
On members of Lucas sequences which are products of
factorials

Mark Sias

SAMS Stellenbosch University

msias@uj.ac.za

December 6, 2022

Mark Sias (University of Johannesburg) SAMS 2022, Stellenbosch University Today 1 / 46



Overview

1 Introduction

2 Motivation

3 Definitions and Preliminaries

4 Further relevant notions and preliminary results

5 The Proof: products of factorials (real and non-real roots)

6 Small values of n and infinitely many solutions

7 The X -coordinates of the Pell equation

8 References

Mark Sias (University of Johannesburg) SAMS 2022, Stellenbosch University Today 2 / 46



Introduction

Introduction

We determine upper bounds on n when the nth term of a Lucas sequence
is expressible as a product of factorials. In fact, we show that if {Un}n≥0 is
a Lucas sequence, then the largest n such that |Un| = m1!m2! · · ·mk ! with
1 ≤ m1 ≤ m2 ≤ · · · ≤ mk , satisfies n < 62000. When the roots of the
Lucas sequence are real, we have n ∈ {1, 2, 3, 4, 6, 12}.
As a consequence, we formulate and prove a corollary regarding the X -
coordinates of Pell equations which are products of factorials. We show
that if {Xn}n≥1 is the sequence of X - coordinates of a Pell equation
X 2 − dY 2 = ±1 with a nonsquare integer d > 1, then Xn = m! implies
n = 1.
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Motivation

Motivation

Let

PF := {±
k∏

j=1

mj ! : k ≥ 1 and 1 ≤ m1 ≤ m2 ≤ · · · ≤ mk}

be the set of integers which are the product of factorials. Members of PF
are sometimes called Jordan-Polya numbers and several recent papers
investigate their arithmetic properties.
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Motivation

It was shown by Luca that if t ≥ 1 is any fixed integer, then the
Diophantine equation

∏t
i=1 Uni ∈ PF has only finitely many positive

integer solutions 1 ≤ n1 ≤ n2 ≤ · · · ≤ nt and they are all effectively
computable.
When (r , s) = (1, 1) then Un = Fn is the nth Fibonacci number. For this
particular case, it was shown by Luca and Stănică that the largest solution
of equation in which t is also an indeterminate but with the condition on
the indices 1 ≤ n1 < n2 < · · · < nt is

F1F2F3F4F5F6F8F10F12 = 11!
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Definitions and Preliminaries

Definitions

Linear recurrence sequence of order k
Let k ≥ 1 be an integer. A sequence {wn}n≥0 ⊆ C is called linearly
recurrent of order k if the recurrence

wn+k = a1wn+k−1 + a2wn+k−2 + · · ·+ akwn

holds for all n ≥ 0 with a1, . . . , ak ∈ C.
For k = 2, the sequence {wn}n≥0 is called binary recurrent.
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Definitions and Preliminaries

Characteristic polynomial
Suppose that ak ̸= 0. If a1, . . . , ak ∈ Z and w0, . . . ,wk−1 ∈ Z, then, by
induction on n, we find that wn is an integer for all n ≥ 0. The polynomial

f (X ) = X k − a1X
k−1 − · · · − ak ∈ C[X ]

is called the Characteristic polynomial of {wn}n≥0.
The characteristic polynomial for the binary recurrent sequence is of the
form

f (X ) = X 2 − a1X − a2 = (X − α1)(X − α2),

where α1 and α2 are the roots of the polynomial.
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Definitions and Preliminaries

Lucas sequence
A Lucas sequence {Un}n≥0 is a linear recurrent sequence of order 2
(or binary recurrence) defined by

Un+2 = rUn+1 + sUn n ≥ 0,

for r and s positive integers such that gcd(r , s) = 1, U0 = 0, U1 = 1 and
the ratio α/β of the roots α, β of x2 − rx − s = 0 is not a root of 1.
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Definitions and Preliminaries

Companion Lucas sequence
The Companion Lucas sequence {Vn}n≥0 of parameters (r , s) is given by

Vn = αn + βn for all n ≥ 0.

Alternatively, it can be defined recursively as

Vn+2 = rVn+1 + sVn for all n ≥ 0

with initial conditions V0 = 2, V1 = r .
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Definitions and Preliminaries

The Pell equation
This is the Diophantine equation with unknowns (x , y) ∈ Z2 defined by

x2 − dy2 = 1,

where d is a positive integer which is not a perfect square.
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Definitions and Preliminaries

Cyclotomic polynomial
The polynomial

Φn(X ) =
∏

(d ,n)=1
d≤n

(
X − e

2πid
n

)

is called the nth Cyclotomic polynomial. This polynomial has degree φ(n).
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Definitions and Preliminaries

Primitive divisor
We say that a prime p | Un is a primitive divisor of Un if p ∤ Ut for t < n
and p ∤ r2 + 4s.
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Definitions and Preliminaries

Preliminaries

There exists a very useful relationship between primitive divisors of Lucas
sequences and Cyclotomic polynomials, which is proved in a paper by Bilu,
Hanrot and Voutier. We state this as a lemma.

We note that here, αp indicate the exponent at which p appears in the
factorisation of U1

k , while P(n0) denotes the largest prime factor of n0.

Let m | n. Denote by U1
k :=

(
αk
1−βk

1
α1−β1

)
, where α1 = αn/m and β1 = βn/m.
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Definitions and Preliminaries

Lemma

For n > 4, n /∈ {6, 12}, ∏
pαp∥U1

n
p primitive

pαp =
Φn(α, β)

δ
,

where δ ∈ {2,P(n0)} and Φn(α, β) is the specialisation of the
homogenization Φn(X ,Y ) of the nth cyclotomic polynomial Φn(X ) in the
pair (α, β).
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Definitions and Preliminaries

We consider a version of the Primitive Divisor Theorem which is attributed
to Zsigmondy.

Theorem

If the roots of the characteristic polynomial of {Un}n≥0 are coprime
positive integers and if n > 6, then Un has a primitive divisor.
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Definitions and Preliminaries

It was established by Carmichael that for α and β real and n not equal to
1, 2, 3, 4 and 6, the the Lucas numbers, Un = αn−βn

α−β have one or more
primitive divisors excluding n = 12, r = 1 and s = −1 (for the
characteristic polynomial

f (X ) = X 2 − rX − s = (X − α)(X − β)).

Carmichael’s result is in essence an extension of Zsigmondy’s theorem.
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Definitions and Preliminaries

Bilu, Hanrot and Voutier settled the problem in the case where the roots
are complex nonreal by proving that for n > 30, every Lucas number has a
primitive divisor.
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Further relevant notions and preliminary results

Linear forms in logarithms

A. Baker provided an effective lower bound on the absolute value of a
nonzero linear form in logarithms of algebraic numbers; that is, for a
nonzero expression of the form

n∑
i=1

bi logαi ,

for α1, . . . , αn algebraic numbers and b1, . . . , bn are integers. His findings
ushered in the dawn of a new era in the effective resolution of Diophantine
equations of certain types. Such Diophantine equations can be reduced to
exponential ones; i.e., where the unknown variables are in the exponents.
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Further relevant notions and preliminary results

The height and logarithmic height of an algebraic number
Let α be an algebraic number of degree d . We let

f (x) =
d∑

i=0

aix
d−i ∈ Z[X ].

be the minimal polynomial of α with a0 > 0 and (a0, . . . , ad) = 1. Putting
H(α) := max{|ai | : i = 0, . . . , d}, we let it denote the height of α. We
now write

f (X ) = a0

d∏
i=1

(X − α(i)),

where α = α(1). The logarithmic height of α is

h(α) =
1

d

(
log |a0|+

d∑
i=1

logmax{|α(i)|, 1}

)
.
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Further relevant notions and preliminary results

Sieves

A sieve is basically an inclusion-exclusion argument. Many results in the
theory of primes can be proved using sieves.
The next lemma follows easily from the Brun-Titchmarsh inequality given
by Montgomery and Vaughan since π(1; q, l) = 0 and
π(y ; q, l) ≤ π(y + 1; q, l)− π(1; q, l). Note that π(y ; q, l) stands for the
number of primes p ≤ y and p ≡ l (mod q).
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Further relevant notions and preliminary results

Lemma

Let q be a positive integer, l be coprime to q and y > q. Then

π(y ; q, l) ≤ 2y

φ(q) log(y/q)
and π(2y ; q, l)− π(y ; q, l) ≤ 2y

φ(q) log(y/q)
.

Mark Sias (University of Johannesburg) SAMS 2022, Stellenbosch University Today 21 / 46



Further relevant notions and preliminary results

The abc conjecture

Lemma

Let ϵ > 0. There exists a constant κε depending only on ε such that given
pairwise coprime positive integers a, b, c with a+ b = c, we have

c < κε · γ(abc)1+ϵ.
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Further relevant notions and preliminary results

Primes in arithmetic progressions

The next lemma is derived from the work of Bennet et al.

Lemma

Let m be either a prime ≤ 30 or m ∈ {8, 9, 12, 16, 24}. Then

π(y ;m, 1) + π(y ;m,−1) ≤ y

φ(m) log y

(
2 +

5

log y

)
for y > 1.

Also,

π(y ; 12, 1) + π(y ; 12, 7) ≤ y

φ(12) log y

(
2 +

5

log y

)
for y > 1.
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The Proof: products of factorials (real and non-real roots)

The toolbox: a series of lemmas

In the present section we embark on the proof of the main theorem, which
we will state formally.
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The Proof: products of factorials (real and non-real roots)

Theorem

The equation
Un = ±m1!m2! · · ·mk ! where k ≥ 1 and 1 ≤ m1 ≤ m2 ≤ · · · ≤ mk ,
implies n < 62000. When α, β are real, then n ∈ {1, 2, 3, 4, 6, 12}.

The equation Vn = ±m1!m2! · · ·mk , 1 ≤ m1 ≤ m2 ≤ · · · ≤ mk ,
implies n = 2 or n is odd and n < 31000. Further, n ∈ {1, 2, 3} when α, β
are real.
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The Proof: products of factorials (real and non-real roots)

For a positive integer m, let q0 := q0(m) be the least odd prime divisor of
m. We make the convention that q0 := 1 if m is a power of 2. Let
η := η(m) = 0 if m is odd and 1 if m is even. Note that m ≡ γ
(mod 2) ≡ 2η (mod 2). Put γ0 := γ/(2ηq0). We shall assume that m ≥ 4
whenever m is a power of 2.
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The Proof: products of factorials (real and non-real roots)

Lemma

Let m be a positive integer. We have

log |Φm(α, β)| = φ(m) log |α|+
∑

d |γ µ(d) log

∣∣∣∣∣1−
(
β

α

)m
d

∣∣∣∣∣ .
Putting x = β/α, we have

∑
d |γ

µ(d) log
∣∣∣1− x

m
d

∣∣∣ =



log
∣∣∣1 + x

m
2

∣∣∣∑
µ(d)=1
d |γ0

log

∣∣∣∣∣ 1 + x
m
2d

1 + x
m

2q0d

∣∣∣∣∣− ∑
µ(d)=−1

d |γ0

log

∣∣∣∣∣ 1 + x
m
2d

1 + x
m

2q0d

∣∣∣∣∣ η = 1,

∑
µ(d)=1
d |γ0

log

∣∣∣∣∣ 1− x
m
d

1− x
m
q0d

∣∣∣∣∣− ∑
µ(d)=−1

d |γ0

log

∣∣∣∣∣ 1− x
m
d

1− x
m
q0d

∣∣∣∣∣ η = 0,
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The Proof: products of factorials (real and non-real roots)

Lemma

Assume that α and β are real and |α| ≥ |β|. Let m ≥ 4. Then

log |Φm(α, β)| ≥ φ(m) log |α| −

{
log 2, for ω(m) ≤ 1 + η,
2ω(m)

22+η (log 2q0) , for ω(m) ≥ 2 + η.

(1)
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The Proof: products of factorials (real and non-real roots)

Lemma

Let α and β be complex conjugates with log |α| > 4. For t ≥ 3, putting
t∗ := t/ gcd(t, 2), we have

log |αt − βt | ≥ log |α|
(
t − 8(c1(t∗) + 0.02) log2 t∗

)
.

Furthermore,

log |αt + βt | ≥ log |α|
(
t − 8(c1(t) + 0.02) log2 t

)
.
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The Proof: products of factorials (real and non-real roots)

We will use the following consequence of the above lemma.

Lemma

Let α and β be complex conjugates with log |α| > 4. Then

log

∣∣∣∣1± (β

α

)t∣∣∣∣ ≥ − log |α| for t = 1, 2.

For t ≥ 3, putting t∗ := t/ gcd(t, 2), we have

log |αt − βt | ≥ log |α|
(
t − 44.72 (log t∗ + 2.36)2 − 0.16(log t∗)

2
)
,

and

log |αt + βt | ≥ log |α|
(
t − 44.72 (log t + 2.36)2 − 0.16(log t)2

)
. (2)
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The Proof: products of factorials (real and non-real roots)

Lemma

Let α and β be complex conjugates with log |α| > 4. Let

f (t) := 44.88 log2 t + 211.08 log t + 249.08.

for t > 1. Then

log |Φm(α, β)| ≥ φ(m) log |α| −max

{
1,

2ω(m)

22+η

}
(f (m/2η) logα+ log 2q0) .

(3)

Further, for m with 1 ≤ ω(m) ≤ 6 + η, we have

log |Φm(α, β)| ≥
(
φ(m)− f (m/2η)− (m/2η)gω(m)−1−η

)
log |α|

−

{
log 2, if ω(m) ≤ 1 + η;
2ω(m)

22+η log 2q0, if ω(m) ≥ 2 + η,

(4)
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The Proof: products of factorials (real and non-real roots)

The gω(m) is exhibited in the following table.

ω(m)− 1− η 0 1 2 3 4 5

gω(m)−η 0 0 0.0286 0.0598 0.0934 0.1238

Mark Sias (University of Johannesburg) SAMS 2022, Stellenbosch University Today 32 / 46



The Proof: products of factorials (real and non-real roots)

We next determine an upper bound for prime powers dividing a product of
factorials by invoking the two lemmas from Sieves and Primes in
arithmetic progressions.
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The Proof: products of factorials (real and non-real roots)

We assume F ∈ PF is such that F > 1. Thus,

F := F(m1,m2, . . . ,mk) := m1!m2! · · ·mk ! (5)

for some positive integers 1 < m1 ≤ · · · ≤ mk . Let n0 be a positive integer
and let a0 = −1 if n0 ̸= 12 and a0 ∈ {−1, 7} if n0 = 12. Define

Mn0(F) := log

 ∏
pαp∥F

p≡1,a0 (mod n0)

pαp

 =
∑

pαp∥F
p≡1,a0 (mod n0)

αp log p. (6)
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The Proof: products of factorials (real and non-real roots)

We employ analytic methods to establish an upper bound for Mn0(F) and
prove the following lemma.

Lemma

(a) For a positive integer n0 ≥ 30 and mk ≥ 3, we have

Mn0(F) <
4

φ(n0)
(1 + log log n0) (logF − 1.4 logmk) . (7)

(b) Let D := {8, 9, 12, 16, 24} ∪ {5 ≤ p ≤ 30 : p prime}. For n0 ∈ D, we
have

Mn0(F) ≤ 2.2

φ(n0)
(logF − 1.4 logmk) . (8)
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The Proof: products of factorials (real and non-real roots)

Further for n0 ∈ {8, 12}, we have

Mn0(F) ≤


0.23 logF when n0 = 8 and 7 ≤ mk < 17;

0.3 logF when n0 = 8 and 17 ≤ mk ≤ 47;

0.28 logF when n0 = 12 and 7 ≤ mk ≤ 16.

(9)
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Small values of n and infinitely many solutions

Lemma

Let N = m1! · · ·mk !. Then γ(N) = No(1) as N → ∞.
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Small values of n and infinitely many solutions

Theorem

Let α, β be real. Then the first equation of the main theorem with
n ∈ {2, 3, 4} has infinitely many solutions. Further under the abc
conjecture, this same equation with
n ∈ {6, 12} has only finitely many solutions. There are infinitely many
solutions of the second equation for real α, β and n ∈ {1, 2, 3}.
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The X -coordinates of the Pell equation

We present a corollary regarding X -coordinates of Pell equations which are
in PF . For a positive integer d which is square-free, let (Xn,Yn) be the
nth solution of the Pell equation X 2 − dY 2 = ±1 in positive integers
(X ,Y ) (namely, the positive integers X , Y satisfy either X 2 − dY 2 = 1 or
X 2 − dY 2 = −1).
Firstly, we provide a lemma.
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The X -coordinates of the Pell equation

Lemma

Let s ∈ {−1, 1} and r ≥ 1. Then Vn ∈ PF with n > 1 implies

n = 2 : (r , s) = (2, 1), V2 = 3!;

n = 3 : (r , s) = (1, 1), V3 = 2!2!;

n = 3 : (r , s) = (3, 1), V3 = 3!3!.

(10)
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The X -coordinates of the Pell equation

Theorem

Let (Xn,Yn) be the nth solution in positive integers of the equation
X 2 − dY 2 = ±1 for some square-free integer d. Then Xn ∈ PF implies
n = 1. Similarly, let (Wn,Zn) be the nth solution in positive integers of
the equation
W 2 − dZ 2 = ±4 for some square-free integer d. Then Wn ∈ PF implies
n = 1 except for the cases (n, d) = (2, 2), (3, 5), (3, 13) for which
W2 = 3!, W3 = 2!2! and W3 = 3!3!, respectively, with solutions

3!2 − 2 · 42 = 4, (2!2!)2 − 5 · 22 = −4 and (3!3!)2 − 13 · 102 = −4.
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