A GENERALIZATION OF PETERSEN'S MATCHING THEOREM

Zekhaya B. Shozi

Department of Mathematical Sciences Sol Plaatje University

65th Annual Congress of the South African Mathematical Society (SAMS) Stellenbosch University, Cape Town zekhaya.shozi@spu.ac.za

(joint work with Prof. Michael A. Henning)

08 December 2022

Outline

- What is a graph?
- Vertex degrees
- Matchings in graphs
- Petersen's Theorem
- Tutte-Berge Formula
- Matchings in 2-connected graphs of even regularity
- Matchings in 2-connected graphs of odd regularity
- Matchings in 2-connected non-regular graphs

What is a graph?

What is a graph?

Definition (A graph)

- A graph G is a finite nonempty set of objects, called vertices (the singular is vertex), together with a (possibly empty) set of unordered pairs of distinct vertices, called edges.
- The set of vertices of the graph **G** is called the **vertex set** of **G** denoted by **V(G)** and the set of edges of the graph **G** is called the **edge set** of **G** denoted by **E(G)**.

What is a graph?

Definition (A graph)

- A graph G is a finite nonempty set of objects, called vertices (the singular is vertex), together with a (possibly empty) set of unordered pairs of distinct vertices, called edges.
- The set of vertices of the graph G is called the vertex set of G denoted by V(G) and the set of edges of the graph G is called the edge set of G denoted by E(G).

Example of a graph

- \bullet V(G) = {v₁, v₂, v₃, v₄}
- $\bullet \ E(G) = \{v_1v_2, v_2v_3, v_2v_4, v_3v_4\}$

A graph G

Example of a graph

- $V(G) = \{v_1, v_2, v_3, v_4\}$
- $\bullet \ E(G) = \{v_1v_2, v_2v_3, v_2v_4, v_3v_4\}$

A graph G

- The degree of a vertex v is the number of edges incident with v denoted by d_G(v).
- The minimum and maximum degree of G is denoted by δ(G) and Δ(G), respectively.
- ullet ${f G}$ is ${f k}$ -regular if $\delta({f G})={f \Delta}({f G})={f k}$.
- A 3-regular graph is also called a cubic graph.

- The degree of a vertex v is the number of edges incident with v denoted by d_G(v).
- The minimum and maximum degree of **G** is denoted by $\delta(\mathbf{G})$ and $\Delta(\mathbf{G})$, respectively.
- ullet $oldsymbol{\mathsf{G}}$ is **k**-regular if $\delta(oldsymbol{\mathsf{G}}) = oldsymbol{\Delta}(oldsymbol{\mathsf{G}}) = oldsymbol{\mathsf{k}}.$
- A 3-regular graph is also called a cubic graph

- The degree of a vertex v is the number of edges incident with v denoted by d_G(v).
- The minimum and maximum degree of **G** is denoted by $\delta(\mathbf{G})$ and $\Delta(\mathbf{G})$, respectively.
- **G** is **k**-regular if $\delta(\mathbf{G}) = \Delta(\mathbf{G}) = \mathbf{k}$.
- A 3-regular graph is also called a cubic graph

- The degree of a vertex v is the number of edges incident with v denoted by d_G(v).
- The minimum and maximum degree of **G** is denoted by $\delta(\mathbf{G})$ and $\Delta(\mathbf{G})$, respectively.
- **G** is **k**-regular if $\delta(\mathbf{G}) = \Delta(\mathbf{G}) = \mathbf{k}$.
- A 3-regular graph is also called a cubic graph.

The degrees of vertices of G• $d_G(v_1)=1$ • $d_G(v_2)=3$ • $d_G(v_i)=2$ for i=3,4• $d_G(v_5)=0$ • $\delta(G)=0$ • $\Delta(G)=3$

The degrees of vertices of **G**

•
$$d_{G}(v_{1}) = 1$$

•
$$d_G(v_2) = 3$$

•
$$d_{G}(v_{5}) = 0$$

$$\bullet$$
 $\delta(\mathbf{G}) = \mathbf{0}$

$$\bullet$$
 $\Delta(G) = 3$

The degrees of vertices of **G**

•
$$d_G(v_1) = 1$$

•
$$d_G(v_2) = 3$$

$$\bullet$$
 $d_G(v_i) = 2$ for $i = 3, 4$

$$\bullet \ \mathsf{d}_\mathsf{G}(\mathsf{v}_5) = 0$$

$$\bullet \delta(\mathbf{G}) = \mathbf{0}$$

$$ullet$$
 $\Delta(G) = 3$

The degrees of vertices of **G**

•
$$d_G(v_1) = 1$$

•
$$d_G(v_2) = 3$$

•
$$d_G(v_i) = 2$$
 for $i = 3, 4$

•
$$d_{G}(v_{5}) = 0$$

 $\bullet \ \Delta(\mathbf{G}) = 3$

The degrees of vertices of **G**

•
$$d_{G}(v_{1}) = 1$$

•
$$d_G(v_2) = 3$$

•
$$d_G(v_i) = 2$$
 for $i = 3, 4$

$$\bullet \ \mathsf{d_G}(\mathsf{v_5}) = \mathbf{0}$$

 $\bullet \ \delta(\mathbf{G}) = \mathbf{0}$

 \bullet $\Delta(G)=3$

The degrees of vertices of **G**

•
$$d_{G}(v_{1}) = 1$$

•
$$d_G(v_2) = 3$$

•
$$d_G(v_i) = 2$$
 for $i = 3, 4$

•
$$d_G(v_5) = 0$$

•
$$\delta(\mathbf{G}) = \mathbf{0}$$

A graph **G**

The degrees of vertices of **G**

•
$$d_G(v_1) = 1$$

•
$$d_G(v_2) = 3$$

•
$$d_G(v_i) = 2$$
 for $i = 3, 4$

•
$$d_G(v_5) = 0$$

•
$$\delta(\mathbf{G}) = \mathbf{0}$$

$$ullet$$
 $\Delta(G)=3$

- A set of edges in a graph G is independent if no two edges in it are adjacent in G; that is, an independent edge set is a set of edges without common vertices.
- A matching in a graph G is a set of independent edges.
- A perfect matching is a matching M such that every vertex of G is incident with an edge of M.
- The matching number of **G**, denoted by $\alpha'(\mathbf{G})$, is the maximum cardinality of a matching in **G**.

- A set of edges in a graph G is independent if no two edges in it are adjacent in G; that is, an independent edge set is a set of edges without common vertices.
- A matching in a graph G is a set of independent edges
- A perfect matching is a matching M such that every vertex of G is incident with an edge of M.
- The matching number of **G**, denoted by $\alpha'(\mathbf{G})$, is the maximum cardinality of a matching in **G**.

- A set of edges in a graph G is independent if no two edges in it are adjacent in G; that is, an independent edge set is a set of edges without common vertices.
- A matching in a graph G is a set of independent edges.
- A perfect matching is a matching M such that every vertex of G is incident with an edge of M.
- The matching number of G, denoted by $\alpha'(G)$, is the maximum cardinality of a matching in G.

- A set of edges in a graph G is independent if no two edges in it are adjacent in G; that is, an independent edge set is a set of edges without common vertices.
- A matching in a graph G is a set of independent edges.
- A perfect matching is a matching M such that every vertex of G is incident with an edge of M.
- The matching number of G, denoted by $\alpha'(G)$, is the maximum cardinality of a matching in G.

- A set of edges in a graph G is independent if no two edges in it are adjacent in G; that is, an independent edge set is a set of edges without common vertices.
- A matching in a graph G is a set of independent edges.
- A perfect matching is a matching M such that every vertex of G is incident with an edge of M.
- The matching number of **G**, denoted by $\alpha'(\mathbf{G})$, is the maximum cardinality of a matching in **G**.

A matching of size 1.

A matching of size 2. Hence, $\alpha'(G) = 2$.

A matching of size **2**. Hence, $\alpha'(\mathbf{G}) = \mathbf{2}$.

J. Petersen, Die theorie der regulären graphs. Acta Math. 15 (1891), no. 1, 193 – 220.

Theorem 1 (Petersen, 1891)

Every cubic, bridgeless graph contains a perfect matching

R. Whitney, Congruent graphs and the connectivity of graphs. **Am. J.** Math 54 (1932), 150 – 168.

Theorem 2 (Whitney, 1932)

The vertex-connectivity of any graph is at most its edge-connectivity, which in turn is at most its minimum degree.

J. Petersen, Die theorie der regulären graphs. **Acta Math. 15 (1891)**, no. 1, 193 – 220.

Theorem 1 (Petersen, 1891)

Every cubic, bridgeless graph contains a perfect matching

R. Whitney, Congruent graphs and the connectivity of graphs. Am. J. Math 54 (1932), 150 – 168.

Theorem 2 (Whitney, 1932)

The vertex-connectivity of any graph is at most its edge-connectivity, which in turn is at most its minimum degree.

J. Petersen, Die theorie der regulären graphs. **Acta Math. 15 (1891)**, no. 1, 193 – 220.

Theorem 1 (Petersen, 1891)

Every cubic, bridgeless graph contains a perfect matching.

R. Whitney, Congruent graphs and the connectivity of graphs. **Am. J.** Math **54** (1932), 150 – 168.

Theorem 2 (Whitney, 1932)

The vertex-connectivity of any graph is at most its edge-connectivity which in turn is at most its minimum degree.

J. Petersen, Die theorie der regulären graphs. **Acta Math. 15 (1891)**, no. 1, 193 – 220.

Theorem 1 (Petersen, 1891)

Every cubic, bridgeless graph contains a perfect matching.

R. Whitney, Congruent graphs and the connectivity of graphs. **Am. J. Math 54 (1932)**, 150 – 168.

Theorem 2 (Whitney, 1932)

The **vertex-connectivity** of any graph is at most its **edge-connectivity**, which in turn is at most its **minimum degree**.

- If a connected cubic graph has a **vertex cut** of cardinality **i**, then it has an **edge cut** of cardinality **i**, for i = 1, 2.
- Hence, by the result of Whitney, we infer that the vertex-connectivity and edge-connectivity of a connected cubic graph are equal.

Theorem 3 (Petersen, 1891 - Restated)

If **G** is a **2-connected 3-regular graph** of order **n**, then $\alpha'(\mathbf{G}) = \frac{1}{2}\mathbf{n}$.

- If a connected cubic graph has a **vertex cut** of cardinality **i**, then it has an **edge cut** of cardinality **i**, for i = 1, 2.
- Hence, by the result of Whitney, we infer that the vertex-connectivity and edge-connectivity of a connected cubic graph are equal.

Theorem 3 (Petersen, 1891 - Restated)

If **G** is a **2-connected 3-regular graph** of order **n**, then $\alpha'(\mathbf{G}) = \frac{1}{2}\mathbf{n}$.

Petersen's Theorem

- If a connected cubic graph has a **vertex cut** of cardinality **i**, then it has an **edge cut** of cardinality **i**, for i = 1, 2.
- Hence, by the result of Whitney, we infer that the vertex-connectivity and edge-connectivity of a connected cubic graph are equal.

Theorem 3 (Petersen, 1891 - Restated)

If **G** is a **2-connected 3-regular graph** of order **n**, then $\alpha'(\mathbf{G}) = \frac{1}{2}\mathbf{n}$.

Let G be a graph.

C. Berge, C. R. Acad. Sci. Paris, Graphs and Hypergraphs (Chap. 8, Theorem 12), North Holland, Amsterdam, 1958.

Theorem 4 (Tutte-Berge, 1950s)

$$lpha'(\mathbf{G}) = \min_{\mathbf{X} \subset \mathbf{V}(\mathbf{G})} \frac{1}{2} \left(\mathbf{n} + |\mathbf{X}| - \mathbf{oc}(\mathbf{G} - \mathbf{X}) \right)$$

- Let G be a graph.
 - G S = the graph obtained from G by deleting the vertices in S and all edges incident with vertices in S for some $S \subseteq V(G)$.
 - oc(G) = the number of odd components in G

C. Berge, C. R. Acad. Sci. Paris, Graphs and Hypergraphs (Chap. 8, Theorem 12), North Holland, Amsterdam, 1958.

Theorem 4 (Tutte-Berge, 1950s)

$$lpha'(\mathbf{G}) = \min_{\mathbf{X} \subseteq \mathbf{V}(\mathbf{G})} rac{1}{2} \left(\mathbf{n} + |\mathbf{X}| - \mathbf{oc}(\mathbf{G} - \mathbf{X})
ight).$$

- Let G be a graph.
 - G S = the graph obtained from G by deleting the vertices in S and all edges incident with vertices in S for some $S \subseteq V(G)$.
 - \bullet oc(**G**) = the number of odd components in **G**.

C. Berge, C. R. Acad. Sci. Paris, Graphs and Hypergraphs (Chap. 8, Theorem 12), North Holland, Amsterdam, 1958.

Theorem 4 (Tutte-Berge, 1950s)

$$\alpha'(\mathbf{G}) = \min_{\mathbf{X} \subseteq \mathbf{V}(\mathbf{G})} \frac{1}{2} \left(\mathbf{n} + |\mathbf{X}| - \mathbf{oc}(\mathbf{G} - \mathbf{X}) \right).$$

- Let G be a graph.
 - G S = the graph obtained from G by deleting the vertices in S and all edges incident with vertices in S for some $S \subseteq V(G)$.
 - oc(G) = the number of odd components in G.

C. Berge, C. R. Acad. Sci. Paris, Graphs and Hypergraphs (Chap. 8, Theorem 12), **North Holland, Amsterdam**, 1958.

Theorem 4 (Tutte-Berge, 1950s)

$$\alpha'(\mathbf{G}) = \min_{\mathbf{X} \subseteq \mathbf{V}(\mathbf{G})} \frac{1}{2} \left(\mathbf{n} + |\mathbf{X}| - \mathbf{oc}(\mathbf{G} - \mathbf{X}) \right).$$

- Let G be a graph.
 - G S = the graph obtained from G by deleting the vertices in S and all edges incident with vertices in S for some $S \subseteq V(G)$.
 - oc(G) = the number of odd components in G.

C. Berge, C. R. Acad. Sci. Paris, Graphs and Hypergraphs (Chap. 8, Theorem 12), **North Holland, Amsterdam**, 1958.

Theorem 4 (Tutte-Berge, 1950s)

$$\alpha'(\mathbf{G}) = \min_{\mathbf{X} \subset \mathbf{V}(\mathbf{G})} \frac{1}{2} (\mathbf{n} + |\mathbf{X}| - \mathbf{oc}(\mathbf{G} - \mathbf{X})).$$

M. A. Henning, A. Yeo, Tight lower bounds on the size of a matching in a regular graph. Graphs Combin. 23 (2007), 647–657.

Theorem 5 (MAH & Yeo, 2007)

For $k \ge 4$ even, if **G** is a connected k-regular graph of order **n**, then

$$\alpha'(G) \geq \min\bigg\{\bigg(\frac{k^2+4}{k^2+k+2}\bigg) \times \frac{n}{2}, \frac{n-1}{2}\bigg\},$$

and this bound is tight.

All graphs achieving equality on this bound are 2-connected!

M. A. Henning, A. Yeo, Tight lower bounds on the size of a matching in a regular graph. Graphs Combin. 23 (2007), 647–657.

Theorem 5 (MAH & Yeo, 2007)

For $k \ge 4$ even, if **G** is a connected **k**-regular graph of order **n**, then

$$lpha'(\mathbf{G}) \geq \min igg\{ igg(rac{\mathbf{k}^2 + \mathbf{4}}{\mathbf{k}^2 + \mathbf{k} + \mathbf{2}} igg) imes rac{\mathbf{n} - \mathbf{1}}{\mathbf{2}} igg\},$$

and this bound is tight.

All graphs achieving equality on this bound are 2-connected!

M. A. Henning, A. Yeo, Tight lower bounds on the size of a matching in a regular graph. Graphs Combin. 23 (2007), 647–657.

Theorem 5 (MAH & Yeo, 2007)

For $k \ge 4$ even, if **G** is a connected **k**-regular graph of order **n**, then

$$lpha'(\mathbf{G}) \geq \min igg\{ igg(rac{\mathbf{k}^2 + \mathbf{4}}{\mathbf{k}^2 + \mathbf{k} + \mathbf{2}} igg) imes rac{\mathbf{n} - \mathbf{1}}{\mathbf{2}} igg\},$$

and this bound is tight.

All graphs achieving equality on this bound are 2-connected!

A k-diamond D_k

- For $k \ge 3$, $D_k = K_{k+1} e$ where e is an edge of K_{k+1} .
- The vertex of degree k-1 in D_k is called a **link verte**x

Figure: The **4**-diamond D_4

A k-diamond D_k

- For $k \ge 3$, $D_k = K_{k+1} e$ where e is an edge of K_{k+1} .
- The vertex of degree k-1 in D_k is called a **link verte**:

Figure: The 4-diamond D₄

A k-diamond D_k

- For $k \ge 3$, $D_k = K_{k+1} e$ where e is an edge of K_{k+1} .
- The vertex of degree k-1 in D_k is called a **link vertex**.

Figure: The 4-diamond D₄

A bipartite graph $B_{k,\ell}$

For $k \geq 4$ even and $\ell \geq 1$, let $B_{k,\ell}$ be a connected bipartite graph of order $n=(k+2)\ell$ with partite sets X and Y, where $|X|=2\ell$ and $|Y|=k\ell$, and where every vertex in X has degree k and every vertex in Y has degree k.

Figure: The bipartite graph B_{4.1}

A bipartite graph $B_{k,\ell}$

For $k \geq 4$ even and $\ell \geq 1$, let $B_{k,\ell}$ be a connected bipartite graph of order $n=(k+2)\ell$ with partite sets X and Y, where $|X|=2\ell$ and $|Y|=k\ell$, and where every vertex in X has degree k and every vertex in Y has degree k.

Figure: The bipartite graph B_{4.1}

The family $\mathcal{H}_{\mathbf{k}, 2\mathrm{conn}}$

• Let $H_{k,\ell}$ be obtained from $B_{k,\ell}$ as follows

ullet The graph $oldsymbol{\mathsf{B}}_{\mathsf{k},\ell}$ is called the underlying bipartite graph of $oldsymbol{\mathsf{H}}_{\mathsf{k},\ell}$

Figure: The graph $H_{4,1}$ in the family $\mathcal{H}_{4,2\text{conn}}$.

- Let $H_{k,\ell}$ be obtained from $B_{k,\ell}$ as follows:
 - Replace every vertex $\mathbf{v} \in \mathbf{Y}$, whose two neighbors in \mathbf{X} we label $\mathbf{v_1}$ and $\mathbf{v_2}$, with a copy of a \mathbf{k} -diamond $\mathbf{D_k}$, where we join the one link vertex of the added diamond to $\mathbf{v_1}$ and the other link vertex to $\mathbf{v_2}$.
- The graph $B_{k,\ell}$ is called the underlying bipartite graph of $H_{k,\ell}$.

Figure: The graph $H_{4,1}$ in the family $\mathcal{H}_{4,2\text{conn}}$.

- Let $H_{k,\ell}$ be obtained from $B_{k,\ell}$ as follows:
 - Replace every vertex $\mathbf{v} \in \mathbf{Y}$, whose two neighbors in \mathbf{X} we label $\mathbf{v_1}$ and $\mathbf{v_2}$, with a copy of a \mathbf{k} -diamond $\mathbf{D_k}$, where we join the one link vertex of the added diamond to $\mathbf{v_1}$ and the other link vertex to $\mathbf{v_2}$.
- The graph $\mathbf{B}_{\mathbf{k},\ell}$ is called the underlying bipartite graph of $\mathbf{H}_{\mathbf{k},\ell}$

Figure: The graph $H_{4,1}$ in the family $\mathcal{H}_{4,2\text{conn}}$.

- Let $H_{k,\ell}$ be obtained from $B_{k,\ell}$ as follows:
 - Replace every vertex v ∈ Y, whose two neighbors in X we label v₁ and v₂, with a copy of a k-diamond Dk, where we join the one link vertex of the added diamond to v₁ and the other link vertex to v₂.
- The graph $B_{k,\ell}$ is called the underlying bipartite graph of $H_{k,\ell}$

Figure: The graph $H_{4,1}$ in the family $\mathcal{H}_{4,2\text{conn}}$.

- Let $H_{k,\ell}$ be obtained from $B_{k,\ell}$ as follows:
 - Replace every vertex $\mathbf{v} \in \mathbf{Y}$, whose two neighbors in \mathbf{X} we label $\mathbf{v_1}$ and $\mathbf{v_2}$, with a copy of a \mathbf{k} -diamond $\mathbf{D_k}$, where we join the one link vertex of the added diamond to $\mathbf{v_1}$ and the other link vertex to $\mathbf{v_2}$.
- The graph $B_{k,\ell}$ is called the underlying bipartite graph of $H_{k,\ell}$.

Figure: The graph $H_{4,1}$ in the family $\mathcal{H}_{4,2\text{conn}}$.

M. A. Henning, Z. B. Shozi, A characterization of graphs with given maximum degree and smallest possible matching number: II, **Discrete** Math. 345 (3) (2022), 112331.

Theorem 6 (MAH & ZBS, 2022)

For $k \ge 4$ an even integer, if **G** is a **2**-connected **k**-regular graph of order **n** and $\alpha'(\mathbf{G}) < \frac{1}{2}(\mathbf{n} - \mathbf{1})$, then

$$lpha'(\mathsf{G}) \geq \left(rac{\mathsf{k}^2 + \mathsf{4}}{\mathsf{k}^2 + \mathsf{k} + \mathsf{2}}
ight) imes rac{\mathsf{n}}{\mathsf{2}},$$

with equality if and only if $G \in \mathcal{H}_{k,2conn}$.

Observation 1 (MAH & Yeo, 2007)

For an integer $k \geq 2$ and a graph G with $\Delta(G) \leq k$, if

$$\sum_{x \in V(G)} (k - d_G(x)) < k,$$

then $|V(G)| \ge k + 1$.

Let G be a graph.

For r, s ≥ 1, a double star S(r, s) is a tree with exactly two
 (adjacent) vertices that are not leaves.

- Let G be a graph.
 - For X, Y ⊆ V(G), we denote by [X, Y] the set of all edges joining the set X and the set Y in G.
- For r, s ≥ 1, a double star S(r, s) is a tree with exactly two
 (adjacent) vertices that are not leaves.

- Let G be a graph.
 - For $X, Y \subseteq V(G)$, we denote by [X, Y] the set of all edges joining the set X and the set Y in G.
- For $r, s \ge 1$, a **double star S**(r, s) is a tree with exactly two (adjacent) vertices that are not leaves.

- Let G be a graph.
 - For $X, Y \subseteq V(G)$, we denote by [X, Y] the set of all edges joining the set X and the set Y in G.
- For $r, s \ge 1$, a double star S(r, s) is a tree with exactly two (adjacent) vertices that are not leaves. In particular, S(1, 2) is obtained from a star $K_{1,3}$ by subdividing one edge exactly once

- Let G be a graph.
 - For $X, Y \subseteq V(G)$, we denote by [X, Y] the set of all edges joining the set X and the set Y in G.
- For $r, s \ge 1$, a **double star S**(r, s) is a tree with exactly two (adjacent) vertices that are not leaves. In particular, S(1, 2) is obtained from a star $K_{1,3}$ by **subdividing** one edge exactly once.

A k-unit

• For $k \ge 5$ an odd integer,

- The vertices of degree less than k in a k-unit are called link vertices
- For i = 1, 2, a link vertex of degree k i is called a **type-i link** vertex.

Zekhaya B. Shozi (SPU) Graph Theory 08 December 2022

A k-unit

• For $k \ge 5$ an odd integer,

$$\mathsf{U}_1=\mathsf{K}_3\cup\left(\frac{\mathsf{k}-1}{2}\right)\mathsf{K}_2\quad\text{and}\quad\mathsf{U}_2=\mathsf{S}(1,2)\cup\left(\frac{\mathsf{k}-3}{2}\right)\mathsf{K}_2,$$

- the complement U₁ of U₁ is a k-unit order k + 2 that contains k 1 vertices of degree k and three vertices of degree k 1.
- the complement $\overline{U_2}$ of U_2 is a k-unit order k+2 that contains k vertices of degree k, one vertex of degree k-1, and one vertex of degree k-2.
- The vertices of degree less than k in a k-unit are called link vertices
- For i = 1,2, a link vertex of degree k − i is called a type-i link vertex.

A **k**-unit

• For $k \ge 5$ an odd integer, if

$$\textbf{U}_1 = \textbf{K}_3 \cup \left(\frac{\textbf{k}-1}{2}\right) \textbf{K}_2 \quad \text{and} \quad \textbf{U}_2 = \textbf{S}(1,2) \cup \left(\frac{\textbf{k}-3}{2}\right) \textbf{K}_2,$$

- the complement U₁ of U₁ is a k-unit order k + 2 that contains k − 1 vertices of degree k and three vertices of degree k − 1.
- the complement \mathbf{U}_2 of \mathbf{U}_2 is a k-unit order $\mathbf{k}+\mathbf{2}$ that contains k vertices of degree \mathbf{k} , one vertex of degree $\mathbf{k}-\mathbf{1}$, and one vertex of degree $\mathbf{k}-\mathbf{2}$.
- The vertices of degree less than k in a k-unit are called link vertices
- For i = 1, 2, a link vertex of degree k i is called a **type-i link** vertex.

A **k**-unit

• For $k \ge 5$ an odd integer, if

$$\textbf{U}_1 = \textbf{K}_3 \cup \left(\frac{\textbf{k}-1}{2}\right) \textbf{K}_2 \quad \text{and} \quad \textbf{U}_2 = \textbf{S}(1,2) \cup \left(\frac{\textbf{k}-3}{2}\right) \textbf{K}_2,$$

- the complement $\overline{U_1}$ of U_1 is a k-unit order k+2 that contains k-1 vertices of degree k and three vertices of degree k-1.
- the complement U₂ of U₂ is a k-unit order k + 2 that contains k vertices of degree k, one vertex of degree k 1, and one vertex of degree k 2.
- The vertices of degree less than k in a k-unit are called link vertices
- For i = 1, 2, a link vertex of degree k i is called a **type-i link** vertex.

A **k**-unit

• For $k \ge 5$ an odd integer, if

$$\textbf{U}_1 = \textbf{K}_3 \cup \left(\frac{\textbf{k}-1}{2}\right) \textbf{K}_2 \quad \text{and} \quad \textbf{U}_2 = \textbf{S}(1,2) \cup \left(\frac{\textbf{k}-3}{2}\right) \textbf{K}_2,$$

- the complement U_1 of U_1 is a k-unit order k+2 that contains k-1 vertices of degree k and three vertices of degree k-1.
- the complement $\overline{U_2}$ of $\overline{U_2}$ is a k-unit order k+2 that contains k vertices of degree k, one vertex of degree k-1, and one vertex of degree k-2.
- The vertices of degree less than k in a k-unit are called link vertices
- For i = 1, 2, a link vertex of degree k i is called a **type-i link** vertex.

A **k**-unit

• For k > 5 an odd integer, if

$$\textbf{U}_1 = \textbf{K}_3 \cup \left(\frac{\textbf{k}-\textbf{1}}{2}\right) \textbf{K}_2 \quad \text{and} \quad \textbf{U}_2 = \textbf{S}(\textbf{1},\textbf{2}) \cup \left(\frac{\textbf{k}-\textbf{3}}{2}\right) \textbf{K}_2,$$

- the complement U_1 of U_1 is a k-unit order k+2 that contains k-1 vertices of degree k and three vertices of degree k-1.
- the complement U_2 of U_2 is a k-unit order k+2 that contains k vertices of degree k, one vertex of degree k-1, and one vertex of degree k-2.
- The vertices of degree less than **k** in a **k**-unit are called **link vertices**.
- For i = 1,2, a link vertex of degree k i is called a type-i link vertex.

A **k**-unit

• For $k \ge 5$ an odd integer, if

$$\textbf{U}_1 = \textbf{K}_3 \cup \left(\frac{k-1}{2}\right) \textbf{K}_2 \quad \text{and} \quad \textbf{U}_2 = \textbf{S}(1,2) \cup \left(\frac{k-3}{2}\right) \textbf{K}_2,$$

- the complement $\overline{U_1}$ of U_1 is a k-unit order k+2 that contains k-1 vertices of degree k and three vertices of degree k-1.
- the complement $\overline{U_2}$ of $\overline{U_2}$ is a k-unit order k+2 that contains k vertices of degree k, one vertex of degree k-1, and one vertex of degree k-2.
- The vertices of degree less than **k** in a **k**-unit are called **link vertices**.
- For i = 1, 2, a link vertex of degree k i is called a **type-i link** vertex.

The family $\mathcal{R}_{\mathbf{k}}$

• For $k \geq 5$ odd and $\ell \geq 1$, let $\mathcal{R}_{k,\ell}$ be a 2-connected k-regular graph obtained from the disjoint union of $k\ell$ k-units by adding an independent set X of 3ℓ vertices and adding edges as follows.

• For $k \ge 5$ odd, let

$$\mathcal{R}_k = \bigcup_{\ell \geq 1} \mathcal{R}_{k,\ell}.$$

The family $\mathcal{R}_{\mathbf{k}}$

- For $k \geq 5$ odd and $\ell \geq 1$, let $\mathcal{R}_{k,\ell}$ be a 2-connected k-regular graph obtained from the disjoint union of $k\ell$ k-units by adding an independent set X of 3ℓ vertices and adding edges as follows.
 - Add an edge from each type-1 link vertex to one vertex in X and add an edge from each type-2 link vertex to two distinct vertices in X.
 - These $3k\ell$ edges are added in such a way that the resulting graph \mathcal{R}_k , is 2-connected and each vertex of X has degree k in $\mathcal{R}_{k,\ell}$.
 - By construction, the resulting graph $\mathcal{R}_{k,\ell}$ is a 2-connected k-regular graph.
- For $k \ge 5$ odd, let

The family $\mathcal{R}_{\mathbf{k}}$

- For $k \geq 5$ odd and $\ell \geq 1$, let $\mathcal{R}_{k,\ell}$ be a 2-connected k-regular graph obtained from the disjoint union of $k\ell$ k-units by adding an independent set X of 3ℓ vertices and adding edges as follows.
 - Add an edge from each type-1 link vertex to one vertex in X and add an edge from each type-2 link vertex to two distinct vertices in X.
 - These $3k\ell$ edges are added in such a way that the resulting graph $\mathcal{R}_{k,}$ is 2-connected and each vertex of X has degree k in $\mathcal{R}_{k,\ell}$.
 - By construction, the resulting graph $\mathcal{R}_{k,\ell}$ is a **2**-connected **k**-regular graph.
- For $k \geq 5$ odd, let

The family $\mathcal{R}_{\mathbf{k}}$

- For $k \geq 5$ odd and $\ell \geq 1$, let $\mathcal{R}_{k,\ell}$ be a 2-connected k-regular graph obtained from the disjoint union of ke k-units by adding an independent set X of 3ℓ vertices and adding edges as follows.
 - Add an edge from each type-1 link vertex to one vertex in X and add an edge from each type-2 link vertex to two distinct vertices in X.
 - These $3k\ell$ edges are added in such a way that the resulting graph $\mathcal{R}_{k,\ell}$ is 2-connected and each vertex of X has degree k in $\mathcal{R}_{k,\ell}$.

The family $\mathcal{R}_{\mathbf{k}}$

- For $k \geq 5$ odd and $\ell \geq 1$, let $\mathcal{R}_{k,\ell}$ be a 2-connected k-regular graph obtained from the disjoint union of $k\ell$ k-units by adding an independent set X of 3ℓ vertices and adding edges as follows.
 - Add an edge from each type-1 link vertex to one vertex in X and add an edge from each type-2 link vertex to two distinct vertices in X.
 - These $3k\ell$ edges are added in such a way that the resulting graph $\mathcal{R}_{k,\ell}$ is 2-connected and each vertex of X has degree k in $\mathcal{R}_{k,\ell}$.
 - By construction, the resulting graph $\mathcal{R}_{\mathbf{k},\ell}$ is a **2**-connected **k**-regular graph.
- For $k \geq 5$ odd, let

The family $\mathcal{R}_{\mathbf{k}}$

- For $k \geq 5$ odd and $\ell \geq 1$, let $\mathcal{R}_{k,\ell}$ be a 2-connected k-regular graph obtained from the disjoint union of $k\ell$ k-units by adding an independent set X of 3ℓ vertices and adding edges as follows.
 - Add an edge from each type-1 link vertex to one vertex in X and add an edge from each type-2 link vertex to two distinct vertices in X.
 - These $3k\ell$ edges are added in such a way that the resulting graph $\mathcal{R}_{k,\ell}$ is 2-connected and each vertex of X has degree k in $\mathcal{R}_{k,\ell}$.
 - By construction, the resulting graph $\mathcal{R}_{\mathbf{k},\ell}$ is a **2**-connected **k**-regular graph.
- For $k \ge 5$ odd, let

$$\mathcal{R}_{\mathbf{k}} = \bigcup_{\ell > 1} \mathcal{R}_{\mathbf{k},\ell}.$$

Figure: A graph G in the family $\mathcal{R}_{\mathbf{5},\mathbf{1}}$

- **G** is built from five **5**-units
- Every unit has one type-1 link vertex and one type-2 link vertex.

Figure: A graph G in the family $\mathcal{R}_{5,1}$

- G is built from five 5-units.
- Every unit has one type-1 link vertex and one type-2 link vertex.

Figure: A graph G in the family $\mathcal{R}_{5,1}$

- G is built from five 5-units.
- Every unit has one type-1 link vertex and one type-2 link vertex.

Figure: A graph H in the family $\mathcal{R}_{5,1}$

- H is built from five 5-units.
- Three units have three type-1 link vertices
- Two units have one type-1 link vertex and one type-2 link vertex

Figure: A graph H in the family $\mathcal{R}_{5,1}$

- H is built from five 5-units.
- Three units have three type-1 link vertices
- Two units have one type-1 link vertex and one type-2 link vertex.

Figure: A graph H in the family $\mathcal{R}_{5,1}$

- H is built from five 5-units.
- Three units have three type-1 link vertices.
- Two units have one type-1 link vertex and one type-2 link vertex.

Figure: A graph H in the family $\mathcal{R}_{5,1}$

- H is built from five 5-units.
- Three units have three type-1 link vertices.
- Two units have one type-1 link vertex and one type-2 link vertex.

Zekhaya B. Shozi (SPU) Graph Theory 08 December 2022

- If $G \in \mathcal{R}_k$ for some $k \geq 5$ odd, then $G = \mathcal{R}_{k,\ell}$ for some $\ell \geq 1$.
- Moreover, if **G** has order **n**, then $\mathbf{n} = \ell(\mathbf{k}^2 + 2\mathbf{k} + 3)$ and
- G has matching number

$$\begin{split} \alpha'(\mathbf{G}) &= |\mathbf{X}| + \frac{1}{2}(\mathbf{k} + \mathbf{1}) \times \mathbf{k}\ell \\ &= \frac{1}{2}\ell(\mathbf{k}^2 + \mathbf{k} + \mathbf{6}) \\ &= \left(\frac{\mathbf{k}^2 + \mathbf{k} + \mathbf{6}}{\mathbf{k}^2 + 2\mathbf{k} + 3}\right) \times \frac{\mathbf{n}}{2}. \end{split}$$

Observation 2

For $k \geq 5$ an odd integer, if $G \in \mathcal{R}_k$ has order n, then G is a 2-connected k-regular graph satisfying

$$\alpha'(\mathsf{G}) = \left(\frac{\mathsf{k}^2 + \mathsf{k} + \mathsf{6}}{\mathsf{k}^2 + 2\mathsf{k} + 3}\right) \times \frac{\mathsf{n}}{2}$$

- If $G \in \mathcal{R}_k$ for some $k \geq 5$ odd, then $G = \mathcal{R}_{k,\ell}$ for some $\ell \geq 1$.
- Moreover, if **G** has order **n**, then $\mathbf{n} = \ell(\mathbf{k}^2 + 2\mathbf{k} + 3)$ and
- G has matching number

$$\begin{split} \alpha'(\textbf{G}) &= |\textbf{X}| + \frac{1}{2}(\textbf{k}+\textbf{1}) \times \textbf{k}\ell \\ &= \frac{1}{2}\ell(\textbf{k}^2 + \textbf{k} + \textbf{6}) \\ &= \left(\frac{\textbf{k}^2 + \textbf{k} + \textbf{6}}{\textbf{k}^2 + 2\textbf{k} + \textbf{3}}\right) \times \frac{\textbf{n}}{2}. \end{split}$$

Observation 2

For $k \geq 5$ an odd integer, if $G \in \mathcal{R}_k$ has order n, then G is a 2-connected k-regular graph satisfying

$$\alpha'(\mathbf{G}) = \left(\frac{\mathbf{k}^2 + \mathbf{k} + \mathbf{6}}{\mathbf{k}^2 + 2\mathbf{k} + 3}\right) \times \frac{\mathbf{n}}{2}$$

- If $G \in \mathcal{R}_k$ for some $k \geq 5$ odd, then $G = \mathcal{R}_{k,\ell}$ for some $\ell \geq 1$.
- Moreover, if **G** has order **n**, then $\mathbf{n} = \ell(\mathbf{k}^2 + 2\mathbf{k} + 3)$ and
- G has matching number

$$\alpha'(\mathsf{G}) = |\mathsf{X}| + \frac{1}{2}(\mathsf{k}+1) \times \mathsf{k}\ell$$
$$= \frac{1}{2}\ell(\mathsf{k}^2 + \mathsf{k} + \mathsf{6})$$
$$= \left(\frac{\mathsf{k}^2 + \mathsf{k} + \mathsf{6}}{\mathsf{k}^2 + 2\mathsf{k} + 3}\right) \times \frac{\mathsf{n}}{2}.$$

Observation 2

For $k \geq 5$ an odd integer, if $G \in \mathcal{R}_k$ has order n, then G is a 2-connected k-regular graph satisfying

$$\alpha'(\mathbf{G}) = \left(\frac{\mathbf{k}^2 + \mathbf{k} + \mathbf{6}}{\mathbf{k}^2 + 2\mathbf{k} + 3}\right) \times \frac{\mathbf{n}}{2}$$

- If $G \in \mathcal{R}_k$ for some $k \geq 5$ odd, then $G = \mathcal{R}_{k,\ell}$ for some $\ell \geq 1$.
- Moreover, if **G** has order **n**, then $\mathbf{n} = \ell(\mathbf{k}^2 + 2\mathbf{k} + 3)$ and
- G has matching number

$$\alpha'(\mathbf{G}) = |\mathbf{X}| + \frac{1}{2}(\mathbf{k} + \mathbf{1}) \times \mathbf{k}\ell$$
$$= \frac{1}{2}\ell(\mathbf{k}^2 + \mathbf{k} + \mathbf{6})$$
$$= \left(\frac{\mathbf{k}^2 + \mathbf{k} + \mathbf{6}}{\mathbf{k}^2 + 2\mathbf{k} + 3}\right) \times \frac{\mathbf{n}}{2}.$$

Observation 2

For $k\geq 5$ an odd integer, if $G\in \mathcal{R}_k$ has order n, then G is a 2-connected k-regular graph satisfying

$$\alpha'(\mathsf{G}) = \left(\frac{\mathsf{k}^2 + \mathsf{k} + \mathsf{6}}{\mathsf{k}^2 + 2\mathsf{k} + \mathsf{3}}\right) \times \frac{\mathsf{n}}{2}.$$

We are now in a position to present a generalization of Petersen's matching theorem.

Theorem 7 (MAH & ZBS, 2022

For $k \geq 3$ an odd integer, if \boldsymbol{G} is a 2-connected k-regular graph of order \boldsymbol{n} then

$$\alpha'(\mathbf{G}) \ge \left(\frac{\mathbf{k}^2 + \mathbf{k} + \mathbf{6}}{\mathbf{k}^2 + 2\mathbf{k} + 3}\right) \times \frac{\mathbf{n}}{2},$$
 (1)

We are now in a position to present a generalization of Petersen's matching theorem.

Theorem 7 (MAH & ZBS, 2022)

For $k \geq 3$ an odd integer, if G is a 2-connected k-regular graph of order n, then

$$\alpha'(\mathsf{G}) \ge \left(\frac{\mathsf{k}^2 + \mathsf{k} + \mathsf{6}}{\mathsf{k}^2 + 2\mathsf{k} + 3}\right) \times \frac{\mathsf{n}}{2},\tag{1}$$

with equality if and only if $G \in \mathcal{R}_k$

We are now in a position to present a generalization of Petersen's matching theorem.

Theorem 7 (MAH & ZBS, 2022)

For $k \geq 3$ an odd integer, if G is a 2-connected k-regular graph of order n, then

$$\alpha'(\mathsf{G}) \ge \left(\frac{\mathsf{k}^2 + \mathsf{k} + \mathsf{6}}{\mathsf{k}^2 + 2\mathsf{k} + 3}\right) \times \frac{\mathsf{n}}{2},\tag{1}$$

with equality if and only if $G \in \mathcal{R}_k$.

We are now in a position to present a generalization of Petersen's matching theorem.

Theorem 7 (MAH & ZBS, 2022)

For $k \geq 3$ an odd integer, if G is a 2-connected k-regular graph of order n, then

$$\alpha'(\mathsf{G}) \ge \left(\frac{\mathsf{k}^2 + \mathsf{k} + \mathsf{6}}{\mathsf{k}^2 + 2\mathsf{k} + \mathsf{3}}\right) \times \frac{\mathsf{n}}{2},\tag{1}$$

with equality if and only if $G \in \mathcal{R}_k$.

- For $k \ge 3$ an odd integer, let **G** be a **2**-connected **k**-regular graph of order **n**.
- $k = 3 \implies \alpha'(G) \ge \frac{1}{2}n \implies \alpha'(G) = \frac{1}{2}n$

We are now in a position to present a generalization of Petersen's matching theorem.

Theorem 7 (MAH & ZBS, 2022)

For $k \geq 3$ an odd integer, if G is a 2-connected k-regular graph of order n, then

$$\alpha'(\mathsf{G}) \ge \left(\frac{\mathsf{k}^2 + \mathsf{k} + \mathsf{6}}{\mathsf{k}^2 + 2\mathsf{k} + \mathsf{3}}\right) \times \frac{\mathsf{n}}{2},\tag{1}$$

with equality if and only if $G \in \mathcal{R}_k$.

Proof Sketch

• For $k \ge 3$ an odd integer, let G be a 2-connected k-regular graph of order n.

We are now in a position to present a generalization of Petersen's matching theorem.

Theorem 7 (MAH & ZBS, 2022)

For $k \geq 3$ an odd integer, if G is a 2-connected k-regular graph of order n, then

$$\alpha'(\mathsf{G}) \ge \left(\frac{\mathsf{k}^2 + \mathsf{k} + \mathsf{6}}{\mathsf{k}^2 + 2\mathsf{k} + 3}\right) \times \frac{\mathsf{n}}{2},\tag{1}$$

with equality if and only if $G \in \mathcal{R}_k$.

- For $k \ge 3$ an odd integer, let G be a 2-connected k-regular graph of order n.
- $\mathbf{k} = \mathbf{3} \implies \alpha'(\mathbf{G}) \ge \frac{1}{2}\mathbf{n} \implies \alpha'(\mathbf{G}) = \frac{1}{2}\mathbf{n}$. This is just a restatement of Petersen's theorem, hence we may assume that $\mathbf{k} \ge 5$

We are now in a position to present a generalization of Petersen's matching theorem.

Theorem 7 (MAH & ZBS, 2022)

For $k \geq 3$ an odd integer, if G is a 2-connected k-regular graph of order n, then

$$\alpha'(\mathsf{G}) \ge \left(\frac{\mathsf{k}^2 + \mathsf{k} + \mathsf{6}}{\mathsf{k}^2 + 2\mathsf{k} + \mathsf{3}}\right) \times \frac{\mathsf{n}}{2},\tag{1}$$

with equality if and only if $G \in \mathcal{R}_k$.

- For $k \ge 3$ an odd integer, let **G** be a **2**-connected **k**-regular graph of order **n**.
- $\mathbf{k} = \mathbf{3} \implies \alpha'(\mathbf{G}) \ge \frac{1}{2}\mathbf{n} \implies \alpha'(\mathbf{G}) = \frac{1}{2}\mathbf{n}$. This is just a restatement of Petersen's theorem, hence we may assume that $\mathbf{k} \ge \mathbf{5}$.

- Let $X \subseteq V(G)$ such that $\alpha'(G) = \frac{1}{2}(n + |X| oc(G X))$.
- $|\mathbf{X}| = \emptyset \implies \alpha'(\mathbf{G}) = \frac{1}{2}\mathbf{n}$, since in this case $oc(\mathbf{G}) = \mathbf{0}$, noting that \mathbf{r} is even. Hence, we may assume that $\mathbf{X} \neq \emptyset$.
- Since G is 2-connected, G is bridgeless, and so every odd component in (G X) is joined in G to X by at least two edges.
- Moreover, since k is odd, no odd component in (G X) is joined in G to X by exactly two edges.
- Thus, every odd component in (G X) is joined in G to X by at least three edges.

- Let $X \subseteq V(G)$ such that $\alpha'(G) = \frac{1}{2}(n + |X| oc(G X))$.
- $|\mathbf{X}| = \emptyset \implies \alpha'(\mathbf{G}) = \frac{1}{2}\mathbf{n}$, since in this case $oc(\mathbf{G}) = \mathbf{0}$, noting that \mathbf{n} is even. Hence, we may assume that $\mathbf{X} \neq \emptyset$.
- Since G is 2-connected, G is bridgeless, and so every odd component in (G X) is joined in G to X by at least two edges.
- Moreover, since k is odd, no odd component in (G X) is joined in G to X by exactly two edges.
- Thus, every odd component in (G X) is joined in G to X by at least three edges.

- Let $X \subseteq V(G)$ such that $\alpha'(G) = \frac{1}{2}(n + |X| oc(G X))$.
- $|\mathbf{X}| = \emptyset \implies \alpha'(\mathbf{G}) = \frac{1}{2}\mathbf{n}$, since in this case $oc(\mathbf{G}) = \mathbf{0}$, noting that \mathbf{n} is even. Hence, we may assume that $\mathbf{X} \neq \emptyset$.
- Since **G** is **2**-connected, **G** is bridgeless, and so every odd component in (G X) is joined in **G** to **X** by at least two edges.
- Moreover, since k is odd, no odd component in (G X) is joined in G to X by exactly two edges.
- Thus, every odd component in (G X) is joined in G to X by at least three edges.

- Let $X \subseteq V(G)$ such that $\alpha'(G) = \frac{1}{2}(n + |X| oc(G X))$.
- $|\mathbf{X}| = \emptyset \implies \alpha'(\mathbf{G}) = \frac{1}{2}\mathbf{n}$, since in this case $oc(\mathbf{G}) = \mathbf{0}$, noting that \mathbf{n} is even. Hence, we may assume that $\mathbf{X} \neq \emptyset$.
- Since G is 2-connected, G is bridgeless, and so every odd component in (G X) is joined in G to X by at least two edges.
- Moreover, since k is odd, no odd component in (G X) is joined in G to X by exactly two edges.
- Thus, every odd component in (G X) is joined in G to X by at least three edges.

- Let $X \subseteq V(G)$ such that $\alpha'(G) = \frac{1}{2}(n + |X| oc(G X))$.
- $|\mathbf{X}| = \emptyset \implies \alpha'(\mathbf{G}) = \frac{1}{2}\mathbf{n}$, since in this case $oc(\mathbf{G}) = \mathbf{0}$, noting that \mathbf{n} is even. Hence, we may assume that $\mathbf{X} \neq \emptyset$.
- Since **G** is 2-connected, **G** is bridgeless, and so every odd component in (G X) is joined in **G** to **X** by at least two edges.
- Moreover, since k is odd, no odd component in (G X) is joined in G to X by exactly two edges.
- Thus, every odd component in (G X) is joined in G to X by at least three edges.

Proof Sketch

- Let
 - $Y = V(G) \setminus X$,
 - y_k denote the number of odd components in G X that are joined in G to X by at least k edges.
 - y₃ denote the number of odd components in G X that are joined in G to X by less than k edges.
 - Thus, $oc(\mathbf{G} \mathbf{X}) = \mathbf{y_3} + \mathbf{y_k}$.
- If [X,Y] denotes the set of all edges between X and Y, then by simple counting we have

$$k|X| \geq |[X,Y]| \geq 3y_3 + ky_k,$$

$$|X| \ge \frac{3y_3}{k} + y_k \ge \frac{3y_3}{k}.$$

Proof Sketch

- Let
 - $Y = V(G) \setminus X$,
 - y_k denote the number of odd components in G-X that are joined in G to X by at least k edges.
 - y₃ denote the number of odd components in G X that are joined in G to X by less than k edges.
 - Thus, $oc(\mathbf{G} \mathbf{X}) = \mathbf{y}_3 + \mathbf{y}_k$.
- If [X,Y] denotes the set of all edges between X and Y, then by simple counting we have

$$k|X|{\geq}|[X,Y]|{\geq}3y_3+ky_k,$$

Proof Sketch

- Let
 - $Y = V(G) \setminus X$,
 - y_k denote the number of odd components in G-X that are joined in G to X by at least k edges.
 - y₃ denote the number of odd components in G X that are joined in G to X by less than k edges.
- Thus, $oc(G X) = y_3 + y_k$.
- If [X,Y] denotes the set of all edges between X and Y, then by simple counting we have

$$k|X|{\geq}|[X,Y]|{\geq}3y_3+ky_k,$$

Proof Sketch

- Let
 - $Y = V(G) \setminus X$,
 - y_k denote the number of odd components in G-X that are joined in G to X by at least k edges.
 - y₃ denote the number of odd components in G X that are joined in G to X by less than k edges.
- Thus, $oc(G X) = y_3 + y_k$.
- If [X,Y] denotes the set of all edges between X and Y, then by simple counting we have

$$k|X|{\geq}|[X,Y]|{\geq}3y_3+ky_k,$$

Proof Sketch

- Let
 - $Y = V(G) \setminus X$,
 - y_k denote the number of odd components in G X that are joined in G to X by at least k edges.
 - y₃ denote the number of odd components in G X that are joined in G to X by less than k edges.
- Thus, $oc(\mathbf{G} \mathbf{X}) = \mathbf{y_3} + \mathbf{y_k}$.
- If [X, Y] denotes the set of all edges between X and Y, then by simple counting we have

$$\mathbf{k}|\mathbf{X}| {\geq} |[\mathbf{X},\mathbf{Y}]| {\geq} 3y_3 + ky_k,$$

$$|\mathbf{X}| \ge \frac{3\mathbf{y}_3}{\mathbf{k}} + \mathbf{y}_{\mathbf{k}} \ge \frac{3\mathbf{y}_3}{\mathbf{k}}.\tag{2}$$

- If **H** is a component of $\mathbf{G} \mathbf{X}$, then $\sum_{\mathbf{x} \in \mathbf{V}(\mathbf{H})} (\mathbf{k} \mathbf{d}_{\mathbf{H}}(\mathbf{x}))$ is the number of edges between **H** and **X** in **G**.
- $\bullet \ \sum_{\mathsf{x} \in \mathsf{V}(\mathsf{H})} (\mathsf{k} \mathsf{d}_{\mathsf{H}}(\mathsf{x})) < \mathsf{k} \implies |\mathsf{V}(\mathsf{H})| \geq \mathsf{k} + 1.$
- ullet If ${\sf H}$ is an odd component of ${\sf G}-{\sf X}$, then $|{\sf V}({\sf H})|\geq {\sf k}+2$
- Hence every odd component in $\mathbf{G} \mathbf{X}$ that is joined to \mathbf{X} with less than \mathbf{k} edges must contain at least $\mathbf{k} + \mathbf{2}$ vertices, implying that

$$n \ge |X| + y_k + y_3(k+2) \ge |X| + y_3(k+2). \tag{3}$$

- If **H** is a component of G X, then $\sum_{x \in V(H)} (k d_H(x))$ is the number of edges between **H** and **X** in **G**.
- $\bullet \sum_{x \in V(H)} (k d_H(x)) < k \implies |V(H)| \ge k + 1.$
- ullet If ${\sf H}$ is an odd component of ${\sf G}-{\sf X}$, then $|{\sf V}({\sf H})|\geq {\sf k}+2$.
- Hence every odd component in G X that is joined to X with less than k edges must contain at least k + 2 vertices, implying that

$$n \ge |X| + y_k + y_3(k+2) \ge |X| + y_3(k+2). \tag{3}$$

Proof Sketch

- If **H** is a component of G X, then $\sum_{x \in V(H)} (k d_H(x))$ is the number of edges between **H** and **X** in **G**.
- $\bullet \sum_{x \in V(H)} (k d_H(x)) < k \implies |V(H)| \ge k + 1.$
- If **H** is an odd component of G X, then $|V(H)| \ge k + 2$.
- Hence every odd component in G-X that is joined to X with less than k edges must contain at least k+2 vertices, implying that

 $1 \geq |X| + y_k + y_3(k+2) \geq |X| + y_3(k+2).$

- If **H** is a component of G X, then $\sum_{x \in V(H)} (k d_H(x))$ is the number of edges between **H** and **X** in **G**.
- $\bullet \sum_{x \in V(H)} (k d_H(x)) < k \implies |V(H)| \ge k + 1.$
- If **H** is an odd component of G X, then $|V(H)| \ge k + 2$.
- Hence every odd component in G-X that is joined to X with less than k edges must contain at least k+2 vertices, implying that

$$n \ge |X| + y_k + y_3(k+2) \ge |X| + y_3(k+2).$$
 (3)

Proof Sketch

• We therefore have the following.

$$\begin{split} \alpha'(\mathbf{G}) &= \frac{1}{2}(\mathbf{n} + |\mathbf{X}| - \operatorname{oc}(\mathbf{G} - \mathbf{X})) \\ &= \left(\frac{\mathbf{k}^2 + \mathbf{k} + \mathbf{6}}{\mathbf{k}^2 + 2\mathbf{k} + \mathbf{3}} \times \frac{\mathbf{n}}{2}\right) + \left(\frac{\mathbf{k} - \mathbf{3}}{\mathbf{k}^2 + 2\mathbf{k} + \mathbf{3}} \times \frac{\mathbf{n}}{2}\right) + \\ &\left(\frac{|\mathbf{X}| - (\mathbf{y}_3 + \mathbf{y}_k)}{2}\right). \end{split}$$

By Inequalities (2) and (3) we have

$$\alpha'(G) \ge \left(\frac{k^2 + k + 6}{k^2 + 2k + 3} \times \frac{n}{2}\right) + \left(\frac{k - 3}{k^2 + 2k + 3} \times \frac{|X| + y_3(k + 2)}{2}\right) \\ \left(\frac{3y_3}{k} + y_k - (y_3 + y_k)\right)$$

Proof Sketch

• We therefore have the following.

$$\begin{split} \alpha'(\mathbf{G}) &= \frac{1}{2}(\mathbf{n} + |\mathbf{X}| - \operatorname{oc}(\mathbf{G} - \mathbf{X})) \\ &= \left(\frac{\mathbf{k}^2 + \mathbf{k} + \mathbf{6}}{\mathbf{k}^2 + 2\mathbf{k} + 3} \times \frac{\mathbf{n}}{2}\right) + \left(\frac{\mathbf{k} - 3}{\mathbf{k}^2 + 2\mathbf{k} + 3} \times \frac{\mathbf{n}}{2}\right) + \\ &\left(\frac{|\mathbf{X}| - (\mathbf{y}_3 + \mathbf{y}_k)}{2}\right). \end{split}$$

By Inequalities (2) and (3) we have

$$\alpha'(\mathbf{G}) \ge \left(\frac{\mathbf{k}^2 + \mathbf{k} + \mathbf{6}}{\mathbf{k}^2 + 2\mathbf{k} + \mathbf{3}} \times \frac{\mathbf{n}}{2}\right) + \left(\frac{\mathbf{k} - \mathbf{3}}{\mathbf{k}^2 + 2\mathbf{k} + \mathbf{3}} \times \frac{|\mathbf{X}| + \mathbf{y}_3(\mathbf{k} + 2)}{2}\right) + \left(\frac{\frac{3\mathbf{y}_3}{\mathbf{k}} + \mathbf{y}_k - (\mathbf{y}_3 + \mathbf{y}_k)}{2}\right)$$

Proof Sketch

• By Inequality (2) we have

$$\begin{split} \alpha'(\mathsf{G}) &\geq \left(\frac{\mathsf{k}^2 + \mathsf{k} + 6}{\mathsf{k}^2 + 2\mathsf{k} + 3} \times \frac{\mathsf{n}}{2}\right) + \left(\frac{\mathsf{k} - 3}{\mathsf{k}^2 + 2\mathsf{k} + 3} \times \frac{\frac{3\mathsf{y}_3}{\mathsf{k}} + \mathsf{y}_3(\mathsf{k} + 2)}{2}\right) - \\ & \mathsf{y}_3\left(\frac{\mathsf{k} - 3}{2\mathsf{k}}\right) \\ &= \left(\frac{\mathsf{k}^2 + \mathsf{k} + 6}{\mathsf{k}^2 + 2\mathsf{k} + 3} \times \frac{\mathsf{n}}{2}\right) + \mathsf{y}_3\left(\frac{\mathsf{k} - 3}{2\mathsf{k}}\right) - \mathsf{y}_3\left(\frac{\mathsf{k} - 3}{2\mathsf{k}}\right) \\ &= \left(\frac{\mathsf{k}^2 + \mathsf{k} + 6}{\mathsf{k}^2 + 2\mathsf{k} + 3}\right) \times \frac{\mathsf{n}}{2}. \end{split}$$

Proof Sketch

• By Inequality (2) we have

$$\begin{split} \alpha'(\mathbf{G}) \ge & \left(\frac{\mathbf{k}^2 + \mathbf{k} + \mathbf{6}}{\mathbf{k}^2 + 2\mathbf{k} + 3} \times \frac{\mathbf{n}}{2}\right) + \left(\frac{\mathbf{k} - 3}{\mathbf{k}^2 + 2\mathbf{k} + 3} \times \frac{\frac{3y_3}{\mathbf{k}} + y_3(\mathbf{k} + 2)}{2}\right) - \\ & y_3\left(\frac{\mathbf{k} - 3}{2\mathbf{k}}\right) \\ = & \left(\frac{\mathbf{k}^2 + \mathbf{k} + \mathbf{6}}{\mathbf{k}^2 + 2\mathbf{k} + 3} \times \frac{\mathbf{n}}{2}\right) + y_3\left(\frac{\mathbf{k} - 3}{2\mathbf{k}}\right) - y_3\left(\frac{\mathbf{k} - 3}{2\mathbf{k}}\right) \\ = & \left(\frac{\mathbf{k}^2 + \mathbf{k} + \mathbf{6}}{\mathbf{k}^2 + 2\mathbf{k} + 3} \times \frac{\mathbf{n}}{2}\right) \times \frac{\mathbf{n}}{2}. \end{split}$$

Proof Sketch

By Inequality (2) we have

$$\begin{split} \alpha'(\textbf{G}) &\geq \left(\frac{k^2 + k + 6}{k^2 + 2k + 3} \times \frac{n}{2}\right) + \left(\frac{k - 3}{k^2 + 2k + 3} \times \frac{\frac{3y_3}{k} + y_3(k + 2)}{2}\right) - \\ & y_3\left(\frac{k - 3}{2k}\right) \\ &= \left(\frac{k^2 + k + 6}{k^2 + 2k + 3} \times \frac{n}{2}\right) + y_3\left(\frac{k - 3}{2k}\right) - y_3\left(\frac{k - 3}{2k}\right) \\ &= \left(\frac{k^2 + k + 6}{k^2 + 2k + 3}\right) \times \frac{n}{2}. \end{split}$$

Proof Sketch

• Suppose that G achieves equality in Inequality (4), that is

$$\alpha'(\mathbf{G}) = \left(\frac{\mathbf{k}^2 + \mathbf{k} + \mathbf{6}}{\mathbf{k}^2 + 2\mathbf{k} + 3}\right) \times \frac{\mathbf{n}}{2}$$

- We must have equality in both Inequalities (2) and (3)
- Equality in Inequality (2) implies that X is an independent set and every vertex in X has degree k. Furthermore, $\operatorname{oc}(G-X)=y_3$ and every odd component in G-X is joined to X by exactly three edges
- Equality in Inequality (3) implies that every odd component in G-X has order exactly K+Z. Further, every vertex belongs to X or to an odd component of G-X.
- Thus, every component of G X is an odd component and is a k-unit.

Proof Sketch

• Suppose that **G** achieves equality in Inequality (4), that is,

$$\alpha'(\mathsf{G}) = \left(\frac{\mathsf{k}^2 + \mathsf{k} + \mathsf{6}}{\mathsf{k}^2 + 2\mathsf{k} + \mathsf{3}}\right) \times \frac{\mathsf{n}}{2}.$$

- We must have equality in both Inequalities (2) and (3).
- Equality in Inequality (2) implies that X is an independent set and every vertex in X has degree k. Furthermore, $\operatorname{oc}(G X) = y_3$ and every odd component in G X is joined to X by exactly three edges.
- Equality in Inequality (3) implies that every odd component in G-X has order exactly k+2. Further, every vertex belongs to X or to an odd component of G-X.
- Thus, every component of G X is an odd component and is a k-unit.

Proof Sketch

• Suppose that **G** achieves equality in Inequality (4), that is,

$$\alpha'(\mathsf{G}) = \left(\frac{\mathsf{k}^2 + \mathsf{k} + \mathsf{6}}{\mathsf{k}^2 + 2\mathsf{k} + \mathsf{3}}\right) \times \frac{\mathsf{n}}{2}.$$

- We must have equality in both Inequalities (2) and (3).
- Equality in Inequality (2) implies that X is an independent set and every vertex in X has degree k. Furthermore, $\operatorname{oc}(G-X)=y_3$ and every odd component in G-X is joined to X by exactly three edges
- Equality in Inequality (3) implies that every odd component in G in the sorder exactly k + 2. Further, every vertex belongs to X or to an odd component of G X.
- Thus, every component of G X is an odd component and is a k-unit.

Proof Sketch

Suppose that G achieves equality in Inequality (4), that is,

$$\alpha'(\mathsf{G}) = \left(\frac{\mathsf{k}^2 + \mathsf{k} + \mathsf{6}}{\mathsf{k}^2 + 2\mathsf{k} + \mathsf{3}}\right) \times \frac{\mathsf{n}}{2}.$$

- We must have equality in both Inequalities (2) and (3).
- Equality in Inequality (2) implies that X is an independent set and every vertex in X has degree k. Furthermore, $\operatorname{oc}(G X) = y_3$ and every odd component in G X is joined to X by exactly three edges.
- Equality in Inequality (3) implies that every odd component in G in the sorder exactly k + 2. Further, every vertex belongs to X or to an odd component of G X.
- Thus, every component of G X is an odd component and is a k-unit.

Proof Sketch

Suppose that G achieves equality in Inequality (4), that is,

$$\alpha'(\mathsf{G}) = \left(\frac{\mathsf{k}^2 + \mathsf{k} + \mathsf{6}}{\mathsf{k}^2 + 2\mathsf{k} + 3}\right) \times \frac{\mathsf{n}}{2}.$$

- We must have equality in both Inequalities (2) and (3).
- Equality in Inequality (2) implies that X is an independent set and every vertex in X has degree k. Furthermore, $\operatorname{oc}(G X) = y_3$ and every odd component in G X is joined to X by exactly three edges.
- Equality in Inequality (3) implies that every odd component in G-X has order exactly k+2. Further, every vertex belongs to X or to an odd component of G-X.
- I hus, every component of G X is an odd component and is a k-unit.

Proof Sketch

• Suppose that **G** achieves equality in Inequality (4), that is,

$$\alpha'(\mathbf{G}) = \left(\frac{\mathbf{k}^2 + \mathbf{k} + \mathbf{6}}{\mathbf{k}^2 + 2\mathbf{k} + 3}\right) \times \frac{\mathbf{n}}{2}.$$

- We must have equality in both Inequalities (2) and (3).
- Equality in Inequality (2) implies that X is an independent set and every vertex in X has degree k. Furthermore, $\operatorname{oc}(G X) = y_3$ and every odd component in G X is joined to X by exactly three edges.
- Equality in Inequality (3) implies that every odd component in $\mathbf{G} \mathbf{X}$ has order exactly $\mathbf{k} + \mathbf{2}$. Further, every vertex belongs to \mathbf{X} or to an odd component of $\mathbf{G} \mathbf{X}$.
- Thus, every component of G X is an odd component and is a k-unit.

Proof Sketch

- By the way in which the family \mathcal{R}_k is constructed, this in turn implies that $G \in \mathcal{R}_k$.
- This completes the characterization of the extremal graphs achieving equality in Inequality (4).

Proof Sketch

- By the way in which the family \mathcal{R}_k is constructed, this in turn implies that $G \in \mathcal{R}_k$.
- This completes the characterization of the extremal graphs achieving equality in Inequality (4).

The family $\mathcal{G}_{\mathbf{k}}$

Let $\mathcal{G}_{\mathbf{k}} = \{\mathbf{B}_{\mathbf{k},\ell} \mid \ell \geq \mathbf{1}\}$

Theorem 8 (MAH & ZBS, 2022)

For $k \geq 3$, if G is a 2-connected graph of order n and maximum degree $\Delta(G) = k$, then

$$\alpha'(\mathbf{G}) \ge \frac{2\mathsf{n}}{\mathsf{k} + 2},\tag{4}$$

with equality if and only if $\mathbf{G} \in \mathcal{G}_{\mathbf{k}}$.

The family $\mathcal{G}_{\mathbf{k}}$

Let
$$\mathcal{G}_{\mathbf{k}} = \{ \mathbf{B}_{\mathbf{k},\ell} \mid \ell \geq \mathbf{1} \}.$$

Theorem 8 (MAH & ZBS, 2022)

For $k \geq 3$, if **G** is a **2**-connected graph of order **n** and maximum degree $\Delta(G) = k$, then

$$\alpha'(\mathbf{G}) \ge \frac{2\mathsf{n}}{\mathsf{k} + 2},\tag{4}$$

with equality if and only if $\mathbf{G} \in \mathcal{G}_{\mathbf{k}}$.

The family G_k

Let $G_{k} = \{B_{k,\ell} \mid \ell \geq 1\}.$

Theorem 8 (MAH & ZBS, 2022)

For $k \geq 3$, if G is a 2-connected graph of order n and maximum degree

$$\Delta(G) = k$$
, then

$$\alpha'(\mathbf{G}) \ge \frac{2\mathsf{n}}{\mathsf{k} + 2},\tag{4}$$

with equality if and only if $G \in \mathcal{G}_k$.

The family G_k

Let
$$\mathcal{G}_{\mathbf{k}} = \{ \mathbf{B}_{\mathbf{k},\ell} \mid \ell \geq \mathbf{1} \}.$$

Theorem 8 (MAH & ZBS, 2022)

For $k \ge 3$, if **G** is a **2**-connected graph of order **n** and maximum degree $\Delta(G) = k$, then

$$\alpha'(\mathbf{G}) \ge \frac{2\mathsf{n}}{\mathsf{k} + 2},\tag{4}$$

with equality if and only if $G \in \mathcal{G}_k$.

References

- J. Petersen, Die theorie der regulären graphs. *Acta Math.* **15** (1891), no. 1, 193–220.
- R. Whitney, Congruent graphs and the connectivity of graphs. *Am. J. Math 54 (1932)*, 150 168.
- M. A. Henning and A. Yeo, Tight lower bounds on the size of a matching in a regular graph. *Graphs Combin.* **23** (2007), 647–657.
- M. A. Henning and Z. B. Shozi, A characterization of graphs with given maximum degree and smallest possible matching number: II. *Discrete Math.* **345** (2022), no. 3, Paper No. 112731, 11 pp.
- M. A. Henning and Z. B. Shozi, A generalization of Petersen's matching theorem. *Discrete Math.* **346** (2023), no. 3, Paper No. 113263.

