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Nonlinear heat equations:

Introduction
Consider nonlinear heat equations of the form

u?  « considered here
Up = Uy + f(u), f(u)y=3 u", m=3,4,5,...
e, eftc.

m The linear term u,, models diffusion (energy loss)
m The nonlinear term f(1) models a reaction process (energy gain)

Applications: h
m chemistry (thermal runaway) e z ..

m fluids (singularity formation) B ’ e

m biology (bacterial communication) J

H etc.

Heat Generation
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Nonlinear heat equations:

A competition between smoothing and focusing

Only the linear term: u; = 1.,

ut = uxx +I/l2

Only the nonlinear term: u; = 1>

Solutions: u = ef cosx, e~ sin x etc. Solution: u = ug/(1 — ugt)
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Nonlinear heat equations:

Steady state or blow-up?

Now both terms: 1; = 1, + 1>

N
QO

Blow-up in finite time
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Nonlinear heat equations:

Steady state or blow-up?

. _ 2
Now both terms: u; = i + u But if initial condition is strictly negative

Blow-up in finite tim ioni i
ow-up te time a steady state solution is also possible
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Outline of talk:

Numerics, asymptotics, and speculation

m Numerical computation of blow-up solutions:
» Adaptive rescaling, moving meshes, etc  (Berger & Kohn (1988), Budd et. al (1996))
» Reciprocal substitution (Keller & Lowengrub (1993))
» Fourier spectral methods
m Before blow up:
» Simple perturbation analysis

m At blow up:
» Matched asymptotic expansions

m After blow up: (*) —
» Numerical exploration

m The complex viewpoint:
» Numerical analytic continuation
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Outline of talk:

Numerics, asymptotics, and speculation

m Numerical computation of blow-up solutions:
> Adaptive rescaling, moving meshes, etc  (Berger & Kohn (1988), Budd et. al (1996))
» Reciprocal substitution (Keller & Lowengrub (1993))
» Fourier spectral methods

(*) Solution of ODE exists after blow up.

m Before blow up: What about PDE?

» Simple perturbation analysis 2 1
U =1u U=—
m At blow up: y (1/uo) — ¢
» Matched asymptotic expansions
m After blow up: (x) —

m The complex viewpoint:

» Numerical exploration | t
» Numerical analytic continuation i
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Numerical computation of blow-up solutions:

Possible approaches

Standard off-the-shelf methods inevitably
lead to disaster as shown alongside — \»«J
As long as solutions remain positive the \

best strategy is to set u = 1/v, then \\
: - ©) x\

Up = Uyy + U = U =Un—1-2

Better for numerics, since v stays bounded
Solve v-equation with Fourier spectral method:

(o]

u(x, t) = Z (D™ = % = —Kc -6 —di, |k<K

k=—c0

Integrate the system on the right with an ODE solver that has error control
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Numerical computation of blow-up solutions:

Success of the reciprocal substitution

Consider initial conditions of the form (periodic, positive, single local max/min)

u(x,0) = —, ov(x,0)=a—-ecosx, O<e<a (belowa=0.25 €¢=0.1)
a— €COSX
t = 0.0000 t = 0.0540 t = 0.1080 t = 0.1620
0.4 0.4 0.4 0.4
0.2\/ 0.2\/ 0.2\/ 0.2
>
0 0 0 0 \ /
6
20 20 20 x 10
2
S 10/\ 10/\ 10 L
0 0 0 0
-r -wl2 0 72 -t -wl2 0 «/2 -r -wl2 0 =2 -r -wl2 0 7«2
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Before blow up:

A two-mode approximation

Key observation: wv-solution is smooth, Phase plane
approximate by truncated Fourier series — ‘

v~a(t)—b(t)cosx, a(0)=a, b(0)=¢ =os .7

Plug into v-equation, drop cos 2x terms %o o5 1 15 2 25 s a5 4
da 1. db 3, da db
aE+§bE__a_§b’ baﬁ'aa— ab-">b

No explicit solution, but amenable to a perturbation analysis when 0 < € < a:

d—a+1————§ = d—a——l = =a-—t
a2 ar - " dr hea
a db

B db o
b/£+ga_—ab—ﬁ = i b = b=ee
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Before blow up:

Accuracy of perturbation solution

As a check on the approximation just derived, plug it into PDE:
V=a-t-eelcosx = V(Vi=Vu+1+2V,)?/V)=2€%sin’x
Parameters: a = 0.25, ¢ = 0.01, t. ~ 0.2421

t = 0.0000 t = 0.0807 t=0.1614 t = 0.2421
0.4 0.4 0.4 0.4
> 0.2 0.2 0.2 0.2
0 0 0 0
4
15 15 15 <10
-/\- 2
10 10 10
S 1
5 5 5
0 0 0 0
-t -wl2 0 w2 -r -wl2 0 7w/2 -r -wl2 0 7«2 -r -wl2 0 «wl/2
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At blow up:

Method of matched asymptotic expansions

Previous perturbation analysis no longer valid since 0 < b < a is violated.
A modified approach gives the profile at the critical time as

v ~ 2ee™%sin(x/2) + 2€% sin x( —2a log (26‘6 s1n2(x/2)) + Ci(a) + Cz(a))

numerical | |
- - -asymptotic

Shown alongside is the corresponding 100!
u-solution at the critical time. (Note log-
scale.) Same parameters as before:

a=0.25, € =0.01, t. = 0.2421 3

Modification necessary when |x| < 1:

—x2

" 16 log |x| 10°

- -/2 0 /2 ™
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After blow up:

A classic paper from the 1990s

J.B. Keller & J.S. Lowengrub. “Asymptotic and numerical results for blowing-up
solutions to semilinear heat equations” (1993)

m Derived estimates for blow-up time and solution profile at blow-up

m Suggested the reciprocal substitution for numerical computations

m Used a finite difference method to solve the v-equivalent of u; = 1, + u°
m Concluded the following

“Thus, the calculation actually continues the solution slightly beyond the
blow-up time of the original solution u. The method becomes unstable a
short time after the blow-up happens, however.”

— Keller & Lowengrub, 1992
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After blow up:

Keller & Lowengrub revisited

v-solution u-solution
t=0.00 t = 0.00
0.2 100
= 0 3 0
02 -100
t=008 £ =008 What happens next? ]
02 100
= 0 3 0
0.2 100
t=0.16 t=0.16
0.2 100 —J L
= 0 = 0
02 -100
T /2 0 /2 T T 2 0 72 I
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After blow up:

Keller & Lowengrub revisited

v-solution u-solution The solution turns complex
t = 0.00 t = 0.00 t=10.20 t=0.20
0.2 100 02 100
SEN) ER) > Ox _/- s OJ\\W/L
02 100 02 100
t=0.08 t=0.08 t=10.28 t=0.28
100 100
0.2 02
/\ /\
= 0 3 0 > 0 S 0
W
02 100 -02 100
t = 0.16 t=0.16 t=0.36 t = 0.36
0.2 100 _J L 02 100
) ° i ° ) ’ \/— i ’
0.2 100 02 100
us /2 0 /2 ™ - /2 0 w2 ™ - 72 0 72 ™ T w2 0 72 ™
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After blow up:

Dynamics of the v-solution

t = 0.00 t=0.04 t=0.08 t=0.12
02f N 02 \/ 02 \/ 0-2\/
v-solution ’ ’ ° ’
02 0.2 0.2 0.2
a = O 25 t=0.16 t=0.20 t=0.24 t=0.28 Blue IS real part

0.2 0.2 0.2 0.2 R d 1 1
c = 01 0\/ N ed imaginary

-0.2 -0.2 -0.2 -0.2
t=0.32 t=0.36 t=0.40 t=0.44
0.2 0.2 0.2 0.2
ique!
Not unique! o o o

0.2 0.2 \-/ -0.2 \/ 2N\ |

-m-ml20 72 7 -w-w/20 w2 7 -w-m20 w2 #  -w-w/20 w2 7w
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After blow up:

Dynamics of the u-solution

t=0.00 t=0.04 t=0.08 t=0.12
100 100 100 100
u-solution . o . .
-100 -100 -100 -100
a = 025 t=0.16 t=0.20 t=0.24 t=0.28
100 100 100 100
e = 01 —J L /\\ /’k
N~ \\ // N\ 7
0 O—J\ 0 - [\ 0 ANSIRS/)
-100 -100 -100 -100
Note
t=0.32 t=0.36 t=0.40 t=0.44
secondary 100 1100 100 100
3 \
‘blow up’ — \ L
0 === 0r=——=s Ol=——e=] 0oE=———="
(almost) )
-100 -100 -100 -100
-m-ml20 72 7w -m-ml20 72 7 -m-m/20 72 ™ -r-ml20 72

Blue is real part
Red imaginary
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After blow up:

What is known about post blow-up solutions?

Theory:
K. Masuda. “Analytic solutions of some nonlinear diffusion equations” (1984)

m Possibility of complex solutions after critical time, uniqueness may be lost

Numerics:

Imz

C.-H. Cho et al. “A blow-up problem for
a nonlinear heat equation in the complex
plane of time” (2016)

A. Takayashu et al. “Rigorous numerics A /\

for nonlinear heat equations in the complex 0 2 \ Re 2
plane of time” (2020)

m Both numerical papers consider methods based on the complexification of ¢

JAC Weideman - Stellenbosch University Slide 15/21



After blow up:

How to compute through singularity?
Main point: the computational setup should allow for complex solutions

(€]

1. Fourier spectral method, based on o(x,t) = Z c(t)e™

k:—OO
Complex values introduced at roundoff level because of complex Fourier series

2. Alternative approach: split PDE into its real and imaginary parts v = p + ig

(vx)? IS R ()

v 9 = &p.9)

Initialize g with random initial perturbation at machine roundoff level
Solve with finite differences, pseudospectral methods, etc

U = Uy —1—2

Conjecture: Keller & Lowengrub failed because they solved the v-equation
as a real equation using real arithmetic
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Numerical computation of blow-up solutions:

Solutions observed after blow up

t=0.25 t=10.25
0.1 0.1
B \ / N M
) 0 2 0
005 005 \/
-0.1 -0.1
- -ml2 0 w2 ™ - -ml2 0 w2 Ed
T xr
t=10.25 t=0.25
0.1 0.1

-0.05 \7 -0.05

-0.1 -0.1
- -ml2 0 w2 ™ - -l2 0 wl2 E

g
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The view from the complex x-plane:
First some history: the Burgers equation

“The shortest path between two truths in the real domain often goes
— Paul Painlevé (1863—-1933)

through the complex plane”

Consider a different nonlinear PDE that exhibits blow up (in gradient):

Inviscid Burgers: u; + uu, =0, wu(x,0)=—sinx

t= 2
3 1

t=0 t= 1
1 3 1
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The view from the complex x-plane:

A classic paper from the 1980s

Pole condensation and the Riemann surface associated
with a shock in Burgers’ equation
J. Physique Lett., Vol. 45 (1984)

D. Bessis
im X
Service de Physique Théorique, CEN Saclay, 91191 Gif-sur-Yvette Cedex, France
and J. D. Fournier Physical sheet
Observatoire, Mont-Gros, BP 139, 06003 Nice Cedex, France ¥ X

Physical region

u u Re X

7 F/ v [\/ » % 5
“Starting from t = 0 at infinity, the moving square root singularities x; and

—xs come down along the imaginary axis; they meet at t = t. and they move
away along the real axis.” — Bessis & Fournier (1984)
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The view from the complex x-plane:

How to compute singularity structure in the absence of an explicit solution?

Procedure suggested in SIADS (2003)
m Solve PDE on real line using a Fourier spectral method
m At any time ¢, extend the solution from the real line into the complex plane
using numerical analytic continutation (such as Fourier-Padé methods)
m Display the continued solution using a phase plot: u = re'®
u=1/22 u = log(z)/2*
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The view from the complex x-plane:

Nonlinear heat equation at small times

t = 0.50
2 -
u(x,0) = cosx
. . 1
Att = 0, no singularities
in finite complex plane .

At t > 0 singularities
start to move in from
infinity along imaginary
axis

- -ml2 0 /2 T

Looks like poles of order 2 but analysis says that locally, near singularity

1 (6]

e c

+ 03+ c4C+ csC + c6C° + cC* + c;Ctlog T+ -+ -
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