$ such that U(x) = uJ(x) for all $x \in \mathscr A$.
- Extend this representation of U to all of $L^1 + L^{\infty}(\mathscr{A})$.

- Suppose $x \in B_{\mathscr{A}}$. Then $x = \frac{1}{2}(v+w)$ for some $v, w \in \text{ext}(B_{\mathscr{A}})$, by [Theorem 3, Choda (1970)].
- It follows from the characterization of the extreme points that the unit ball of $\mathscr A$ and the unit ball of $L^1 + L^\infty(A)$ have the same extreme points
 - Therefore U(v) and U(w) are extreme points of $B_{\mathscr{B}}$.
 - One can use this to show that U maps $\mathscr A$ onto $\mathscr B$ L^∞ -isometrically
 - By Kadison's Theorem [Kadison (1951)], there exists a Jordan *-isomorphism from $\mathscr A$ onto B and a unitary operator $u \in B$ such that U(x) = uJ(x) for all $x \in \mathscr A$.
- Extend this representation of U to all of $L^1 + L^{\infty}(\mathscr{A})$.

- Suppose $x \in B_{\mathscr{A}}$. Then $x = \frac{1}{2}(v + w)$ for some $v, w \in \text{ext}(B_{\mathscr{A}})$, by [Theorem 3, Choda (1970)].
- It follows from the characterization of the extreme points that the unit ball of $\mathscr A$ and the unit ball of $L^1 + L^\infty(A)$ have the same extreme points
 - Therefore U(v) and U(w) are extreme points of $B_{\mathscr{B}}$.
 - One can use this to show that U maps $\mathscr A$ onto $\mathscr B$ L^∞ -isometrically
 - By Kadison's Theorem [Kadison (1951)], there exists a Jordan *-isomorphism from $\mathscr A$ onto B and a unitary operator $u \in B$ such that U(x) = uJ(x) for all $x \in \mathscr A$.
- Extend this representation of U to all of $L^1 + L^{\infty}(\mathscr{A})$.

- Suppose $x \in B_{\mathscr{A}}$. Then $x = \frac{1}{2}(v+w)$ for some $v, w \in \text{ext}(B_{\mathscr{A}})$, by [Theorem 3, Choda (1970)].
- It follows from the characterization of the extreme points that the unit ball of $\mathscr A$ and the unit ball of $L^1 + L^\infty(A)$ have the same extreme points
 - Therefore U(v) and U(w) are extreme points of $B_{\mathscr{B}}$.
 - One can use this to show that U maps $\mathscr A$ onto $\mathscr B$ L^∞ -isometrically
 - By Kadison's Theorem [Kadison (1951)], there exists a Jordan *-isomorphism from $\mathscr A$ onto B and a unitary operator $u \in B$ such that U(x) = uJ(x) for all $x \in \mathscr A$.
- Extend this representation of U to all of $L^1 + L^{\infty}(\mathscr{A})$.

- If $\tau(1_{\mathscr{A}}) < \infty$, then $L^1 + L^{\infty}(\mathscr{A}) = L^1(\mathscr{A})$.
- If, in addition $\tau(1_{\mathscr{A}}) \leq 1$, then $\|x\|_{1+\infty} = \|x\|_1$ for every $x \in L^1 + L^\infty(\mathscr{A})$.
- Consequently, if $\tau(1_{\mathscr{A}}), v(1_{\mathscr{B}}) \leq 1$, then surjective isometries from $L^1 + L^{\infty}(\mathscr{A})$ onto $L^1 + L^{\infty}(\mathscr{B})$ are characterized by Yeadon's Theorem ([Theorem 2, Yeadon (1981)]).

- If $\tau(1_{\mathscr{A}}) < \infty$, then $L^1 + L^{\infty}(\mathscr{A}) = L^1(\mathscr{A})$.
- If, in addition $\tau(1_{\mathscr{A}}) \leq 1$, then $||x||_{1+\infty} = ||x||_1$ for every $x \in L^1 + L^{\infty}(\mathscr{A})$.
- Consequently, if $\tau(1_{\mathscr{A}}), v(1_{\mathscr{B}}) \leq 1$, then surjective isometries from $L^1 + L^{\infty}(\mathscr{A})$ onto $L^1 + L^{\infty}(\mathscr{B})$ are characterized by Yeadon's Theorem ([Theorem 2, Yeadon (1981)]).

- If $\tau(1_{\mathscr{A}}) < \infty$, then $L^1 + L^{\infty}(\mathscr{A}) = L^1(\mathscr{A})$.
- If, in addition $\tau(1_{\mathscr{A}}) \leq 1$, then $\|x\|_{1+\infty} = \|x\|_1$ for every $x \in L^1 + L^\infty(\mathscr{A})$.
- Consequently, if $\tau(1_{\mathscr{A}}), v(1_{\mathscr{B}}) \leq 1$, then surjective isometries from $L^1 + L^{\infty}(\mathscr{A})$ onto $L^1 + L^{\infty}(\mathscr{B})$ are characterized by Yeadon's Theorem ([Theorem 2, Yeadon (1981)]).

- If $\tau(1_{\mathscr{A}}) < \infty$, then $L^1 + L^{\infty}(\mathscr{A}) = L^1(\mathscr{A})$.
- If, in addition $\tau(1_{\mathscr{A}}) \leq 1$, then $\|x\|_{1+\infty} = \|x\|_1$ for every $x \in L^1 + L^\infty(\mathscr{A})$.
- Consequently, if $\tau(1_{\mathscr{A}}), v(1_{\mathscr{B}}) \leq 1$, then surjective isometries from $L^1 + L^{\infty}(\mathscr{A})$ onto $L^1 + L^{\infty}(\mathscr{B})$ are characterized by Yeadon's Theorem ([Theorem 2, Yeadon (1981)]).

- If $\tau(1_{\mathscr{A}}) < \infty$, then $L^1 + L^{\infty}(\mathscr{A}) = L^1(\mathscr{A})$.
- If, in addition $\tau(1_{\mathscr{A}}) \leq 1$, then $||x||_{1+\infty} = ||x||_1$ for every $x \in L^1 + L^{\infty}(\mathscr{A})$.
- Consequently, if $\tau(1_{\mathscr{A}}), v(1_{\mathscr{B}}) \leq 1$, then surjective isometries from $L^1 + L^{\infty}(\mathscr{A})$ onto $L^1 + L^{\infty}(\mathscr{B})$ are characterized by Yeadon's Theorem ([Theorem 2, Yeadon (1981)]).

- If $\tau(1_{\mathscr{A}}) < \infty$, then $L^1 + L^{\infty}(\mathscr{A}) = L^1(\mathscr{A})$.
- If, in addition $\tau(1_{\mathscr{A}}) \leq 1$, then $\|x\|_{1+\infty} = \|x\|_1$ for every $x \in L^1 + L^{\infty}(\mathscr{A})$.
- Consequently, if $\tau(1_{\mathscr{A}}), v(1_{\mathscr{B}}) \leq 1$, then surjective isometries from $L^1 + L^{\infty}(\mathscr{A})$ onto $L^1 + L^{\infty}(\mathscr{B})$ are characterized by Yeadon's Theorem ([Theorem 2, Yeadon (1981)]).

- If $\tau(1_{\mathscr{A}}) < \infty$, then $L^1 + L^{\infty}(\mathscr{A}) = L^1(\mathscr{A})$.
- If, in addition $\tau(1_{\mathscr{A}}) \leq 1$, then $\|x\|_{1+\infty} = \|x\|_1$ for every $x \in L^1 + L^{\infty}(\mathscr{A})$.
- Consequently, if $\tau(1_{\mathscr{A}}), \nu(1_{\mathscr{B}}) \leq 1$, then surjective isometries from $L^1 + L^{\infty}(\mathscr{A})$ onto $L^1 + L^{\infty}(\mathscr{B})$ are characterized by Yeadon's Theorem ([Theorem 2, Yeadon (1981)]).

- If $\tau(1_{\mathscr{A}}) < \infty$, then $L^1 + L^{\infty}(\mathscr{A}) = L^1(\mathscr{A})$.
- If, in addition $\tau(1_{\mathscr{A}}) \leq 1$, then $\|x\|_{1+\infty} = \|x\|_1$ for every $x \in L^1 + L^{\infty}(\mathscr{A})$.
- Consequently, if $\tau(1_{\mathscr{A}}), \nu(1_{\mathscr{B}}) \leq 1$, then surjective isometries from $L^1 + L^{\infty}(\mathscr{A})$ onto $L^1 + L^{\infty}(\mathscr{B})$ are characterized by Yeadon's Theorem ([Theorem 2, Yeadon (1981)]).

The End

Thank you for your attention.

Acknowledgements

I gratefully wish to acknowledge

• Unisa for funding to attend this conference

Bibliography

- H. Choda, An extremal property of the polar decomposition in von Neumann algebras, Proc. Japan Acad., **46** (1970), 341-344.
- P. de Jager and J.J. Conradie, Extension of projection mappings, Quaest. Math. 43 (2020), 1047-1064.
- P. de Jager and J.J. Conradie, Extreme point methods in the study of isometries on certain non-commutative spaces, Glasgow Math. J., 64 (2022), 462-483.
- R. Grzaślewicz, H. Hudzik and W. Kurc, Extreme and exposed points in Orlicz spaces, Can. J. Math. 44(3) (1992), 505-515.
- R. Grzaślewicz and H.H. Schaefer, Surjective isometries of $L^1 \cap L^{\infty}[0,\infty)$ and $L^1 + L^{\infty}[0,\infty)$, Indag. Math. (N.S.) **3**(2) (1992), 173-178.