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Nonlinear heat equations:
Introduction

Consider nonlinear heat equations of the form

ut = uxx + f (u), f (u) =


u2
← considered here

um, m = 3, 4, 5, . . .
eu, etc.

The linear term uxx models diffusion (energy loss)
The nonlinear term f (u) models a reaction process (energy gain)

Applications:
chemistry (thermal runaway)
fluids (singularity formation)
biology (bacterial communication)
etc.
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Nonlinear heat equations:
A competition between smoothing and focusing

ut = uxx + u2

Only the linear term: ut = uxx

Solutions: u = e−t cos x, e−t sin x etc.

Only the nonlinear term: ut = u2

Solution: u = u0/(1 − u0t)
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Nonlinear heat equations:
Steady state or blow-up?

Now both terms: ut = uxx + u2

Blow-up in finite time
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Nonlinear heat equations:
Steady state or blow-up?

Now both terms: ut = uxx + u2

Blow-up in finite time

But if initial condition is strictly negative

a steady state solution is also possible
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Outline of talk:
Numerics, asymptotics, and speculation

Numerical computation of blow-up solutions:
I Adaptive rescaling, moving meshes, etc (Berger & Kohn (1988), Budd et. al (1996))
I Reciprocal substitution (Keller & Lowengrub (1993))
I Fourier spectral methods

Before blow up:
I Simple perturbation analysis

At blow up:
I Matched asymptotic expansions

After blow up: (∗) −→
I Numerical exploration

The complex viewpoint:
I Numerical analytic continuation
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Outline of talk:
Numerics, asymptotics, and speculation

Numerical computation of blow-up solutions:
I Adaptive rescaling, moving meshes, etc (Berger & Kohn (1988), Budd et. al (1996))
I Reciprocal substitution (Keller & Lowengrub (1993))
I Fourier spectral methods

Before blow up:
I Simple perturbation analysis

At blow up:
I Matched asymptotic expansions

After blow up: (∗) −→
I Numerical exploration

The complex viewpoint:
I Numerical analytic continuation

(∗) Solution of ODE exists after blow up.
What about PDE?

ut = u2
⇒ u =

1
(1/u0) − t
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Numerical computation of blow-up solutions:
Possible approaches

Standard off-the-shelf methods inevitably
lead to disaster as shown alongside −→
As long as solutions remain positive the
best strategy is to set u = 1/v, then

ut = uxx + u2
⇒ vt = vxx − 1 − 2

(vx)2

v

Better for numerics, since v stays bounded
Solve v-equation with Fourier spectral method:

v(x, t) =
∞∑

k=−∞

ck(t)eikx
⇒

dck

dt
= −k2ck − δk − dk, |k| ≤ K

Integrate the system on the right with an ODE solver that has error control
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Numerical computation of blow-up solutions:
Success of the reciprocal substitution

Consider initial conditions of the form (periodic, positive, single local max/min)

u(x, 0) =
1

α − ε cos x
, v(x, 0) = α − ε cos x, 0 < ε < α (below α = 0.25, ε = 0.1)
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Before blow up:
A two-mode approximation

Key observation: v-solution is smooth,
approximate by truncated Fourier series

v ≈ a(t) − b(t) cos x, a(0) = α, b(0) = ε

Plug into v-equation, drop cos 2x terms

Phase plane
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Before blow up:
Accuracy of perturbation solution

As a check on the approximation just derived, plug it into PDE:

V = α − t − ε e−t cos x ⇒ V
(
Vt − Vxx + 1 + 2(Vx)2/V

)
= 2 ε2e−2t sin2 x

Parameters: α = 0.25, ε = 0.01, tc ≈ 0.2421
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At blow up:
Method of matched asymptotic expansions

Previous perturbation analysis no longer valid since 0 < b� a is violated.
A modified approach gives the profile at the critical time as

v ∼ 2ε e−α sin2(x/2) + 2ε2 sin2 x
(
e−2α log

(
2ε e−α sin2(x/2)

)
+ C1(α) + C2(α)

)
Shown alongside is the corresponding
u-solution at the critical time. (Note log-
scale.) Same parameters as before:

α = 0.25, ε = 0.01, tc ≈ 0.2421

Modification necessary when |x| � 1:

v ∼
−x2

16 log |x|
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After blow up:
A classic paper from the 1990s

J.B. Keller & J.S. Lowengrub. “Asymptotic and numerical results for blowing-up
solutions to semilinear heat equations” (1993)

Derived estimates for blow-up time and solution profile at blow-up
Suggested the reciprocal substitution for numerical computations
Used a finite difference method to solve the v-equivalent of ut = uxx + u5

Concluded the following

“Thus, the calculation actually continues the solution slightly beyond the
blow-up time of the original solution u. The method becomes unstable a
short time after the blow-up happens, however.”

– Keller & Lowengrub, 1992
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After blow up:
Keller & Lowengrub revisited

v-solution u-solution
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After blow up:
Keller & Lowengrub revisited

v-solution u-solution
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After blow up:
Dynamics of the v-solution

v-solution

α = 0.25
ε = 0.1

Not unique!
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After blow up:
Dynamics of the u-solution

u-solution

α = 0.25
ε = 0.1

Note
secondary
‘blow up’ −→
(almost)
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After blow up:
What is known about post blow-up solutions?

Theory:
K. Masuda. “Analytic solutions of some nonlinear diffusion equations” (1984)

Possibility of complex solutions after critical time, uniqueness may be lost

Numerics:

C.-H. Cho et al. “A blow-up problem for
a nonlinear heat equation in the complex
plane of time” (2016)

A. Takayashu et al. “Rigorous numerics
for nonlinear heat equations in the complex
plane of time” (2020)

Both numerical papers consider methods based on the complexification of t
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After blow up:
How to compute through singularity?

Main point: the computational setup should allow for complex solutions

1. Fourier spectral method, based on v(x, t) =
∞∑

k=−∞

ck(t)eikx

Complex values introduced at roundoff level because of complex Fourier series

2. Alternative approach: split PDE into its real and imaginary parts v = p + iq

vt = vxx − 1 − 2
(vx)2

v
⇒

pt = f (p, q)
qt = g(p, q)

Initialize q with random initial perturbation at machine roundoff level
Solve with finite differences, pseudospectral methods, etc

Conjecture: Keller & Lowengrub failed because they solved the v-equation
as a real equation using real arithmetic
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Numerical computation of blow-up solutions:
Solutions observed after blow up
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The view from the complex x-plane:
First some history: the Burgers equation

“The shortest path between two truths in the real domain often goes
through the complex plane” – Paul Painlevé (1863–1933)

Consider a different nonlinear PDE that exhibits blow up (in gradient):

Inviscid Burgers: ut + uux = 0, u(x, 0) = − sin x
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The view from the complex x-plane:
A classic paper from the 1980s

J. Physique Lett., Vol. 45 (1984)

“Starting from t = 0 at infinity, the moving square root singularities xs and
−xs come down along the imaginary axis; they meet at t = t∗ and they move
away along the real axis.” – Bessis & Fournier (1984)
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The view from the complex x-plane:
How to compute singularity structure in the absence of an explicit solution?

Procedure suggested in SIADS (2003)
Solve PDE on real line using a Fourier spectral method
At any time t, extend the solution from the real line into the complex plane
using numerical analytic continutation (such as Fourier-Padé methods)
Display the continued solution using a phase plot: u = reiθ
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The view from the complex x-plane:
Nonlinear heat equation at small times

u(x, 0) = cos x

At t = 0, no singularities
in finite complex plane
At t > 0 singularities
start to move in from
infinity along imaginary
axis
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