The Jacobson Property in Banach algebras

A Swartz, H Raubenheimer

In a Banach algebra A

$$\sigma(ab)\setminus\{0\}=\sigma(ba)\setminus\{0\}$$

for elements $a, b \in A$.

In a Banach algebra A

$$\sigma(ab)\setminus\{0\}=\sigma(ba)\setminus\{0\}$$

for elements $a, b \in A$.

In A this looks like:

$$1 - ab \in A^{-1} \implies 1 - ba \in A^{-1}$$

In a Banach algebra A

$$\sigma(ab)\setminus\{0\}=\sigma(ba)\setminus\{0\}$$

for elements $a, b \in A$.

In A this looks like:

$$1 - ab \in A^{-1} \implies 1 - ba \in A^{-1}$$

In this talk we discuss subsets of A that have the Jacobson Property, i.e. $X \subseteq A$ such that for $a, b \in A$:

$$1 - ab \in X \implies 1 - ba \in X$$
.

A will be a Banach algebra, complex and unital.

A will be a Banach algebra, complex and unital.

 A^{-1} - the group of invertible elements in A.

$$\sigma_{\mathcal{A}}(a) = \{\lambda \in \mathbb{C} : \lambda - a \notin \mathcal{A}^{-1}\}$$

the ordinary spectrum of $a \in A$ - write simply $\sigma(a)$.

A will be a Banach algebra, complex and unital.

 A^{-1} - the group of invertible elements in A.

$$\sigma_{\mathcal{A}}(a) = \{\lambda \in \mathbb{C} : \lambda - a \notin \mathcal{A}^{-1}\}$$

the ordinary spectrum of $a \in A$ - write simply $\sigma(a)$.

 A_{ℓ}^{-1} and A_{r}^{-1} - the left and right invertibles in A.

A will be a Banach algebra, complex and unital.

 A^{-1} - the group of invertible elements in A.

$$\sigma_{\mathcal{A}}(a) = \{\lambda \in \mathbb{C} : \lambda - a \notin \mathcal{A}^{-1}\}$$

the ordinary spectrum of $a \in A$ - write simply $\sigma(a)$.

 A_{ℓ}^{-1} and A_{r}^{-1} - the left and right invertibles in A.

If $K \subseteq \mathbb{C}$, then

A will be a Banach algebra, complex and unital.

 A^{-1} - the group of invertible elements in A.

$$\sigma_{\mathcal{A}}(a) = \{\lambda \in \mathbb{C} : \lambda - a \notin \mathcal{A}^{-1}\}$$

the ordinary spectrum of $a \in A$ - write simply $\sigma(a)$.

 A_{ℓ}^{-1} and A_{r}^{-1} - the left and right invertibles in A.

If $K \subseteq \mathbb{C}$, then

 $\operatorname{acc} K$ - the set of accumulation points of K,

A will be a Banach algebra, complex and unital.

 A^{-1} - the group of invertible elements in A.

$$\sigma_{\mathcal{A}}(a) = \{\lambda \in \mathbb{C} : \lambda - a \notin \mathcal{A}^{-1}\}$$

the ordinary spectrum of $a \in A$ - write simply $\sigma(a)$.

 A_{ℓ}^{-1} and A_{r}^{-1} - the left and right invertibles in A.

If $K \subseteq \mathbb{C}$, then

 $\operatorname{acc} K$ - the set of accumulation points of K,

iso K - the set of isolated points of K,

A will be a Banach algebra, complex and unital.

 A^{-1} - the group of invertible elements in A.

$$\sigma_{\mathcal{A}}(a) = \{\lambda \in \mathbb{C} : \lambda - a \notin \mathcal{A}^{-1}\}$$

the ordinary spectrum of $a \in A$ - write simply $\sigma(a)$.

 A_{ℓ}^{-1} and A_{r}^{-1} - the left and right invertibles in A.

If $K \subseteq \mathbb{C}$, then

 $\operatorname{acc} K$ - the set of accumulation points of K,

iso K - the set of isolated points of K,

 ∂K - topological boundary of K,

A will be a Banach algebra, complex and unital.

 A^{-1} - the group of invertible elements in A.

$$\sigma_{\mathcal{A}}(a) = \{\lambda \in \mathbb{C} : \lambda - a \notin \mathcal{A}^{-1}\}$$

the ordinary spectrum of $a \in A$ - write simply $\sigma(a)$.

 A_{ℓ}^{-1} and A_{r}^{-1} - the left and right invertibles in A.

If $K \subseteq \mathbb{C}$, then

 $\operatorname{acc} K$ - the set of accumulation points of K,

iso K - the set of isolated points of K,

 ∂K - topological boundary of K,

 \overline{K} - the closure of K.

A will be a Banach algebra, complex and unital.

 A^{-1} - the group of invertible elements in A.

$$\sigma_{\mathcal{A}}(a) = \{\lambda \in \mathbb{C} : \lambda - a \notin \mathcal{A}^{-1}\}$$

the ordinary spectrum of $a \in A$ - write simply $\sigma(a)$.

 A_{ℓ}^{-1} and A_{r}^{-1} - the left and right invertibles in A.

If $K \subseteq \mathbb{C}$, then

 $\operatorname{acc} K$ - the set of accumulation points of K,

iso K - the set of isolated points of K,

 ∂K - topological boundary of K,

 \overline{K} - the closure of K.

If $X \subseteq A$ we say that X has the Jacobson Property, if for $a, b \in A$:

$$1 - ab \in X \implies 1 - ba \in X$$
.

An ideal *J* in *A* is said to be *inessential*

$$a \in J \implies \operatorname{acc} \sigma(a) \subseteq \{0\},$$

An ideal J in A is said to be inessential

$$a \in J \implies \mathrm{acc}\,\sigma(a) \subseteq \{0\},$$

 $a \in J \implies \sigma(a)$ is either finite or a sequence converging to 0.

An ideal J in A is said to be inessential

$$a \in J \implies \operatorname{acc} \sigma(a) \subseteq \{0\},$$

 $a \in J \implies \sigma(a)$ is either finite or a sequence converging to 0.

 $\mathcal{I}(A)$ - the collection of all inessential elements in A.

An ideal J in A is said to be inessential

$$a \in J \implies \operatorname{acc} \sigma(a) \subseteq \{0\},$$

 $a \in J \implies \sigma(a)$ is either finite or a sequence converging to 0.

 $\mathcal{I}(A)$ - the collection of all inessential elements in A.

An element $a \in A$ is quasinilpotent if $\sigma(a) = \{0\}$.

An ideal *J* in *A* is said to be *inessential*

$$a \in J \implies \operatorname{acc} \sigma(a) \subseteq \{0\},$$

 $a \in J \implies \sigma(a)$ is either finite or a sequence converging to 0.

 $\mathcal{I}(A)$ - the collection of all inessential elements in A.

An element $a \in A$ is *quasinilpotent* if $\sigma(a) = \{0\}$.

QN(A) - the collection of quasinilpotents in A.

An ideal J in A is said to be inessential

$$a \in J \implies \mathrm{acc}\,\sigma(a) \subseteq \{0\},$$

 $a \in J \implies \sigma(a)$ is either finite or a sequence converging to 0.

 $\mathcal{I}(A)$ - the collection of all inessential elements in A.

An element $a \in A$ is quasinilpotent if $\sigma(a) = \{0\}$.

QN(A) - the collection of quasinilpotents in A.

We say $a \in A$ is almost invertible if $0 \notin acc \sigma(a)$.

An ideal J in A is said to be inessential

$$a \in J \implies \mathrm{acc}\,\sigma(a) \subseteq \{0\},$$

 $a \in J \implies \sigma(a)$ is either finite or a sequence converging to 0.

 $\mathcal{I}(A)$ - the collection of all inessential elements in A.

An element $a \in A$ is quasinilpotent if $\sigma(a) = \{0\}$.

QN(A) - the collection of quasinilpotents in A.

We say $a \in A$ is almost invertible if $0 \notin acc \sigma(a)$.

 A_{ai} - the set of almost invertible elements in A.

$$\widehat{A} = \{ a \in A : a \in aAa \}$$
 (2)

$$\widehat{A} = \{ a \in A : a \in aAa \}$$
 (2)

These include both the left and right invertible elements,

$$A_{\ell}^{-1} \cup A_{r}^{-1} \subseteq \widehat{A} \tag{3}$$

$$\widehat{A} = \{ a \in A : a \in aAa \}$$
 (2)

These include both the left and right invertible elements,

$$A_{\ell}^{-1} \cup A_{r}^{-1} \subseteq \widehat{A} \tag{3}$$

as well as the idempotents,

$$A^{\bullet} = \{a \in A : a = a^2\}. \tag{4}$$

$$\widehat{A} = \{ a \in A : a \in aAa \}$$
 (2)

These include both the left and right invertible elements,

$$A_{\ell}^{-1} \cup A_{r}^{-1} \subseteq \widehat{A} \tag{3}$$

as well as the idempotents,

$$A^{\bullet} = \{a \in A : a = a^2\}. \tag{4}$$

The *decomposably regular* elements are those which admit invertible generalised inverses

$$\widehat{A} = \{ a \in A : a \in aAa \}$$
 (2)

These include both the left and right invertible elements,

$$A_{\ell}^{-1} \cup A_{r}^{-1} \subseteq \widehat{A} \tag{3}$$

as well as the idempotents,

$$A^{\bullet} = \{a \in A : a = a^2\}. \tag{4}$$

The *decomposably regular* elements are those which admit invertible generalised inverses

they are those elements which can be written as a product of an invertible and an idempotent:

$$A^{-1}A^{\bullet} = A^{\bullet}A^{-1} = \{a \in A : a \in aA^{-1}a\} \subseteq \widehat{A}.$$
 (5)

$$A_{\ell}^{-1} \cap A_{r}^{-1} = A_{\ell}^{-1} \cap A^{-1}A^{\bullet} = A_{r}^{-1} \cap A^{-1}A^{\bullet} = A^{-1}.$$
 (6)

$$A_{\ell}^{-1} \cap A_{r}^{-1} = A_{\ell}^{-1} \cap A^{-1}A^{\bullet} = A_{r}^{-1} \cap A^{-1}A^{\bullet} = A^{-1}.$$
 (6)

If A is a Banach algebra, then

$$A^{-1}A^{\bullet} = \widehat{A} \cap \overline{A^{-1}}. (7)$$

$$A_{\ell}^{-1} \cap A_{r}^{-1} = A_{\ell}^{-1} \cap A^{-1}A^{\bullet} = A_{r}^{-1} \cap A^{-1}A^{\bullet} = A^{-1}.$$
 (6)

If A is a Banach algebra, then

$$A^{-1}A^{\bullet} = \widehat{A} \cap \overline{A^{-1}}. \tag{7}$$

Definition

Let *I* be an ideal in a Banach algebra *A*. *I* is *subprime* if $ab \in I \implies a \in I$ or $b \in I$.

$$A_{\ell}^{-1} \cap A_{r}^{-1} = A_{\ell}^{-1} \cap A^{-1}A^{\bullet} = A_{r}^{-1} \cap A^{-1}A^{\bullet} = A^{-1}.$$
 (6)

If A is a Banach algebra, then

$$A^{-1}A^{\bullet} = \widehat{A} \cap \overline{A^{-1}}.$$
 (7)

Definition

Let *I* be an ideal in a Banach algebra *A*. *I* is *subprime* if $ab \in I \implies a \in I$ or $b \in I$.

The notion of a subprime ideal defined above coincides with that of a *prime* ideal in a commutative ring or algebra.

Also called completely prime.

From V. Müller - 1990's:

Definition

A nonempty subset *R* of a Banach algebra *A* is called a *regularity* if it satisfies the following two conditions:

From V. Müller - 1990's:

Definition

A nonempty subset *R* of a Banach algebra *A* is called a *regularity* if it satisfies the following two conditions:

- (i) if $a \in A$, $n \in \mathbb{N}$ then $a \in R \iff a^n \in R$;
- (ii) if a, b, c, d are mutually commuting elements of A satisfying ac + bd = 1 then $a, b \in R \iff ab \in R$.

Theorem

Let R be a nonempty subset of a Banach algebra A satisfying:

$$ab \in R \iff a, b \in R$$
 (P1)

for all commuting elements $a, b \in A$. Then R is a regularity.

Theorem

Let R be a nonempty subset of a Banach algebra A satisfying:

$$ab \in R \iff a, b \in R$$
 (P1)

for all commuting elements $a, b \in A$. Then R is a regularity.

The definition of a regularity can be divided into two parts as follows:

Definition

A nonempty subset *R* in a Banach algebra *A* will be called a *lower semiregularity* if it satisfies the following conditions:

Theorem

Let R be a nonempty subset of a Banach algebra A satisfying:

$$ab \in R \iff a, b \in R$$
 (P1)

for all commuting elements $a, b \in A$. Then R is a regularity.

The definition of a regularity can be divided into two parts as follows:

Definition

A nonempty subset *R* in a Banach algebra *A* will be called a *lower semiregularity* if it satisfies the following conditions:

- (i) $a \in A$, $n \in \mathbb{N}$ and $a^n \in R \Rightarrow a \in R$,
- (ii) if a, b, c, d are commuting elements of A and ac + bd = 1, then $ab \in R \Rightarrow a \in R$ and $b \in R$.

$$a, b \in A, ab = ba, ab \in R \Rightarrow a \in R \text{ and } b \in R$$
 (P1')

then it is a lower semiregularity

$$a,b \in A, ab = ba, ab \in R \Rightarrow a \in R \text{ and } b \in R$$
 (P1')

then it is a lower semiregularity

Definition

A nonempty subset *R* in a Banach algebra *A* is called an *upper semiregularity* if it satisfies the following conditions:

$$a, b \in A, ab = ba, ab \in R \Rightarrow a \in R \text{ and } b \in R$$
 (P1')

then it is a lower semiregularity

Definition

A nonempty subset *R* in a Banach algebra *A* is called an *upper semiregularity* if it satisfies the following conditions:

- (i) $a \in R$, $n \in \mathbb{N} \Rightarrow a^n \in R$,
- (ii) if a, b, c, d are commuting elements of A and ac + bd = 1, then $a, b \in R \Rightarrow ab \in R$,
- (iii) R contains a neighbourhood of the unit element 1.

$$a, b \in A, ab = ba, ab \in R \Rightarrow a \in R \text{ and } b \in R$$
 (P1')

then it is a lower semiregularity

Definition

A nonempty subset *R* in a Banach algebra *A* is called an *upper semiregularity* if it satisfies the following conditions:

- (i) $a \in R$, $n \in \mathbb{N} \Rightarrow a^n \in R$,
- (ii) if a, b, c, d are commuting elements of A and ac + bd = 1, then $a, b \in R \Rightarrow ab \in R$,
- (iii) R contains a neighbourhood of the unit element 1.

any semigroup containing a neighbourhood of the identity is an upper semiregularity,

$$\sigma_R(a) = \{\lambda \in \mathbb{C} : \lambda - a \notin R\}.$$

called the *spectrum corresponding* to *R*.

$$\sigma_R(a) = \{\lambda \in \mathbb{C} : \lambda - a \notin R\}.$$

called the *spectrum corresponding* to *R*.

If R is a regularity or a semiregularity then the spectrum σ_R has interesting properties.

$$\sigma_{R}(a) = \{\lambda \in \mathbb{C} : \lambda - a \notin R\}.$$

called the *spectrum corresponding* to *R*.

If R is a regularity or a semiregularity then the spectrum σ_R has interesting properties.

Let R be a nonempty subset of a Banach algebra A. Then

$$\sigma_{R}(a) = \{\lambda \in \mathbb{C} : \lambda - a \notin R\}.$$

called the *spectrum corresponding* to *R*.

If R is a regularity or a semiregularity then the spectrum σ_R has interesting properties.

Let R be a nonempty subset of a Banach algebra A. Then

$$R$$
 has the J Property \iff $\sigma_R(ab)\setminus\{0\}=\sigma_R(ba)\setminus\{0\}$ for all $a,b\in A$

$$\sigma_{R}(a) = \{\lambda \in \mathbb{C} : \lambda - a \notin R\}.$$

called the *spectrum corresponding* to *R*.

If R is a regularity or a semiregularity then the spectrum σ_R has interesting properties.

Let R be a nonempty subset of a Banach algebra A. Then

R has the J Property
$$\iff$$
 $\sigma_B(ab)\setminus\{0\} = \sigma_B(ba)\setminus\{0\}$

for all $a, b \in A$

There are many examples of subsets in a Banach algebra possessing the Jacobson Property.

$$\sigma_{R}(a) = \{\lambda \in \mathbb{C} : \lambda - a \notin R\}.$$

called the *spectrum corresponding* to *R*.

If R is a regularity or a semiregularity then the spectrum σ_R has interesting properties.

Let R be a nonempty subset of a Banach algebra A. Then

R has the J Property
$$\iff$$
 $\sigma_R(ab)\setminus\{0\} = \sigma_R(ba)\setminus\{0\}$

for all $a, b \in A$

There are many examples of subsets in a Banach algebra possessing the Jacobson Property.

Let A be a Banach algebra and I a closed ideal in A.

$$\sigma_{R}(a) = \{\lambda \in \mathbb{C} : \lambda - a \notin R\}.$$

called the *spectrum corresponding* to *R*.

If R is a regularity or a semiregularity then the spectrum σ_R has interesting properties.

Let R be a nonempty subset of a Banach algebra A. Then

R has the J Property
$$\iff$$
 $\sigma_B(ab)\setminus\{0\} = \sigma_B(ba)\setminus\{0\}$

for all $a, b \in A$

There are many examples of subsets in a Banach algebra possessing the Jacobson Property.

Let A be a Banach algebra and I a closed ideal in A.

The canonical homomorphism $\pi:A\to A/I$ is defined by $\pi(a)=a+I$ for $a\in A$.

$$\Phi_{\ell}(I) = \{ a \in A : a + I \in (A/I)_{\ell}^{-1} \},$$

$$\Phi_{\ell}(I) = \{ a \in A : a + I \in (A/I)_{\ell}^{-1} \},$$

$$\Phi_{r}(I) = \{ a \in A : a + I \in (A/I)_{r}^{-1} \},$$

$$\Phi_{\ell}(I) = \{ a \in A : a + I \in (A/I)_{\ell}^{-1} \},$$

$$\Phi_{r}(I) = \{ a \in A : a + I \in (A/I)_{r}^{-1} \},$$

and

$$\Phi(I) = \{ a \in A : a + I \in (A/I)^{-1} \}.$$

$$\Phi_{\ell}(I) = \{ a \in A : a + I \in (A/I)_{\ell}^{-1} \},$$

$$\Phi_{r}(I) = \{ a \in A : a + I \in (A/I)_{r}^{-1} \},$$

and

$$\Phi(I) = \{ a \in A : a + I \in (A/I)^{-1} \}.$$

Denote the ideal $\pi^{-1}(\operatorname{Rad}(A/I))$ by kh(I).

$$\Phi_{\ell}(I) = \{ a \in A : a + I \in (A/I)_{\ell}^{-1} \},$$

$$\Phi_{r}(I) = \{ a \in A : a + I \in (A/I)_{r}^{-1} \},$$

and

$$\Phi(I) = \{ a \in A : a + I \in (A/I)^{-1} \}.$$

Denote the ideal $\pi^{-1}(\operatorname{Rad}(A/I))$ by kh(I).

This is the largest ideal consisting of Riesz elements relative to the ideal *I*.

$$\Phi_{\ell}(I) = \{ a \in A : a + I \in (A/I)_{\ell}^{-1} \},$$

$$\Phi_{r}(I) = \{ a \in A : a + I \in (A/I)_{r}^{-1} \},$$

and

$$\Phi(I) = \{ a \in A : a + I \in (A/I)^{-1} \}.$$

Denote the ideal $\pi^{-1}(\operatorname{Rad}(A/I))$ by kh(I).

This is the largest ideal consisting of Riesz elements relative to the ideal *I*.

We say that $a \in A$ is *Riesz relative to I* if $a + I \in QN(A/I)$.

$$\Phi_{\ell}(I) = \{ a \in A : a + I \in (A/I)_{\ell}^{-1} \},$$

$$\Phi_r(I) = \{ a \in A : a + I \in (A/I)_r^{-1} \},$$

and

$$\Phi(I) = \{ a \in A : a + I \in (A/I)^{-1} \}.$$

Denote the ideal $\pi^{-1}(\operatorname{Rad}(A/I))$ by kh(I).

This is the largest ideal consisting of Riesz elements relative to the ideal *I*.

We say that $a \in A$ is *Riesz relative to I* if $a + I \in QN(A/I)$.

If $\mathcal{R}(I)$ denotes the collection of Riesz elements relative to I, then $\mathcal{R}(I) = \pi^{-1}(\mathrm{QN}(A/I))$.

$$I \subseteq \mathsf{kh}(I) \subseteq \mathcal{R}(I)$$

$$I \subseteq \mathsf{kh}(I) \subseteq \mathcal{R}(I)$$

and if *I* is a closed inessential ideal in *A*, then one can prove that

$$I \subseteq \mathsf{kh}(I) \subseteq \mathcal{R}(I) \subseteq \mathcal{I}(A)$$
.

$$I \subseteq \mathsf{kh}(I) \subseteq \mathcal{R}(I)$$

and if *I* is a closed inessential ideal in *A*, then one can prove that

$$I \subseteq \mathsf{kh}(I) \subseteq \mathcal{R}(I) \subseteq \mathcal{I}(A)$$
.

Let *I* be an ideal in a Banach algebra *A*. A function $\tau: I \to \mathbb{C}$ is called a *trace* on *I* if

$$I \subseteq \mathsf{kh}(I) \subseteq \mathcal{R}(I)$$

and if *I* is a closed inessential ideal in *A*, then one can prove that

$$I \subseteq \mathsf{kh}(I) \subseteq \mathcal{R}(I) \subseteq \mathcal{I}(A)$$
.

Let *I* be an ideal in a Banach algebra *A*. A function $\tau: I \to \mathbb{C}$ is called a *trace* on *I* if

- (i) τ is linear,
- (ii) $\tau(p) = 1$ for every rank one idempotent $p \in I$ and
- (iii) $\tau(ab) = \tau(ba)$ for all $a \in I$ and $b \in A$.

$$I \subseteq \mathsf{kh}(I) \subseteq \mathcal{R}(I)$$

and if *I* is a closed inessential ideal in *A*, then one can prove that

$$I \subseteq \mathsf{kh}(I) \subseteq \mathcal{R}(I) \subseteq \mathcal{I}(A)$$
.

Let *I* be an ideal in a Banach algebra *A*. A function $\tau: I \to \mathbb{C}$ is called a *trace* on *I* if

- (i) τ is linear,
- (ii) $\tau(p) = 1$ for every rank one idempotent $p \in I$ and
- (iii) $\tau(ab) = \tau(ba)$ for all $a \in I$ and $b \in A$.

An ideal *I* with trace is a *trace ideal*.

$$I \subseteq \mathsf{kh}(I) \subseteq \mathcal{R}(I)$$

and if *I* is a closed inessential ideal in *A*, then one can prove that

$$I \subseteq \mathsf{kh}(I) \subseteq \mathcal{R}(I) \subseteq \mathcal{I}(A)$$
.

Let *I* be an ideal in a Banach algebra *A*. A function $\tau: I \to \mathbb{C}$ is called a *trace* on *I* if

- (i) τ is linear,
- (ii) $\tau(p) = 1$ for every rank one idempotent $p \in I$ and
- (iii) $\tau(ab) = \tau(ba)$ for all $a \in I$ and $b \in A$.

An ideal I with trace is a trace ideal.

If *I* is a trace ideal in *A*, then define an index function ι on $\Phi(I)$.

$$I \subseteq \mathsf{kh}(I) \subseteq \mathcal{R}(I)$$

and if *I* is a closed inessential ideal in *A*, then one can prove that

$$I \subseteq \mathsf{kh}(I) \subseteq \mathcal{R}(I) \subseteq \mathcal{I}(A)$$
.

Let *I* be an ideal in a Banach algebra *A*. A function $\tau: I \to \mathbb{C}$ is called a *trace* on *I* if

- (i) τ is linear,
- (ii) $\tau(p) = 1$ for every rank one idempotent $p \in I$ and
- (iii) $\tau(ab) = \tau(ba)$ for all $a \in I$ and $b \in A$.

An ideal I with trace is a trace ideal.

If *I* is a trace ideal in *A*, then define an index function ι on $\Phi(I)$.

The socle of A is Soc(A).

In this section we exhibit basic properties of sets having the Jacobson Property.

Lemma

Suppose that $X \subseteq Y \subseteq A$ and suppose that X, Y have the Jacobson Property. Then $Y \setminus X$ has the Jacobson Property.

In this section we exhibit basic properties of sets having the Jacobson Property.

Lemma

Suppose that $X \subseteq Y \subseteq A$ and suppose that X, Y have the Jacobson Property. Then $Y \setminus X$ has the Jacobson Property.

Remark

If we let Y = A in the above lemma we obtain the following important special case:

If $X \subseteq A$ and X has the Jacobson Property, then $A \setminus X$ has the Jacobson Property.

In this section we exhibit basic properties of sets having the Jacobson Property.

Lemma

Suppose that $X \subseteq Y \subseteq A$ and suppose that X, Y have the Jacobson Property. Then $Y \setminus X$ has the Jacobson Property.

Remark

If we let Y = A in the above lemma we obtain the following important special case:

If $X \subseteq A$ and X has the Jacobson Property, then $A \setminus X$ has the Jacobson Property.

Lemma

Every proper subprime ideal has the Jacobson property.

Theorem

Let I be a proper subprime ideal in a Banach algebra A. Then $A \setminus I$ is a (P1) regularity that has the Jacobson Property.

In this section we exhibit basic properties of sets having the Jacobson Property.

Lemma

Suppose that $X \subseteq Y \subseteq A$ and suppose that X, Y have the Jacobson Property. Then $Y \setminus X$ has the Jacobson Property.

Remark

If we let Y = A in the above lemma we obtain the following important special case:

If $X \subseteq A$ and X has the Jacobson Property, then $A \setminus X$ has the Jacobson Property.

Lemma

Every proper subprime ideal has the Jacobson property.

Theorem

Let I be a proper subprime ideal in a Banach algebra A. Then $A \setminus I$ is a (P1) regularity that has the Jacobson Property.

Later we construct a nontrivial, proper, two-sided subprime ideal in a non commutative Banach algebra, and in that way justify the use of the concept.

Later we construct a nontrivial, proper, two-sided subprime ideal in a non commutative Banach algebra, and in that way justify the use of the concept.

Question - is every (P1) regularity the complement of a proper subprime ideal?

Later we construct a nontrivial, proper, two-sided subprime ideal in a non commutative Banach algebra, and in that way justify the use of the concept.

Question - is every (P1) regularity the complement of a proper subprime ideal?

The question is easy to answer as A^{-1} is a (P1) regularity but its complement is not an ideal in A.

Later we construct a nontrivial, proper, two-sided subprime ideal in a non commutative Banach algebra, and in that way justify the use of the concept.

Question - is every (P1) regularity the complement of a proper subprime ideal?

The question is easy to answer as A^{-1} is a (P1) regularity but its complement is not an ideal in A.

Theorem

Let A be a Banach algebra and let I be a closed ideal in A. Suppose $\pi: A \to A/I$ is the canonical homomorphism and $X \subseteq A/I$.

Later we construct a nontrivial, proper, two-sided subprime ideal in a non commutative Banach algebra, and in that way justify the use of the concept.

Question - is every (P1) regularity the complement of a proper subprime ideal?

The question is easy to answer as A^{-1} is a (P1) regularity but its complement is not an ideal in A.

Theorem

Let A be a Banach algebra and let I be a closed ideal in A. Suppose $\pi: A \to A/I$ is the canonical homomorphism and $X \subseteq A/I$.

- (i) If X has the Jacobson Property, then $\pi^{-1}(X)$ in A has the Jacobson Property.
- (ii) If X does not have the Jacobson Property, then $\pi^{-1}(X)$ does not have the Jacobson Property.

Theorem

Let A be a Banach algebra and let $X \subseteq A$ be a semigroup that contains a neignbourhood of the identity. If X has the Jacobson Property, then \overline{X} and ∂X have the Jacobson Property.

Theorem

Let A be a Banach algebra and let $X \subseteq A$ be a semigroup that contains a neignbourhood of the identity. If X has the Jacobson Property, then \overline{X} and ∂X have the Jacobson Property.

In this section we provide examples of subsets of a Banach algebra that satisfy the Jacobson Property.

In this section we provide examples of subsets of a Banach algebra that satisfy the Jacobson Property.

The sets A_{ℓ}^{-1} , A_r^{-1} and A^{-1} have the Jacobson Property.

In this section we provide examples of subsets of a Banach algebra that satisfy the Jacobson Property.

The sets A_{ℓ}^{-1} , A_{r}^{-1} and A^{-1} have the Jacobson Property.

If I is a closed ideal in A, then in the quotient Banach algebra A/I, the sets $(A/I)_{\ell}^{-1}$, $(A/I)_{r}^{-1}$ and $(A/I)^{-1}$ have the Jacobson Property.

In this section we provide examples of subsets of a Banach algebra that satisfy the Jacobson Property.

The sets A_{ℓ}^{-1} , A_{r}^{-1} and A^{-1} have the Jacobson Property.

If I is a closed ideal in A, then in the quotient Banach algebra A/I, the sets $(A/I)_{\ell}^{-1}$, $(A/I)_{r}^{-1}$ and $(A/I)^{-1}$ have the Jacobson Property.

Corollary

Let A be a Banach algebra and let I be a closed ideal in A. Then \overline{X} and ∂X have the Jacobson Property if

In this section we provide examples of subsets of a Banach algebra that satisfy the Jacobson Property.

The sets A_{ℓ}^{-1} , A_{r}^{-1} and A^{-1} have the Jacobson Property.

If I is a closed ideal in A, then in the quotient Banach algebra A/I, the sets $(A/I)_{\ell}^{-1}$, $(A/I)_{r}^{-1}$ and $(A/I)^{-1}$ have the Jacobson Property.

Corollary

Let A be a Banach algebra and let I be a closed ideal in A. Then \overline{X} and ∂X have the Jacobson Property if

$$X \in \{A_{\ell}^{-1}, A_{r}^{-1}, A_{\ell}^{-1} \cup A_{r}^{-1}, \Phi_{\ell}(I), \Phi_{r}(I), \Phi(I), \Phi_{\ell}(I) \cup \Phi_{r}(I)\}$$

Corollary

Let A be a Banach algebra. The sets $\overline{A^{-1}}$, ∂A^{-1} , $A \setminus \partial A^{-1}$ and $A \setminus \overline{A^{-1}}$ all possess the Jacobson Property.

Corollary

Let A be a Banach algebra. The sets $\overline{A^{-1}}$, ∂A^{-1} , $A \setminus \partial A^{-1}$ and $A \setminus \overline{A^{-1}}$ all possess the Jacobson Property.

The set A_{ai} of almost invertible elements in A is a regularity.

Theorem

The regularity A_{ai} has the Jacobson Property.

Corollary

Let A be a Banach algebra. The sets $\overline{A^{-1}}$, ∂A^{-1} , $A \setminus \partial A^{-1}$ and $A \setminus \overline{A^{-1}}$ all possess the Jacobson Property.

The set A_{ai} of almost invertible elements in A is a regularity.

Theorem

The regularity A_{ai} has the Jacobson Property.

Theorem

The set $\mathcal{I}(A)$ of inessential elements in a Banach algebra A has the Jacobson Property.

Corollary

Let A be a Banach algebra. The sets $\overline{A^{-1}}$, ∂A^{-1} , $A \setminus \partial A^{-1}$ and $A \setminus \overline{A^{-1}}$ all possess the Jacobson Property.

The set A_{ai} of almost invertible elements in A is a regularity.

Theorem

The regularity A_{ai} has the Jacobson Property.

Theorem

The set $\mathcal{I}(A)$ of inessential elements in a Banach algebra A has the Jacobson Property.

Theorem

The set $\{a \in A : \sigma(a) = \{1\}\}$ has the Jacobson Property.

Let A be a semisimple Banach algebra and let I be a closed trace ideal in A with Soc $A \subseteq I \subseteq \operatorname{kh}(I)$. Now one defines an abstract index function ι was defined on the set $\Phi(I)$ of Fredholm elements relative to I.

Let A be a semisimple Banach algebra and let I be a closed trace ideal in A with Soc $A \subseteq I \subseteq \operatorname{kh}(I)$. Now one defines an abstract index function ι was defined on the set $\Phi(I)$ of Fredholm elements relative to I.

It was shown that this abstract index function has all the desirable properties of the classical index for Fredholm operators defined on a Banach space. One can extend the domain of the abstract index function ι to the set

Let A be a semisimple Banach algebra and let I be a closed trace ideal in A with Soc $A \subseteq I \subseteq \operatorname{kh}(I)$. Now one defines an abstract index function ι was defined on the set $\Phi(I)$ of Fredholm elements relative to I.

It was shown that this abstract index function has all the desirable properties of the classical index for Fredholm operators defined on a Banach space. One can extend the domain of the abstract index function ι to the set $\Phi_{\ell}(I) \cup \Phi_{r}(I)$ by defining

$$\iota(a) = \begin{cases} -\infty & \text{if } a \in \Phi_{\ell}(I) \setminus \Phi(I) \\ \infty & \text{if } a \in \Phi_{r}(I) \setminus \Phi(I) \end{cases}$$

Let A be a semisimple Banach algebra and let I be a closed trace ideal in A with Soc $A \subseteq I \subseteq \operatorname{kh}(I)$. Now one defines an abstract index function ι was defined on the set $\Phi(I)$ of Fredholm elements relative to I.

It was shown that this abstract index function has all the desirable properties of the classical index for Fredholm operators defined on a Banach space. One can extend the domain of the abstract index function ι to the set $\Phi_{\ell}(I) \cup \Phi_{r}(I)$ by defining

$$\iota(a) = \begin{cases} -\infty & \text{if } a \in \Phi_{\ell}(I) \setminus \Phi(I) \\ \infty & \text{if } a \in \Phi_{r}(I) \setminus \Phi(I) \end{cases}$$

If $Z \subseteq \mathbb{Z}$, let

$$\Phi_{Z}(I) = \{ a \in \Phi_{\ell}(I) \cup \Phi_{r}(I) : \iota(a) \in Z \}.$$

Let A be a semisimple Banach algebra and let I be a closed trace ideal in A with Soc $A \subseteq I \subseteq kh(I)$. If $Z \subseteq \mathbb{Z}$ and $\Phi_Z(I)$ is nonempty, then $\Phi_Z(I)$ has the Jacobson Property.

Let A be a semisimple Banach algebra and let I be a closed trace ideal in A with Soc $A \subseteq I \subseteq kh(I)$. If $Z \subseteq \mathbb{Z}$ and $\Phi_Z(I)$ is nonempty, then $\Phi_Z(I)$ has the Jacobson Property.

By the above Corollary, if $Z = \{k\}$ with $k \in \mathbb{Z}$, then $\Phi_k(I)$ has the Jacobson Property. In particular, if k = 0, then $\Phi_0(I)$ is an upper semiregularity with the Jacobson property. Also, $\Phi_0 = \mathcal{W}(I)$ with $\mathcal{W}(I)$ the collection of Weyl elements in A relative to I.

Let A be a semisimple Banach algebra and let I be a closed trace ideal in A with Soc $A \subseteq I \subseteq \text{kh}(I)$. If $Z \subseteq \mathbb{Z}$ and $\Phi_Z(I)$ is nonempty, then $\Phi_Z(I)$ has the Jacobson Property.

By the above Corollary, if $Z = \{k\}$ with $k \in \mathbb{Z}$, then $\Phi_k(I)$ has the Jacobson Property. In particular, if k = 0, then $\Phi_0(I)$ is an upper semiregularity with the Jacobson property. Also, $\Phi_0 = \mathcal{W}(I)$ with $\mathcal{W}(I)$ the collection of Weyl elements in A relative to I.

For $a, b \in A$, we call ab - ba the *commutator* of a and b, denoted by [a, b]. Let A_D be the smallest ideal that contains all the commutators - the *commutator ideal* of A.

Let A be a semisimple Banach algebra and let I be a closed trace ideal in A with Soc $A \subseteq I \subseteq kh(I)$. If $Z \subseteq \mathbb{Z}$ and $\Phi_Z(I)$ is nonempty, then $\Phi_Z(I)$ has the Jacobson Property.

By the above Corollary, if $Z = \{k\}$ with $k \in \mathbb{Z}$, then $\Phi_k(I)$ has the Jacobson Property. In particular, if k = 0, then $\Phi_0(I)$ is an upper semiregularity with the Jacobson property. Also, $\Phi_0 = \mathcal{W}(I)$ with $\mathcal{W}(I)$ the collection of Weyl elements in A relative to I.

For $a, b \in A$, we call ab - ba the *commutator* of a and b, denoted by [a, b]. Let A_D be the smallest ideal that contains all the commutators - the *commutator ideal* of A.

Theorem

If A is a Banach algebra then A_D and $A \setminus A_D$ have the Jacobson Property.

The concept of a multiplicative linear functional on *A* gives us a means to generate a large number of these sets that satisfy the Jacobson Property.

The concept of a multiplicative linear functional on *A* gives us a means to generate a large number of these sets that satisfy the Jacobson Property.

Multiplicative linear functionals - mostly used in commutative settings - there are noncommutative Banach algebras that admit nonzero multiplicative linear functionals.

The concept of a multiplicative linear functional on *A* gives us a means to generate a large number of these sets that satisfy the Jacobson Property.

Multiplicative linear functionals - mostly used in commutative settings - there are noncommutative Banach algebras that admit nonzero multiplicative linear functionals.

Theorem

Let A be a complex unital Banach algebra and let f be a multiplicative linear functional on A. Then the set $P = \{f^{-1}(\lambda) : \lambda \in \mathbb{C}\}$ is a partition of A and every member of P has the Jacobson Property.

The concept of a multiplicative linear functional on *A* gives us a means to generate a large number of these sets that satisfy the Jacobson Property.

Multiplicative linear functionals - mostly used in commutative settings - there are noncommutative Banach algebras that admit nonzero multiplicative linear functionals.

Theorem

Let A be a complex unital Banach algebra and let f be a multiplicative linear functional on A. Then the set $P = \{f^{-1}(\lambda) : \lambda \in \mathbb{C}\}$ is a partition of A and every member of P has the Jacobson Property.

Corollary

Let A be a noncommutative Banach algebra, and f a multiplicative linear functional on A. Then $\ker(f)$ has the Jacobson Property.

The concept of a multiplicative linear functional on *A* gives us a means to generate a large number of these sets that satisfy the Jacobson Property.

Multiplicative linear functionals - mostly used in commutative settings - there are noncommutative Banach algebras that admit nonzero multiplicative linear functionals.

Theorem

Let A be a complex unital Banach algebra and let f be a multiplicative linear functional on A. Then the set $P = \{f^{-1}(\lambda) : \lambda \in \mathbb{C}\}$ is a partition of A and every member of P has the Jacobson Property.

Corollary

Let A be a noncommutative Banach algebra, and f a multiplicative linear functional on A. Then $\ker(f)$ has the Jacobson Property.

Theorem

Let f be a multiplicative linear functional on a complex, unital Banach algebra A, and $B \subseteq \mathbb{C}$, $B \neq \emptyset$. Then $f^{-1}(B)$ has the Jacobson Property.

Corollary

Let A be a noncommutative Banach algebra, and f a multiplicative linear functional on A. Then ker(f) is a proper, non-trivial subprime ideal of A.

Theorem

Let f be a multiplicative linear functional on a complex, unital Banach algebra A, and $B \subseteq \mathbb{C}$, $B \neq \emptyset$. Then $f^{-1}(B)$ has the Jacobson Property.

Corollary

Let A be a noncommutative Banach algebra, and f a multiplicative linear functional on A. Then ker(f) is a proper, non-trivial subprime ideal of A.

Theorem

Let f be a multiplicative linear functional on a complex, unital Banach algebra A, and $B \subseteq \mathbb{C}$, $B \neq \emptyset$. Then $f^{-1}(B)$ has the Jacobson Property.

Corollary

Let A be a noncommutative Banach algebra, and f a multiplicative linear functional on A. Then ker(f) is a proper, non-trivial subprime ideal of A.

Corollary

Let A be a noncommutative Banach algebra, and f a multiplicative linear functional on A. Then $A \setminus \ker(f)$ is a (P1) regularity in A which has the Jacobson Property.

Theorem

Let f be a multiplicative linear functional on a complex, unital Banach algebra A, and $B \subseteq \mathbb{C}$, $B \neq \emptyset$. Then $f^{-1}(B)$ has the Jacobson Property.

Corollary

Let A be a noncommutative Banach algebra, and f a multiplicative linear functional on A. Then ker(f) is a proper, non-trivial subprime ideal of A.

Corollary

Let A be a noncommutative Banach algebra, and f a multiplicative linear functional on A. Then $A \setminus \ker(f)$ is a (P1) regularity in A which has the Jacobson Property.

Examples of subsets in a Banach algebra that do not possess the Jacobson Property.

Examples of subsets in a Banach algebra that do not possess the Jacobson Property.

The upper semiregularity $\operatorname{Exp} A$ does not have the Jacobson Property.

Proposition

Let A be a Banach algebra. Then the upper semiregularity $\overline{\text{ExpA}}$ does not have the Jacobson Property.

Examples of subsets in a Banach algebra that do not possess the Jacobson Property.

The upper semiregularity $\operatorname{Exp} A$ does not have the Jacobson Property.

Proposition

Let A be a Banach algebra. Then the upper semiregularity \overline{ExpA} does not have the Jacobson Property.

Example

Let $A = \mathcal{L}(\ell^2)$ and let $R = A \setminus QN(A)$. Then R is a lower semiregularity that does not have the Jacobson Property.

Examples of subsets in a Banach algebra that do not possess the Jacobson Property.

The upper semiregularity $\operatorname{Exp} A$ does not have the Jacobson Property.

Proposition

Let A be a Banach algebra. Then the upper semiregularity $\overline{\text{ExpA}}$ does not have the Jacobson Property.

Example

Let $A = \mathcal{L}(\ell^2)$ and let $R = A \setminus QN(A)$. Then R is a lower semiregularity that does not have the Jacobson Property.

Let A be a Banach algebra. The proof of the above example can be adapted to show that $A \setminus Rad A$ does not have the Jacobson Property.

Theorem

Let A be a noncommutative Banach algebra with $A_{\ell}^{-1} \setminus A^{-1} \neq \emptyset$ or $A_r^{-1} \setminus A^{-1} \neq \emptyset$. Then Rad A does not have the Jacobson Property.

Corollary

Let A be a noncommutative Banach algebra and let I be a closed ideal in A. Then the ideal kh(I) does not have the Jacobson Property.