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In a Banach algebra A

σ(ab) \ {0} = σ(ba) \ {0}

for elements a,b ∈ A.

In A this looks like:

1− ab ∈ A−1 =⇒ 1− ba ∈ A−1

In this talk we discuss subsets of A that have the Jacobson
Property, i.e. X ⊆ A such that for a,b ∈ A:

1− ab ∈ X =⇒ 1− ba ∈ X .
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Preliminaries

A will be a Banach algebra, complex and unital.

A−1 - the group of invertible elements in A.

σA(a) = {λ ∈ C : λ− a /∈ A−1}
the ordinary spectrum of a ∈ A - write simply σ(a).

A−1
` and A−1

r - the left and right invertibles in A.

If K ⊆ C, then

acc K - the set of accumulation points of K ,

iso K - the set of isolated points of K ,

∂K - topological boundary of K ,

K - the closure of K .

If X ⊆ A we say that X has the Jacobson Property, if for
a,b ∈ A:

1− ab ∈ X =⇒ 1− ba ∈ X . (1)
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By an ideal in A we mean a two-sided ideal.

An ideal J in A is said to be inessential

a ∈ J =⇒ accσ(a) ⊆ {0},

a ∈ J =⇒ σ(a) is either finite or a sequence converging to 0.

I(A) - the collection of all inessential elements in A.

An element a ∈ A is quasinilpotent if σ(a) = {0}.

QN(A) - the collection of quasinilpotents in A.

We say a ∈ A is almost invertible if 0 /∈ accσ(a).

Aai - the set of almost invertible elements in A.
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a ∈ A is regular if it has a generalised inverse, b ∈ A for which
a = aba,

Â = {a ∈ A : a ∈ aAa} (2)

These include both the left and right invertible elements,

A−1
` ∪ A−1

r ⊆ Â (3)

as well as the idempotents,

A• = {a ∈ A : a = a2}. (4)

The decomposably regular elements are those which admit
invertible generalised inverses

they are those elements which can be written as a product of
an invertible and an idempotent:

A−1A• = A•A−1 = {a ∈ A : a ∈ aA−1a} ⊆ Â. (5)
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r ⊆ Â (3)

as well as the idempotents,

A• = {a ∈ A : a = a2}. (4)

The decomposably regular elements are those which admit
invertible generalised inverses

they are those elements which can be written as a product of
an invertible and an idempotent:

A−1A• = A•A−1 = {a ∈ A : a ∈ aA−1a} ⊆ Â. (5)
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Notice that

A−1
` ∩ A−1

r = A−1
` ∩ A−1A• = A−1

r ∩ A−1A• = A−1. (6)

If A is a Banach algebra, then

A−1A• = Â ∩ A−1. (7)

Definition
Let I be an ideal in a Banach algebra A. I is subprime if
ab ∈ I =⇒ a ∈ I or b ∈ I.

The notion of a subprime ideal defined above coincides with
that of a prime ideal in a commutative ring or algebra.

Also called completely prime.
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From V. Müller - 1990’s :

Definition
A nonempty subset R of a Banach algebra A is called a
regularity if it satisfies the following two conditions:

(i) if a ∈ A,n ∈ N then a ∈ R ⇐⇒ an ∈ R;
(ii) if a,b, c,d are mutually commuting elements of A

satisfying ac + bd = 1 then a,b ∈ R ⇐⇒ ab ∈ R.
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It is easy to see that the following theorem holds.

Theorem
Let R be a nonempty subset of a Banach algebra A satisfying:

ab ∈ R ⇐⇒ a,b ∈ R (P1)

for all commuting elements a,b ∈ A. Then R is a regularity.

The definition of a regularity can be divided into two parts as
follows:

Definition
A nonempty subset R in a Banach algebra A will be called a
lower semiregularity if it satisfies the following conditions:

(i) a ∈ A, n ∈ N and an ∈ R ⇒ a ∈ R,
(ii) if a,b, c,d are commuting elements of A and ac + bd = 1,

then ab ∈ R ⇒ a ∈ R and b ∈ R.
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If a nonempty subset R in A satisfies

a,b ∈ A,ab = ba,ab ∈ R ⇒ a ∈ R and b ∈ R (P1′)

then it is a lower semiregularity

Definition
A nonempty subset R in a Banach algebra A is called an upper
semiregularity if it satisfies the following conditions:

(i) a ∈ R, n ∈ N ⇒ an ∈ R,
(ii) if a,b, c,d are commuting elements of A and ac + bd = 1,

then a,b ∈ R ⇒ ab ∈ R,
(iii) R contains a neighbourhood of the unit element 1.

any semigroup containing a neighbourhood of the identity is an
upper semiregularity,
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Let R ⊆ A - assigns to each a ∈ A a subset of C defined by

σR(a) = {λ ∈ C : λ− a /∈ R}.

called the spectrum corresponding to R.

If R is a regularity or a semiregularity then the spectrum σR has
interesting properties.

Let R be a nonempty subset of a Banach algebra A. Then

R has the J Property ⇐⇒ σR(ab)\{0} = σR(ba)\{0}

for all a,b ∈ A

There are many examples of subsets in a Banach algebra
possessing the Jacobson Property.

Let A be a Banach algebra and I a closed ideal in A.

The canonical homomorphism π : A→ A/I is defined by
π(a) = a + I for a ∈ A.



Let R ⊆ A - assigns to each a ∈ A a subset of C defined by

σR(a) = {λ ∈ C : λ− a /∈ R}.

called the spectrum corresponding to R.

If R is a regularity or a semiregularity then the spectrum σR has
interesting properties.

Let R be a nonempty subset of a Banach algebra A. Then

R has the J Property ⇐⇒ σR(ab)\{0} = σR(ba)\{0}

for all a,b ∈ A

There are many examples of subsets in a Banach algebra
possessing the Jacobson Property.

Let A be a Banach algebra and I a closed ideal in A.

The canonical homomorphism π : A→ A/I is defined by
π(a) = a + I for a ∈ A.



Let R ⊆ A - assigns to each a ∈ A a subset of C defined by

σR(a) = {λ ∈ C : λ− a /∈ R}.

called the spectrum corresponding to R.

If R is a regularity or a semiregularity then the spectrum σR has
interesting properties.

Let R be a nonempty subset of a Banach algebra A. Then

R has the J Property ⇐⇒ σR(ab)\{0} = σR(ba)\{0}

for all a,b ∈ A

There are many examples of subsets in a Banach algebra
possessing the Jacobson Property.

Let A be a Banach algebra and I a closed ideal in A.

The canonical homomorphism π : A→ A/I is defined by
π(a) = a + I for a ∈ A.



Let R ⊆ A - assigns to each a ∈ A a subset of C defined by

σR(a) = {λ ∈ C : λ− a /∈ R}.

called the spectrum corresponding to R.

If R is a regularity or a semiregularity then the spectrum σR has
interesting properties.

Let R be a nonempty subset of a Banach algebra A. Then

R has the J Property ⇐⇒ σR(ab)\{0} = σR(ba)\{0}

for all a,b ∈ A

There are many examples of subsets in a Banach algebra
possessing the Jacobson Property.

Let A be a Banach algebra and I a closed ideal in A.

The canonical homomorphism π : A→ A/I is defined by
π(a) = a + I for a ∈ A.



Let R ⊆ A - assigns to each a ∈ A a subset of C defined by

σR(a) = {λ ∈ C : λ− a /∈ R}.

called the spectrum corresponding to R.

If R is a regularity or a semiregularity then the spectrum σR has
interesting properties.

Let R be a nonempty subset of a Banach algebra A. Then

R has the J Property ⇐⇒ σR(ab)\{0} = σR(ba)\{0}

for all a,b ∈ A

There are many examples of subsets in a Banach algebra
possessing the Jacobson Property.

Let A be a Banach algebra and I a closed ideal in A.

The canonical homomorphism π : A→ A/I is defined by
π(a) = a + I for a ∈ A.



Let R ⊆ A - assigns to each a ∈ A a subset of C defined by

σR(a) = {λ ∈ C : λ− a /∈ R}.

called the spectrum corresponding to R.

If R is a regularity or a semiregularity then the spectrum σR has
interesting properties.

Let R be a nonempty subset of a Banach algebra A. Then

R has the J Property ⇐⇒ σR(ab)\{0} = σR(ba)\{0}

for all a,b ∈ A

There are many examples of subsets in a Banach algebra
possessing the Jacobson Property.

Let A be a Banach algebra and I a closed ideal in A.

The canonical homomorphism π : A→ A/I is defined by
π(a) = a + I for a ∈ A.



Let R ⊆ A - assigns to each a ∈ A a subset of C defined by

σR(a) = {λ ∈ C : λ− a /∈ R}.

called the spectrum corresponding to R.

If R is a regularity or a semiregularity then the spectrum σR has
interesting properties.

Let R be a nonempty subset of a Banach algebra A. Then

R has the J Property ⇐⇒ σR(ab)\{0} = σR(ba)\{0}

for all a,b ∈ A

There are many examples of subsets in a Banach algebra
possessing the Jacobson Property.

Let A be a Banach algebra and I a closed ideal in A.

The canonical homomorphism π : A→ A/I is defined by
π(a) = a + I for a ∈ A.



Let R ⊆ A - assigns to each a ∈ A a subset of C defined by

σR(a) = {λ ∈ C : λ− a /∈ R}.

called the spectrum corresponding to R.

If R is a regularity or a semiregularity then the spectrum σR has
interesting properties.

Let R be a nonempty subset of a Banach algebra A. Then

R has the J Property ⇐⇒ σR(ab)\{0} = σR(ba)\{0}

for all a,b ∈ A

There are many examples of subsets in a Banach algebra
possessing the Jacobson Property.

Let A be a Banach algebra and I a closed ideal in A.

The canonical homomorphism π : A→ A/I is defined by
π(a) = a + I for a ∈ A.
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and

Φ(I) = {a ∈ A : a + I ∈ (A/I)−1}.

Denote the ideal π−1(Rad(A/I)) by kh(I).

This is the largest ideal consisting of Riesz elements relative to
the ideal I.

We say that a ∈ A is Riesz relative to I if a + I ∈ QN(A/I).

If R(I) denotes the collection of Riesz elements relative to I,
then R(I) = π−1(QN(A/I)).
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It is easy to see that

I ⊆ kh(I) ⊆ R(I)

and if I is a closed inessential ideal in A, then one can prove
that

I ⊆ kh(I) ⊆ R(I) ⊆ I(A).

Let I be an ideal in a Banach algebra A. A function τ : I → C is
called a trace on I if

(i) τ is linear,
(ii) τ(p) = 1 for every rank one idempotent p ∈ I and
(iii) τ(ab) = τ(ba) for all a ∈ I and b ∈ A.

An ideal I with trace is a trace ideal.

If I is a trace ideal in A, then define an index function ι on Φ(I).

The socle of A is Soc(A).
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Algebraic and Topological results

In this section we exhibit basic properties of sets having the
Jacobson Property.

Lemma
Suppose that X ⊆ Y ⊆ A and suppose that X ,Y have the
Jacobson Property. Then Y \ X has the Jacobson Property.

Remark
If we let Y = A in the above lemma we obtain the following
important special case:

If X ⊆ A and X has the Jacobson Property, then A \ X has the
Jacobson Property.

Lemma
Every proper subprime ideal has the Jacobson property.

Theorem
Let I be a proper subprime ideal in a Banach algebra A. Then
A \ I is a (P1) regularity that has the Jacobson Property.
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Later we construct a nontrivial, proper, two-sided subprime
ideal in a non commutative Banach algebra, and in that way
justify the use of the concept.

Question - is every (P1) regularity the complement of a proper
subprime ideal?

The question is easy to answer as A−1 is a (P1) regularity but
its complement is not an ideal in A.

Theorem
Let A be a Banach algebra and let I be a closed ideal in A.
Suppose π : A→ A/I is the canonical homomorphism and
X ⊆ A/I.

(i) If X has the Jacobson Property, then π−1(X ) in A has the
Jacobson Property.

(ii) If X does not have the Jacobson Property, then π−1(X )
does not have the Jacobson Property.
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Theorem
Let A be a Banach algebra and let X ⊆ A be a semigroup that
contains a neignbourhood of the identity. If X has the Jacobson
Property, then X and ∂X have the Jacobson Property.
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Examples

In this section we provide examples of subsets of a Banach
algebra that satisfy the Jacobson Property.

The sets A−1
` , A−1

r and A−1 have the Jacobson Property.

If I is a closed ideal in A, then in the quotient Banach algebra
A/I, the sets (A/I)−1

` , (A/I)−1
r and (A/I)−1 have the Jacobson

Property.

Corollary
Let A be a Banach algebra and let I be a closed ideal in A.
Then X and ∂X have the Jacobson Property if

X ∈ {A−1
` ,A−1

r ,A−1
` ∪ A−1

r ,Φ`(I),Φr (I),Φ(I),Φ`(I) ∪ Φr (I)}



Examples

In this section we provide examples of subsets of a Banach
algebra that satisfy the Jacobson Property.

The sets A−1
` , A−1

r and A−1 have the Jacobson Property.

If I is a closed ideal in A, then in the quotient Banach algebra
A/I, the sets (A/I)−1

` , (A/I)−1
r and (A/I)−1 have the Jacobson

Property.

Corollary
Let A be a Banach algebra and let I be a closed ideal in A.
Then X and ∂X have the Jacobson Property if

X ∈ {A−1
` ,A−1

r ,A−1
` ∪ A−1

r ,Φ`(I),Φr (I),Φ(I),Φ`(I) ∪ Φr (I)}



Examples

In this section we provide examples of subsets of a Banach
algebra that satisfy the Jacobson Property.

The sets A−1
` , A−1

r and A−1 have the Jacobson Property.

If I is a closed ideal in A, then in the quotient Banach algebra
A/I, the sets (A/I)−1

` , (A/I)−1
r and (A/I)−1 have the Jacobson

Property.

Corollary
Let A be a Banach algebra and let I be a closed ideal in A.
Then X and ∂X have the Jacobson Property if

X ∈ {A−1
` ,A−1

r ,A−1
` ∪ A−1

r ,Φ`(I),Φr (I),Φ(I),Φ`(I) ∪ Φr (I)}



Examples

In this section we provide examples of subsets of a Banach
algebra that satisfy the Jacobson Property.

The sets A−1
` , A−1

r and A−1 have the Jacobson Property.

If I is a closed ideal in A, then in the quotient Banach algebra
A/I, the sets (A/I)−1

` , (A/I)−1
r and (A/I)−1 have the Jacobson

Property.

Corollary
Let A be a Banach algebra and let I be a closed ideal in A.
Then X and ∂X have the Jacobson Property if

X ∈ {A−1
` ,A−1

r ,A−1
` ∪ A−1

r ,Φ`(I),Φr (I),Φ(I),Φ`(I) ∪ Φr (I)}



Examples

In this section we provide examples of subsets of a Banach
algebra that satisfy the Jacobson Property.

The sets A−1
` , A−1

r and A−1 have the Jacobson Property.

If I is a closed ideal in A, then in the quotient Banach algebra
A/I, the sets (A/I)−1

` , (A/I)−1
r and (A/I)−1 have the Jacobson

Property.

Corollary
Let A be a Banach algebra and let I be a closed ideal in A.
Then X and ∂X have the Jacobson Property if

X ∈ {A−1
` ,A−1

r ,A−1
` ∪ A−1

r ,Φ`(I),Φr (I),Φ(I),Φ`(I) ∪ Φr (I)}



The boundary spectrum is generated by the set R = A \ ∂A−1 -
has the Jacobson Property.

Corollary
Let A be a Banach algebra. The sets A−1, ∂A−1,A \ ∂A−1 and
A \ A−1 all possess the Jacobson Property.

The set Aai of almost invertible elements in A is a regularity.

Theorem
The regularity Aai has the Jacobson Property.

Theorem
The set I(A) of inessential elements in a Banach algebra A has
the Jacobson Property.

Theorem
The set {a ∈ A : σ(a) = {1}} has the Jacobson Property.
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It is known that the set Â has the Jacobson Property. This
together with the fact that A−1 has the Jacobson Property,
implies that the collection A−1A• of decomposably regular
elements has the Jacobson Property.

Let A be a semisimple Banach algebra and let I be a closed
trace ideal in A with Soc A ⊆ I ⊆ kh( I). Now one defines an
abstract index function ι was defined on the set Φ(I) of
Fredholm elements relative to I.

It was shown that this abstract index function has all the
desirable properties of the classical index for Fredholm
operators defined on a Banach space. One can extend the
domain of the abstract index function ι to the set Φ`(I) ∪ Φr (I)
by defining

ι(a) =

{
−∞ if a ∈ Φ`(I) \ Φ(I)
∞ if a ∈ Φr (I) \ Φ(I)

If Z ⊆ Z, let

ΦZ (I) = {a ∈ Φ`(I) ∪ Φr (I) : ι(a) ∈ Z}.
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It is known that the set Â has the Jacobson Property. This
together with the fact that A−1 has the Jacobson Property,
implies that the collection A−1A• of decomposably regular
elements has the Jacobson Property.

Let A be a semisimple Banach algebra and let I be a closed
trace ideal in A with Soc A ⊆ I ⊆ kh( I). Now one defines an
abstract index function ι was defined on the set Φ(I) of
Fredholm elements relative to I.

It was shown that this abstract index function has all the
desirable properties of the classical index for Fredholm
operators defined on a Banach space. One can extend the
domain of the abstract index function ι to the set

Φ`(I) ∪ Φr (I)
by defining

ι(a) =

{
−∞ if a ∈ Φ`(I) \ Φ(I)
∞ if a ∈ Φr (I) \ Φ(I)

If Z ⊆ Z, let

ΦZ (I) = {a ∈ Φ`(I) ∪ Φr (I) : ι(a) ∈ Z}.
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It is known that the set Â has the Jacobson Property. This
together with the fact that A−1 has the Jacobson Property,
implies that the collection A−1A• of decomposably regular
elements has the Jacobson Property.

Let A be a semisimple Banach algebra and let I be a closed
trace ideal in A with Soc A ⊆ I ⊆ kh( I). Now one defines an
abstract index function ι was defined on the set Φ(I) of
Fredholm elements relative to I.

It was shown that this abstract index function has all the
desirable properties of the classical index for Fredholm
operators defined on a Banach space. One can extend the
domain of the abstract index function ι to the set Φ`(I) ∪ Φr (I)
by defining

ι(a) =

{
−∞ if a ∈ Φ`(I) \ Φ(I)
∞ if a ∈ Φr (I) \ Φ(I)

If Z ⊆ Z, let

ΦZ (I) = {a ∈ Φ`(I) ∪ Φr (I) : ι(a) ∈ Z}.



Corollary
Let A be a semisimple Banach algebra and let I be a closed
trace ideal in A with Soc A ⊆ I ⊆ kh( I). If Z ⊆ Z and ΦZ (I) is
nonempty, then ΦZ (I) has the Jacobson Property.

By the above Corollary, if Z = {k} with k ∈ Z, then Φk (I) has
the Jacobson Property. In particular, if k = 0, then Φ0(I) is an
upper semiregularity with the Jacobson property. Also,
Φ0 =W(I) withW(I) the collection of Weyl elements in A
relative to I.

For a,b ∈ A, we call ab − ba the commutator of a and b,
denoted by [a,b]. Let AD be the smallest ideal that contains all
the commutators - the commutator ideal of A.

Theorem
If A is a Banach algebra then AD and A \ AD have the Jacobson
Property.
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Multiplicative linear functionals

The concept of a multiplicative linear functional on A gives us a
means to generate a large number of these sets that satisfy the
Jacobson Property.

Multiplicative linear functionals - mostly used in commutative
settings - there are noncommutative Banach algebras that
admit nonzero multiplicative linear functionals.

Theorem
Let A be a complex unital Banach algebra and let f be a
multiplicative linear functional on A. Then the set
P = {f−1(λ) : λ ∈ C} is a partition of A and every member of P
has the Jacobson Property.

Corollary
Let A be a noncommutative Banach algebra, and f a
multiplicative linear functional on A. Then ker(f ) has the
Jacobson Property.
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We can generalize the theorem above as follows:

Theorem
Let f be a multiplicative linear functional on a complex, unital
Banach algebra A, and B ⊆ C, B 6= ∅. Then f−1(B) has the
Jacobson Property.

Corollary
Let A be a noncommutative Banach algebra, and f a
multiplicative linear functional on A. Then ker(f ) is a proper,
non-trivial subprime ideal of A.
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regularity in A which has the Jacobson Property.
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Sets that do not have the Jacobson Property

Examples of subsets in a Banach algebra that do not possess
the Jacobson Property.

The upper semiregularity ExpA does not have the Jacobson
Property.

Proposition
Let A be a Banach algebra. Then the upper semiregularity
ExpA does not have the Jacobson Property.

Example
Let A = L(`2) and let R = A\QN(A). Then R is a lower
semiregularity that does not have the Jacobson Property.
Let A be a Banach algebra. The proof of the above example
can be adapted to show that A\Rad A does not have the
Jacobson Property.
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Theorem
Let A be a noncommutative Banach algebra with A−1

` \ A−1 6= ∅
or A−1

r \ A−1 6= ∅. Then Rad A does not have the Jacobson
Property.

Corollary
Let A be a noncommutative Banach algebra and let I be a
closed ideal in A. Then the ideal kh( I) does not have the
Jacobson Property.


