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de Finetti’s classical theorems
Statement

Let
• (Ω,F , P) be a probability space
• (Xn)n∈N be a sequence of random variables.

Definition
Such a sequence is said to be exchangeable if ∀l ∈ N, ∀σ ∈ PZ

P(Xn1 ∈ A1, Xn2 ∈ A2, . . . , Xnl ∈ Al) = P(Xσ(n1) ∈ A1, . . . , Xσ(nl) ∈ Al)
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de Finetti’s classical theorems
Statement

The investigation of distributional symmetries was initiated byB. de Finetti in 1931 with the study of 2-point valued random
variables.

Theorem
If an infinite sequence of random variables {Xn} assuming only the values
0 and 1 is exchangeable, then there exists a unique probability measure μ
on [0, 1] such that
P(X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0) =

∫︁ 1
0 θk(1− θ)n−kdμ(θ)
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de Finetti’s classical theorems
A first classical generalization

This result has since found several generalizations.
Among these we mention the one made by Hewitt and Savage in

1955. The same statement continues to hold by considering the
Tychonov product XN of the compact Hausdorff space X instead of

{0, 1} i.e.
Theorem
Symmetric (or exchangeable) probability measures on XN are mixtures of
product measures of the type μ× μ× · · · × μ× · · · where μ is a
probability measure on X
Note that
C(XN) = ⊗NC(X)⇒ XN = σ(⊗NC(X))
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The noncommutative setting
Quantum stochastic processes
A (unital) C∗-algebra,ω state on A Notation: S (A)

One-to-one correspondence (see C. F. (2015), [3])
quantum stochastic processes! state space S (∗NA)

More in detail
Definition
A quantum stochastic process is a quadruple (A,{ιj : j ∈ N},H , ξ):

• A is a (unital) C∗-algebra
• H is a Hilbert space

• ιj : A→B (H ) is a∗-representation for every j ∈ N
• ξ ∈ H is a cyclic vector for the von Neumann algebra ⋁︀

j∈N ιj(A). 6/20



The noncommutative setting
Quantum stochastic processes

The bijection is realised as

ω ∈ S (∗NA)↔ ιj := πω ◦ ij

where
• ij : A→ ∗NA: j-th embedding of A into its infinite free product
• (Hω, πω, ξω): GNS representation associated to the state ω
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The noncommutative setting
Quantum stochastic processes
Recall also that
A process (A,{ιj : j ∈ N},H , ξ) is said to be exchangeable if ∀n ∈ N,∀
j1 6= j2 6= · · · 6= jn ∈ N, ∀ a1, a2, . . . , an ∈ A and σ ∈ PN one has
〈ιj1(a1)ιj2(a2) · · · ιjn(an)ξ, ξ〉 = 〈ισ(j1)(a1)ισ(j2)(a2) · · · ισ(jn)(an)ξ, ξ〉

Furthermore
• PN acts naturally on∗NA: ∀σ ∈ PN ∃!ασ ∈ Aut(∗NA) given by

ασ(ij1(a1)ij2(a2) · · · ijn(an)) = iσ(j1)(a1)iσ(j2)(a2) · · · iσ(jn)(an)

for j1 6= j2 6= · · · 6= jn ∈ N, a1, a2, . . . , an ∈ A, n ∈ N. 8/20



The noncommutative setting
Quantum stochastic processes

• A state ω on A is α-invariant (symmetric) if ω ◦ ασ = ω, for every
σ ∈ PN (α : PN → Aut(A))

It is then clear that there is a bijection
exchangeable stochastic processes! symmetric states S (∗NA)

Notation: S PN(A)
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The noncommutative setting
Stormer’s version

In 1969 Størmer characterizes symmetric states of the minimal
infinite tensor product:

Theorem
LetB = ⊗NA the minimal infinite tensor product of an assigned
C∗-algebra A. The convex set of symmetric states onB is a Choquet
simplex whose extreme points coincide with the closed set of infinite
product states of a single state on A.

The Choquet simplex structure allows for a decomposition of any
invariant state into an integral of extreme invariant states with respect

to a unique probability measure.
Then, by virtue of the bijection above, a noncommutative version of

the Hewitt and Savage theorem is established. 10/20



The non commutative setting
Infinite graded tensor product

Our focus: graded algebraic structures obtained as tensor products of
Z2-graded∗-algebras
(key role played in physics by the CAR algebra (C.F.2012, [4]).

By a Z2-graded C∗-algebra we mean a C∗-algebra that decomposes
as A = A1 ⊕ A−1

(where Z2 = {1,−1} with the product as the group operation), and
involution and product given by:

(Ai)∗ = (A∗)i

AiAj ⊂ Aij i, j = 1,−1
Equivalently,

it is a pair (A, θ), where θ ∈ Aut(A) such that θ2 = idA 11/20



The noncommutative setting
Example: the CAR algebra

For an arbitrary set L, the
Canonical Anticommutation Relations

(CAR)
over L is the universal C∗-algebra generated by the set

{aj, a†j | j ∈ L}
and the relations

(aj)∗ = a†j , {a
†
j , ak} = δjk1I ,

{aj, ak} = {a†j , a
†
k} = 0 , j, k ∈ L .

A Z2-grading is induced on CAR(L) by the∗-automorphism θ

acting on the generators as
θ(aj) = −aj , θ(a†j ) = −a

†
j , j ∈ L .
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The noncommutative setting
Our focus: infinite graded tensor products

A1 and A2 Z2-graded∗-algebras, their algebraic tensor product
A1 � A2 = ⊕ i,j∈Z2(A1i � A2j)

turns out to be an involutive Z2-graded algebrawhich will be denoted by A1⊗̂A2 (Fermi tensor product)
with

x∗ :=
∑︀

i,j∈Z2 ε(i, j)x
∗
i,j

xy :=
∑︀

i,j,k,l∈Z2 ε(j, k)xi,j · yk,l

for x := ⊕ i,j∈Z2xi,j, y := ⊕ i,j∈Z2yi,j ∈ ⊕ i,j∈Z2(A1i � A2j)
where

ε(i, j) :=

{︃
−1 if i = j = −1 ,
1 otherwise . 13/20



The noncommutative setting
Our focus: infinite graded tensor products

A linear functional ω : A→ C is said to be even if ω ◦ θ = ω

Notation:S+(A)

A1, A2 Z2-graded C∗-algebras. Given ωi ∈ S (Ai), then thefunctional ω1 × ω2 is defined as usual by
ω1 × ω2

(︂ n∑︁
j=1

a1,j⊗̂a2,j
)︂
:=

n∑︁
j=1

ω1(a1,j)ω2(a2,j)

for all a =∑︀n
j=1 a1,j⊗̂a2,j ∈ A1⊗̂A2 It is positive on A1⊗̂A2((ω1 × ω2)(c∗c) ≥ 0) if at least one of them is even (A.M. (2003),

[1]). Accordingly, one can consider its
GNS representation πω1×ω2
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The noncommutative setting
Our focus: infinite graded tensor products

πωi : Ai →B (Hωi) GNS representations of ωi ∈ S+(Ai)

=⇒ πω1 ⊗̂πω2 ∗-representation of A1⊗̂A2 acting onHω1 ⊗̂Hω2

and
πω1×ω2 w πω1 ⊗̂πω2

By virtue of the latter, it makes sense to define the spatial norm
‖ · ‖min := sp{‖πω(·)‖ : ω = ω1 × ω2, ωi ∈ S+(Ai), i = 1, 2}
It is actually a norm (C.R.Z (2021), [5]).
More in general, one can consider the (minimal) infinite tensor Fermi
product of a given C∗-algebra A with itself

⊗̂N
minA
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The noncommutative setting
Our focus: infinite graded tensor products

If ωi ∈ S+(Ai) are even states for every i ∈ N then their infinite
product ×

i∈N
ωi, is the state on ⊗̂ i∈N

minAi uniquely determined by
×
i∈N

ωi(x1 ⊗̂ · · · ⊗̂xn ⊗̂1 ⊗̂1 ⊗̂ · · · ) = ω1(x1)ω2(x2) · · ·ωn(xn)

for every xi ∈ Ai, i = 1, 2, . . . , n, and every n ∈ N.
Notation:×Nω product state when ωi = ω, ∀i ∈ N

This led us to a very precise characterization of the extremesymmetric states
16/20



The noncommutative setting
Our focus: infinite graded tensor products

Notation:

E (S PN(A)) set of the extreme symmetric states on A
Proposition (V. Crismale, S. Rossi, P.Z.)
If ω is a symmetric state on ⊗̂N

minA, then the following are equivalent:
• ω ∈ E (S PN(⊗̂N

minA))• there exists an even state ρ ∈ S (A) such that ω = ×Nρ

Furthermore
The set S PN(⊗̂N

minA) is still a Choquet simplex 17/20



The noncommutative setting
Our focus: infinite graded tensor products

Theorem
For any ω ∈ S PN(⊗̂N

minA) there exists a unique probability measure

μ supported on E (S PN(⊗̂N
minA)) such that:

ω =
∫︁
E (S PN (⊗̂N

minA))
ψdμ(ψ) =

∫︁
S+ (A)

×Nρdμ∗(ρ)

As a direct consequence we have
Proposition (V. Crismale, S. Rossi, P.Z.)
Any ω ∈ S PN(⊗̂N

minA) is even 18/20
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Thank you for your attention.

20/20


	de Finetti's classical theorems
	Statement
	A first classical generalization

	The noncommutative setting
	Quantum stochastic processes
	Stormer's version
	Our focus: infinite graded tensor products


