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In this talk we discuss subsets of A that have the Jacobson
Property, i.e. X C A such that for a, b € A:

1—abe X = 1—-—bacX.
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Preliminaries
A will be a Banach algebra, complex and unital.
A~ - the group of invertible elements in A.
oa(@) ={ eC:Ax—ag A"}

the ordinary spectrum of a € A - write simply o(a).
A, and AT - the left and right invertibles in A.
If K C C, then

acc K - the set of accumulation points of K,

iso K - the set of isolated points of K,

0K - topological boundary of K,

K - the closure of K.

If X C A we say that X has the Jacobson Property, if for
abeA

1—abe X = 1—-bac X. (1)
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By an ideal in A we mean a two-sided ideal.
An ideal J in Ais said to be inessential
aeJ = acco(a) C {0},
ac J = o(a) is either finite or a sequence converging to 0.
Z(A) - the collection of all inessential elements in A.
An element a € A is quasinilpotent if o(a) = {0}.
QN(A) - the collection of quasinilpotents in A.
We say a € Ais almost invertible if 0 ¢ acco(a).

A,i - the set of almost invertible elements in A.
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a € Ais regularif it has a generalised inverse, b € A for which
a= aba, R
A={ac A: ac aAa} 2

These include both the left and right invertible elements,
ATUATTCA (3)
as well as the idempotents,
A*={acA:a=4d}. (4)

The decomposably regular elements are those which admit
invertible generalised inverses

they are those elements which can be written as a product of
an invertible and an idempotent:

ATA =AA " ={acA: acaA 'al CA (5)
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Notice that
ATNAT=ATnATA=ATnATA=AT" (6
If Ais a Banach algebra, then

ATA = ANAT. 7)

Definition
Let / be an ideal in a Banach algebra A. I'is subprime if
abel = aclorbel.

The notion of a subprime ideal defined above coincides with
that of a prime ideal in a commutative ring or algebra.

Also called completely prime.
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Definition
A nonempty subset R of a Banach algebra A is called a
regularity if it satisfies the following two conditions:
() ifae AAneNthenae R — a" € R,;
(ii) if a, b, ¢, d are mutually commuting elements of A
satisfying ac + bd = 1 thena,be R < ab e R.
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Theorem
Let R be a nonempty subset of a Banach algebra A satisfying:

abe R < abeR (P1)
for all commuting elements a, b € A. Then R is a regularity.

The definition of a regularity can be divided into two parts as
follows:
Definition
A nonempty subset R in a Banach algebra A will be called a
lower semiregularity if it satisfies the following conditions:

() acA,neNanda’ e R = ac R,

(i) if a, b, ¢, d are commuting elements of Aand ac + bd =1,

thenabe R = ac Rand be R.



If a nonempty subset R in A satisfies



If a nonempty subset R in A satisfies
abeAab=ba,abec R= acRandbeR (P1")

then it is a lower semiregularity



If a nonempty subset R in A satisfies

abeAab=baabe R= acRandbeR (P1)
then it is a lower semiregularity
Definition

A nonempty subset R in a Banach algebra A is called an upper
semiregularity if it satisfies the following conditions:



If a nonempty subset R in A satisfies
abeAab=ba,abec R= acRandbeR (P1")
then it is a lower semiregularity

Definition
A nonempty subset R in a Banach algebra A is called an upper
semiregularity if it satisfies the following conditions:

() ae R, neN = a"€R,

(ii) if a, b, ¢, d are commuting elements of Aand ac + bd =1,
thena,bc R = abec R,

(iii)y R contains a neighbourhood of the unit element 1.



If a nonempty subset R in A satisfies
abeAab=ba,abec R= acRandbeR (P1")
then it is a lower semiregularity

Definition
A nonempty subset R in a Banach algebra A is called an upper
semiregularity if it satisfies the following conditions:

() ae R, neN = a"€R,

(ii) if a, b, ¢, d are commuting elements of Aand ac + bd =1,
thena,bc R = abec R,

(iii)y R contains a neighbourhood of the unit element 1.

any semigroup containing a neighbourhood of the identity is an
upper semiregularity,
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Let R C A - assigns to each a € A a subset of C defined by
og(@) ={\eC: Xx—a¢ R}
called the spectrum corresponding to R.

If R is a regularity or a semiregularity then the spectrum og has
interesting properties.

Let R be a nonempty subset of a Banach algebra A. Then
R hasthe J Property <= og(ab)\{0} = ogr(ba)\{0}

foralla,bec A

There are many examples of subsets in a Banach algebra
possessing the Jacobson Property.

Let A be a Banach algebra and / a closed ideal in A.

The canonical homomorphism = : A — A/l is defined by
n(a) = a+ lforae A
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We define the sets:
o (l)={acA:a+le (A},
o (l)={acA:a+le (A"},
and

o()={acA:a+lc (AN

Denote the ideal 7~ (Rad(A//)) by kh(/).

This is the largest ideal consisting of Riesz elements relative to
the ideal /.

We say that a € Ais Riesz relative to | if a+ | € QN(A/).

If R(/) denotes the collection of Riesz elements relative to /,
then R(/) = 71 (QN(A//)).
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It is easy to see that
I Ckh(/) CR())

and if / is a closed inessential ideal in A, then one can prove
that
I Ckh() CR(I) CZ(A).

Let / be an ideal in a Banach algebra A. A function7:/— Cis
called a trace on [ if

() 7is linear,
(i) 7(p) = 1 for every rank one idempotent p € / and
(i) 7(ab) = 7(ba) forallaec land b € A.

An ideal / with trace is a trace ideal.
If /'is a trace ideal in A, then define an index function « on ®(/).

The socle of Ais Soc(A).
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Later we construct a nontrivial, proper, two-sided subprime
ideal in a non commutative Banach algebra, and in that way
justify the use of the concept.

Question - is every (P1) regularity the complement of a proper
subprime ideal?

The question is easy to answer as A~ is a (P1) regularity but
its complement is not an ideal in A.

Theorem

Let A be a Banach algebra and let | be a closed ideal in A.

Suppose 7 : A — A/l is the canonical homomorphism and

X CA/lL

(i) If X has the Jacobson Property, then 7—'(X) in A has the

Jacobson Property.

(ii) If X does not have the Jacobson Property, then ==1(X)
does not have the Jacobson Property.
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Examples

In this section we provide examples of subsets of a Banach
algebra that satisfy the Jacobson Property.

The sets A, ", A" and A~ have the Jacobson Property.

If /'is a closed ideal in A, then in the quotient Banach algebra
A/l, the sets (A/l); ", (A/l);" and (A/I)~" have the Jacobson
Property.

Corollary
Let A be a Banach algebra and let | be a closed ideal in A.
Then X and 0X have the Jacobson Property if

X e {ATLATTATTUATT 041, &4 (1), (1), o(1) U (1)}
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The boundary spectrum is generated by the set R = A\ 0A~" -
has the Jacobson Property.

Corollary

Let A be a Banach algebra. The sets A=1,0A~1, A\ 0A~" and
A\ A-1 all possess the Jacobson Property.

The set A, of almost invertible elements in A is a regularity.

Theorem
The regularity A5 has the Jacobson Property.

Theorem
The set Z(A) of inessential elements in a Banach algebra A has
the Jacobson Property.

Theorem
The set{ac A:o(a) = {1}} has the Jacobson Property.
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It is known that the set A has the Jacobson Property. This
together with the fact that A—1 has the Jacobson Property,
implies that the collection A—1A* of decomposably regular
elements has the Jacobson Property.

Let A be a semisimple Banach algebra and let / be a closed
trace ideal in A with Soc A C I C kh( /). Now one defines an
abstract index function . was defined on the set ®(/) of
Fredholm elements relative to /.

It was shown that this abstract index function has all the
desirable properties of the classical index for Fredholm
operators defined on a Banach space. One can extend the
domain of the abstract index function . to the set ®,(/) U ®,(/)
by defining

— if o\ (1
(a)— 4 ifac (DN o))

oo ifae o)\ o(/)
If Z C Z, let

d(1) = {ae & (U] : u(a) € Z}.



Corollary

Let A be a semisimple Banach algebra and let | be a closed
trace ideal in A with Soc AC | Ckh( /). IfZ CZ and ®z(]) is
nonempty, then (1) has the Jacobson Property.



Corollary

Let A be a semisimple Banach algebra and let | be a closed
trace ideal in A with Soc AC | Ckh( /). IfZ CZ and ®z(]) is
nonempty, then (1) has the Jacobson Property.

By the above Corollary, if Z = {k} with k € Z, then ®,(/) has
the Jacobson Property. In particular, if kK = 0, then ®y(/) is an
upper semiregularity with the Jacobson property. Also,

oo = W(I) with W(/) the collection of Weyl elements in A
relative to /.



Corollary

Let A be a semisimple Banach algebra and let | be a closed
trace ideal in A with Soc AC | Ckh( /). IfZ CZ and ®z() is
nonempty, then (1) has the Jacobson Property.

By the above Corollary, if Z = {k} with k € Z, then ®,(/) has
the Jacobson Property. In particular, if kK = 0, then ®y(/) is an
upper semiregularity with the Jacobson property. Also,

oo = W(I) with W(/) the collection of Weyl elements in A
relative to /.

For a, b € A, we call ab — ba the commutator of a and b,
denoted by [a, b]. Let Ap be the smallest ideal that contains all
the commutators - the commutator ideal of A.



Corollary

Let A be a semisimple Banach algebra and let | be a closed
trace ideal in A with Soc AC | Ckh( /). IfZ CZ and ®z(]) is
nonempty, then (1) has the Jacobson Property.

By the above Corollary, if Z = {k} with k € Z, then ®,(/) has
the Jacobson Property. In particular, if kK = 0, then ®y(/) is an
upper semiregularity with the Jacobson property. Also,

oo = W(I) with W(/) the collection of Weyl elements in A
relative to /.

For a, b € A, we call ab — ba the commutator of a and b,
denoted by [a, b]. Let Ap be the smallest ideal that contains all
the commutators - the commutator ideal of A.

Theorem
If A is a Banach algebra then Ap and A\ Ap have the Jacobson

Property.
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Sets that do not have the Jacobson Property

Examples of subsets in a Banach algebra that do not possess
the Jacobson Property.

The upper semiregularity ExpA does not have the Jacobson
Property.

Proposition

Let A be a Banach algebra. Then the upper semiregularity
ExpA does not have the Jacobson Property.

Example

Let A= £(¢?) and let R = A\QN(A). Then R is a lower
semiregularity that does not have the Jacobson Property.
Let A be a Banach algebra. The proof of the above example
can be adapted to show that A\Rad A does not have the
Jacobson Property.



Theorem

Let A be a noncommutative Banach algebra with A, ! \AT" £
or AT\ A=' # (). Then Rad A does not have the Jacobson
Property.

Corollary

Let A be a noncommutative Banach algebra and let | be a
closed ideal in A. Then the ideal kh( /) does not have the
Jacobson Property.



