On convex structures in quasi-metric spaces

Mcedisi Sphiwe Zweni

Department of Mathematical Sciences North-West University REPUBLIC OF SOUTH AFRICA

SOUTH AFRICAN MATHEMATICAL SOCIETY (SAMS 2022)

06 DECEMBER 2022 - 08 DECEMBER 2022

Stellenbosch University

- Introduction
- 2 Preliminaries
- Convex structures in quasi-metric spaces
- 4 Fixed points in convex T_0 -quasi-metric spaces
- W-convex function pairs and Isbell-hull
- Bibliography

Introduction

In 1970, Takahashi introduced the notion of convexity in metric spaces. A convex metric space is a generalized space. Recently Kunzi and Yildiz initiated the study on convex structures in the sense of Takahashi in T_0 -quasi-metric spaces. They considered a T_0 -quasi-metric space (X,q) equipped with a Takahashi convexity structure. In this talk, we

generalize and extend the classical fixed point theorems. Moreover, we study the concept of fixed point theorems for nonexpansive mappings on convex T_0 — quasi-metric spaces.

Preliminaries

Definition

Let X be a set and let $q: X \times X \to [0, \infty)$ be a function. Then q is called a quasi-metric on X if

- (i) q(x,x) = 0 for all $x \in X$
- (ii) $q(x,y) \le q(x,z) + q(z,y)$ for all $x,y,z \in X$

Furthermore, q is a T₀-quasi-metric if

$$q(x,y) = 0 = q(y,x)$$
 implies that $x = y$,

for each $x, y \in X$. Then the pair (X, q) is called a quasi-metric space.

We shall say that q is a T_0 -quasi-metric provided that q satisfies the following condition: for each $x, y \in X, q(x, y) = 0 = q(y, x)$ implies that x = y.

Remark

If q is a quasi-metric on a set X, then $q^{-1}: X \times X \to [0, \infty)$ on X defined by $q^{-1}(x,y) = q(y,x)$ for every $x,y \in X$, is called the conjugate quasi-metric. A quasi-metric on a set X such that $q = q^{-1}$ is a metric. Note that if (X,q) is a T_0 -quasi-metric space, then $q^s = \sup\{q,q^{-1}\} = q \vee q^{-1}$ is a metric.

Example

For $a,b\in\mathbb{R}$ we shall put $a-b=\max\{a-b,0\}$. If we equip \mathbb{R} with u(a,b)=a-b, then (\mathbb{R},u) is a T_0 -quasi-metric space that we call the standard T_0 -quasi-metric of \mathbb{R} . Note that the symmetrize metric u^s of u is the usual metric on \mathbb{R} where $u^s(a,b)=|a-b|$ whenever $a,b\in\mathbb{R}$.

Definition

Let X be a real vector space. A function $\|\cdot\|: X \to [0,\infty)$ is called an asymmetric seminorm on X if for any $x,y\in X$ and $t\in [0,\infty)$ we have:

$$(a) \parallel tx \mid = t \parallel x \mid;$$

(b)
$$|| x + y | \le || x | + || y |$$
.

If in addition

(c)
$$||x| = ||-x| = 0$$
 if and only if $x = 0$,

holds then $\|\cdot\|$ is called an asymmetric norm, and the pair $(X, \|\cdot\|)$ is called an asymmetrically normed space.

Each asymmetrically normed vector space induces a T_0- quasi-metric space $q_{\|\cdot\|}$ on X by setting $q_{\|\cdot\|}(x,y)=\|x-y\|$ whenever $x,y\in X$.

Example

Let $\mathbb R$ be equipped with its usual real vector space structure. Then $\|x\|_u = x$ if $x \ge 0$ and $\|x\|_u = 0$ otherwise, defines an asymmetric norm on $\mathbb R$ with the induced T_0- quasi-metric u, as defined above.

Example

Let (X, q) be a T_0 -quasi-metric space, BX be the real vector space of bounded real-valued functions on X and

$$\parallel f \mid = \sup_{x \in X} (f(x) - 0)$$

whenever $f \in X$. Clearly || f || is an asymmetric norm on BX. Consequently D defined by the condition that

$$D(f,g) = \parallel f - g \mid$$

whenever $f, g \in BX$ is a T_0 -quasi-metric on BX.

Convex structures in quasi-metric spaces

Definition

Let (X,q) be a quasi-metric space. A mapping $W: X \times X \times \to [0,1]$ is said to be a convex structure on X if for all $x,y \in X$ and $\lambda \in [0,1]$,

$$q(x, W(x, y, \lambda)) \leq \lambda q(z, x) + (1 - \lambda)q(x, y),$$

and

$$q(W(x,z,\lambda),x) \leq \lambda q(x,z) + (1-\lambda)q(y,z)$$

whenever $z \in X$.

Then (X, q) equipped with a convex structure is said to be a convex quasi-metric space denoted by (X, q, W).

Example

Let \mathbb{R} be the set of real numbers be equipped with the standard T_0 -quasi-metric space

$$q(x,y)=\max\{0,x-y\},$$

whenever $x, y \in \mathbb{R}$. If we define

$$W(x, y, \lambda) = \lambda x + (1 - \lambda)y$$

whenever $x, y \in \mathbb{R}$ and $\lambda \in [0, 1]$, then (\mathbb{R}, q, W) is a convex quasi-metric space.

Proposition

Suppose that (X, q, W) is a convex T_0 -quasi-metric space, then (X, q^s, W) is a convex metric space.

Remark

For any convex T_0 - quasi-metric space (X, q, W), the following are true:

- (1) For any $x \in X$ and $\lambda \in [0,1]$, we have $W(x,x,\lambda) = x$.
- (2) For any $x, y \in X$, it follows that W(y, x, 0) = x and W(y, x, 1) = y.

Definition (Kunzi and Yildiz)

Let X be a vector space.

(a) The convex structure W is called translation-invariant if W satisfies the condition

$$W(x+z,y+z,\lambda) = W(x,y,\lambda) + z$$

for all $x, y, z \in X$ and $\lambda \in [0, 1]$.

(b) We say that the convex structure satisfies the homogeneity condition if for any $\alpha \in \mathbb{R}$ we have

$$W(\alpha x, \alpha y, \lambda) = \alpha W(x, y, \lambda)$$

for any $x, y \in X$ and $\lambda \in [0, 1]$.

Fixed points in convex T_0 -quasi-metric spaces

Definition

A convex T_0 -quasi-metric space (X, q, W) is said to have property (H) if any decreasing family $\{D_i\}_{i\in I}$ of nonempty doubly closed convex bounded subsets of X such that $D_j \subset D_i$ with $i \leq j$, has nonempty intersection.

Theorem

Let W be the unique convex structure on a T_0 -quasi metric space (X,q) with the property (H). If K is a nonempty doubly closed convex bounded subset of X with the normal structure, then any commuting family $\{T_i: i=1,\cdots,n\}$ of nonexpansive self-maps on (K,q) has a nonempty common fixed point set $(i.e. \cap_{i=1}^n Fix(T_i) \neq \emptyset)$, where $Fix(T_i)$ denotes the set of fixed points of T_i , that is

$$Fix(T_i) = \{x \in K : T_i(x) = x\}.$$

Theorem

Let (X, q, W) be a convex T_0 -quasi metric space and K be a nonempty doubly closed convex bounded subset of X with the normal structure. If $T:(K,q)\to (K,q)$ is a nonexpansive map, then T has fixed point.

W-convex function pairs and Isbell-hull

Let $(X, \| \cdot \|)$ be an asymmetrically normed real vector space and let a pair of functions $f = (f_1, f_2)$, where $f_j : X \to \mathbb{R}$ for j = 1, 2. The pair of functions $f = (f_1, f_2)$ is called ample on X if $\| x - y \| \le f_2(x) + f_1(y)$ for all $x, y \in X$.

Moreover, the pair of functions $f=(f_1,f_2)$ is called minimal if for any ample pair of functions $g=(g_1,g_2)$ on X such that $g_1(x) \leq f_1(x)$ and $g_2(x) \leq f_2(x)$ for all $x \in X$, then $g_1 = f_1$ and $g_2 = f_2$.

The set of all minimal pairs of functions on X is denoted by $\varepsilon(X,\|\cdot\|)$ and it is called the Isbell-hull of $(X,\|\cdot\|)$. Note that the Isbell-hull of an asymmetrically normed real vector space is 1-injective and Isbell-convex. If $f=(f_1,f_2)\in\varepsilon(X,\|\cdot\|)$, then it is well-known that for any $x\in X$,

$$f_1(x) = \sup_{z \in X} u[||x - z| - f_2(x)]$$

Definition

Let $(X, \| \cdot \|)$ be an asymmetrically normed real vector space. We say that $(X, \| \cdot \|, W)$ is convex asymmetrically normed real vector space, if W is convex structure on the quasi-metric space $(X, q_{\| \cdot \|})$.

Definition

Let $(X, \|\cdot\|, W)$ be a convex asymmetrically normed real vector space. We call a pair of functions $f = (f_1, f_2)$ on X W-convex if for any $x, y \in X$ and $\lambda \in [0, 1]$, then

$$f_j(W(x,y,\lambda)) \leq f_j(x) + (1-\lambda)f_j(y)$$

for j = 1, 2.

Proposition

Suppose that $(X, \|\cdot\|, W)$ is a convex asymmetrically normed real vector space. For all $t \in \mathbb{R}$ and $f = (f_1, f_2) \in \varepsilon(X, \|\cdot\|)$,

- (a) the pair of functions $f = (f_1, f_2)$ is W- convex whenever W is translation invariant,
- (b) the pair of functions $tf = ((tf)_1, (tf)_2)$ is W- convex whenever W satisfies the homogeneity condition.

Bibliography

- W. Takahashi, A convexity in metric space and nonexpansive mappings, I, Kodai Math. Sem. Rep. 22 (1970) 142-149.
- T. Shimizu, W. Takahashi, Fixed point theorems in certain convex metric spaces. Math. Japon. 37 (1992) 855-859.
- F. E. Browder, Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. U.S.A. 54 (1965) 1041-1044.
- H.-P.A. Kunzi, F. Yildiz, Convexity structures in T_0 -quasi-metric space, Topology Appl. 200 (2016) 2-18.
- O. O. Otafudu, M. S. Zweni, W-convexity on the Isbell-convex hull of an asymmetrically normed real vector space. Filomat journal. (to appear)
- O. Olela Otafudu, Convexity in quasi-metric spaces, PhD thesis, University of Cape Town, 2012.

- M. S. Zweni, Convexity structures in T_0 quasi-metric spaces and fixed point theorems, MSc thesis, University of North-West, 2017.
- T. Shimizu, W. Takahashi, Fixed point of multivalued mappings in certain convex metric spaces. Topol. Methods Nonlinear Anal. 8 (1996) 197-203.
- L.A. Talman, Fixed points for condensing multifunctions in metric spaces with convex structure, Kodai Math. Sem. Rep. 29 (1977) 62-70.

Thank you for your attention $\ddot{\,}$