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Some familiar operations on relations

Let X be a set and R, S C X2. We will use the following binary
relations:

o U

idxy = {(z,2) |z € X}

X2

RoS={(a,b)|Jc((a,c) € R& (c,b) € S)}
R— ={(b,a) | (a,b) € R}

R ={(a,b) [ (a,b) ¢ R}

RUS

RNS
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Relation algebras

Definition (Chin and Tarski (1951))
A relation algebra is an algebra A = (A, A, V), L, T,-,1,7) such
that

e (A,A,Vv,/ 1, T)is a Boolean algebra,

@ (A, 1) is a monoid

and, for all a,b,c € A, the following hold:
Qa " =a

Q@ (a-b)"=b"-a"

Q@a (bVe)=(a-b)V(a-c)

Q@ (avb)"=a" Vb~

Q@ a (a-b) <V
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Concrete relation algebras

Let X be a set and E C X? an equivalence relation. Then

S6(E) = (P (E),N, U, , @, E,o,idx,™ )

is a relation algebra.
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Concrete relation algebras

Let X be a set and E C X? an equivalence relation. Then

S6(E) = (P (E),N, U, , @, E,o,idx,™ )

is a relation algebra.

Let X be a set. Then
Re (X) = (P (X?),n,U,°, @, X% 0,idx, )

is a relation algebra.
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Representable relation algebras

Definition

A relation algebra A is representable, or in RRA, if it satisfies one
of the following equivalent conditions:

o A €IS{ss(FE) | E is an equivalence relation}
0 A cISP{Re(X) | X is a set}
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Early studies of representability

From Bulletin of the AMS 1948:

89¢. Bjarni J6nsson and Alfred Tarski: Representation problems for
relation algebras.

A relation algebra (RA) A is a Boolean algebra with a binary associative operator |
and a unary operator < such that: I has the unit element e; a™"=a; (a|b)~
=b"|a~; a|a[b<b. (See Tarski, Journal of Symbolic Logic vol. 6, and Abstract
88.) Examples: 1. Proper relation algebras (PRA’s)—families A’ of subrelations of a
binary relation U closed under set addition R+.S, complementation UU—R, relative
multiplication R|S, conversion R™; the set of all (g, ¢) with e € U is in 4’. 11 (by
McKinsey). Frobenius algebras (FA's)—families A’’ of subsets of a group G closed
under set addition and complementation, complex multiplication and inversion; the
smallest subgroup of G is in A’’. Results: 1. 4 is extendible to a complete atomistic
RA. 2. 4 is isomorphic with an algebra where R+S, RI S, R~ (but not complementa-
tion) have the meaning in I. 3. An atomistic 4 where a~|a<e (or a~|a=¢) for every
atom a is isomorphic with a PRA (or FA). 4 (by McKinsey-Tarski). 4 is simple if and
only if a#0—1 | al 1=1. 5. A PRA which is simple is isomorphic witha PRA 4’ where
Uis a Cartesian set-square; and conversely. Problems: Are all RA’s isomorphic with
PRA’s? Are all RA’s with a| b=0—(a=0\/b=0) isomorphic with FA's? (Received
October 21, 1947.)
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Early studies of representability

From Bulletin of the AMS 1948:

89¢. Bjarni J6nsson and Alfred Tarski: Representation problems for
relation algebras.

A relation algebra (RA) A is a Boolean algebra with a binary associative operator |
and a unary operator < such that: I has the unit element e; a™"=a; (a|b)~
=b"|a~; a|a[b<b. (See Tarski, Journal of Symbolic Logic vol. 6, and Abstract
88.) Examples: 1. Proper relation algebras (PRA’s)—families A’ of subrelations of a
binary relation U closed under set addition R+.S, complementation UU—R, relative
multiplication R|S, conversion R™; the set of all (g, ¢) with e € U is in 4’. 11 (by
McKinsey). Frobenius algebras (FA's)—families A’’ of subsets of a group G closed
under set addition and complementation, complex multiplication and inversion; the
smallest subgroup of G is in A’’. Results: 1. 4 is extendible to a complete atomistic
RA. 2. 4 is isomorphic with an algebra where R+S, RI S, R~ (but not complementa-
tion) have the meaning in I. 3. An atomistic 4 where a~|a<e (or a~|a=¢) for every
atom a is isomorphic with a PRA (or FA). 4 (by McKinsey-Tarski). 4 is simple if and
only if a#0—1 | al 1=1. 5. A PRA which is simple is isomorphic witha PRA 4’ where
Uis a Cartesian set-square; and conversely. Problems: Are all RA’s isomorphic with
PRA’s? Are all RA’s with a| b=0—(a=0\/b=0) isomorphic with FA's? (Received
October 21, 1947.)

@ Lyndon (1950): there is a non-representable relation algebra.
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Early studies of representability

From Bulletin of the AMS 1948:

89¢. Bjarni J6nsson and Alfred Tarski: Representation problems for
relation algebras.

A relation algebra (RA) A is a Boolean algebra with a binary associative operator |
and a unary operator < such that: I has the unit element e; a™"=a; (a|b)~
=b"|a~; a|a[b<b. (See Tarski, Journal of Symbolic Logic vol. 6, and Abstract
88.) Examples: 1. Proper relation algebras (PRA’s)—families A’ of subrelations of a
binary relation U closed under set addition R+.S, complementation UU—R, relative
multiplication R|S, conversion R™; the set of all (g, ¢) with e € U is in 4’. 11 (by
McKinsey). Frobenius algebras (FA's)—families A’’ of subsets of a group G closed
under set addition and complementation, complex multiplication and inversion; the
smallest subgroup of G is in A’’. Results: 1. 4 is extendible to a complete atomistic
RA. 2. 4 is isomorphic with an algebra where R+S, RI S, R~ (but not complementa-
tion) have the meaning in I. 3. An atomistic 4 where a~|a<e (or a~|a=¢) for every
atom a is isomorphic with a PRA (or FA). 4 (by McKinsey-Tarski). 4 is simple if and
only if a#0—1 | al 1=1. 5. A PRA which is simple is isomorphic witha PRA 4’ where
Uis a Cartesian set-square; and conversely. Problems: Are all RA’s isomorphic with
PRA’s? Are all RA’s with a| b=0—(a=0\/b=0) isomorphic with FA's? (Received
October 21, 1947.)

@ Lyndon (1950): there is a non-representable relation algebra.
o Tarski (1955): RRA is a variety.
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Early studies of representability

From Bulletin of the AMS 1948:

89¢. Bjarni J6nsson and Alfred Tarski: Representation problems for
relation algebras.

A relation algebra (RA) A is a Boolean algebra with a binary associative operator |
and a unary operator < such that: I has the unit element e; a™"=a; (a|b)~
=b"|a~; a|a[b<b. (See Tarski, Journal of Symbolic Logic vol. 6, and Abstract
88.) Examples: 1. Proper relation algebras (PRA’s)—families A’ of subrelations of a
binary relation U closed under set addition R+.S, complementation UU—R, relative
multiplication R|S, conversion R™; the set of all (g, ¢) with e € U is in 4’. 11 (by
McKinsey). Frobenius algebras (FA's)—families A’’ of subsets of a group G closed
under set addition and complementation, complex multiplication and inversion; the
smallest subgroup of G is in A’’. Results: 1. 4 is extendible to a complete atomistic
RA. 2. 4 is isomorphic with an algebra where R+S, RI S, R~ (but not complementa-
tion) have the meaning in I. 3. An atomistic 4 where a~|a<e (or a~|a=¢) for every
atom a is isomorphic with a PRA (or FA). 4 (by McKinsey-Tarski). 4 is simple if and
only if a#0—1 | al 1=1. 5. A PRA which is simple is isomorphic witha PRA 4’ where
Uis a Cartesian set-square; and conversely. Problems: Are all RA’s isomorphic with
PRA’s? Are all RA’s with a| b=0—(a=0\/b=0) isomorphic with FA's? (Received
October 21, 1947.)

@ Lyndon (1950): there is a non-representable relation algebra.
o Tarski (1955): RRA is a variety.
e Monk (1964): RRA is non-finitely axiomatizable.
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Quasi relation algebras (Galatos & Jipsen 2013)
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Quasi relation algebras (Galatos & Jipsen 2013)

Definition

An FL-algebra is an algebra A = (A, A, V,-,\,/,1,0) such that
(A, A, V) is a lattice,

(A,-,1) is a monoid,

a-b<c <= b<a\¢c <= a<c/b and

0 an arbitrary element of A.
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Quasi relation algebras (Galatos & Jipsen 2013)

Definition

An FL-algebra is an algebra A = (A, A, V,-,\,/,1,0) such that
e (A, A,V) is a lattice,
e (A, 1) is a monoid,

ea-b<c <= b<a\¢c <= a<c/b and

@ 0 an arbitrary element of A.

Define: ~a=a\0 —a=0/a a+b=~(-b-—a)
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Quasi relation algebras (Galatos & Jipsen 2013)

An FL-algebra is an algebra A = (A, A, V,-,\,/,1,0) such that
e (A, A,V) is a lattice,
e (A, 1) is a monoid,
ea-b<c <= b<a\¢c <= a<c/b and

@ 0 an arbitrary element of A.

Define: ~a=a\0 —a=0/a a+b=~(-b-—a)

An FL'-algebra is an FL-algebra with a unary operation ’ such that
a’ = a.

= = = = =
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Quasi relation algebras (Galatos & Jipsen 2013)

An FL-algebra is an algebra A = (A, A, V,-,\,/,1,0) such that
e (A, A,V) is a lattice,
e (A, 1) is a monoid,
ea-b<c <= b<a\¢c <= a<c/b and

@ 0 an arbitrary element of A.

Define: ~a=a\0 —a=0/a a+b=~(-b-—a)

An FL'-algebra is an FL-algebra with a unary operation ’ such that

a” = a. A DmFL'-algebra is an FL'-algebra such that
(aVvb) =d AV.

= = = = =
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Quasi relation algebras (Galatos & Jipsen 2013)

An FL-algebra is an algebra A = (A, A, V,-,\,/,1,0) such that
e (A, A,V) is a lattice,
e (A, 1) is a monoid,
ea-b<c <= b<a\¢c <= a<c/b and

@ 0 an arbitrary element of A.

Define: ~a=a\0 —a=0/a a+b=~(-b-—a)

An FL'-algebra is an FL-algebra with a unary operation ’ such that
a” = a. A DmFL'-algebra is an FL'-algebra such that

(aVvb) =d Ab. A quasi relation algebra (qRA) is a
DmFL’-algebra that satisfies:

(D) (~a) = —(a) 0p) (@) =a'+V
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More about qRAs

o Wehave —~a=a=~ —aforallae Aand -0=1=~0.
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More about qRAs

o Wehave —~a=a=~ —aforallae Aand -0=1=~0.

@ The operations ~, —," are all dual lattice isomorphisms.
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More about qRAs

@ Wehave —~a=a=~ —aforallae Aand -0=1=~0.
@ The operations ~, —," are all dual lattice isomorphisms.

@ A gRA (or even an FL-algebra) is cyclic if ~ a = —a for all
a€ A
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More about qRAs

@ Wehave —~a=a=~ —aforallae Aand -0=1=~0.
@ The operations ~, —," are all dual lattice isomorphisms.

@ A gRA (or even an FL-algebra) is cyclic if ~ a = —a for all
a€ A

o If (A, A, V) is distributive and ’ is complementation, then
(A, NV, -\, /,1,0) is a relation algebra.
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Examples of quasi relation algebras

Q 1
0 1 € f
0 1
1 “ b
0 ¢ d
o 0
Ay A, Aj Ay

As: —a=~a=b —-b=~b=aqa,d =a, b =b
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Examples of quasi relation algebras

Q 1
0 1 € f
0 1
1 “ b
0 ¢ d
o 0
Ay A, Aj Ay

As: —a=~a=b —-b=~b=aqa,d =a, b =b
A, is the smallest non-cyclic qRA.

Ay ~c—f—-d—e—c
—c—me—=>d—=>f—ec
"“e—we—ecd— f—d
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September 2020

Decidability of quasi relation algebras
Theorem (Galatos, J. 2013)

IfY={A €InFL | A |= &} for € a self-dual set of identities and V is
equationally decidable then V' = {A € qRA | A |= £} is also decidable.

Using results of [Holland, McCleary 1979], [Yetter 1990], [Wille 2005],
[Kozak 2011], [Galatos, J. (Res. Frames) 2013]:

Corollary

The equational theories of gRA, cyclic qRA, cyclic distributive qRA,
commutative gRA and the variety of gRAs that have (-group reducts
(=A €qRA | AE x- ~x = 1) are decidable.

Theorem (Galatos, J. 2013)
gRA, cyclic gRA and commutative gRA have FMP.

Problem 2: Do (cyclic) distributive gRA have the FMP?
Problem 3: Define and investigate representable qRA. ~=ijfj s
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Constructing a distributive qRA from a poset: part 1

Let X = (X, <) be a poset and E an equivalence relation on X
such that < C E. Define < on E as follows:

(u,v) 2 (2,y) <= wx<uand v<y
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Constructing a distributive qRA from a poset: part 1

Let X = (X, <) be a poset and E an equivalence relation on X
such that < C E. Define < on E as follows:

(u,v) 2 (2,y) <= wx<uand v<y

Then E = (E, <) is a poset and the set of up-sets of E, Up (E),
ordered by inclusion, is a distributive lattice.
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Constructing a distributive qRA from a poset: part 1

Let X = (X, <) be a poset and E an equivalence relation on X
such that < C E. Define < on E as follows:

(u,v) 2 (2,y) <= wx<uand v<y

Then E = (E, <) is a poset and the set of up-sets of E, Up (E),
ordered by inclusion, is a distributive lattice.

For R,S,T € Up(E) (i.e. R,S,T C E), we have:
@ RoS e Up(E)
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Constructing a distributive qRA from a poset: part 1

Let X = (X, <) be a poset and E an equivalence relation on X
such that < C E. Define < on E as follows:

(u,v) 2 (2,y) <= wx<uand v<y

Then E = (E, <) is a poset and the set of up-sets of E, Up (E),
ordered by inclusion, is a distributive lattice.
For R,S,T € Up(E) (i.e. R,S,T C E), we have:

@ RoS e Up(E)

@ (RoS)oT=Ro(SoT)
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Constructing a distributive qRA from a poset: part 1

Let X = (X, <) be a poset and E an equivalence relation on X
such that < C E. Define < on E as follows:

(u,v) 2 (2,y) <= wx<uand v<y

Then E = (E, <) is a poset and the set of up-sets of E, Up (E),
ordered by inclusion, is a distributive lattice.

For R,S,T € Up(E) (i.e. R,S,T C E), we have:
@ RoS e Up(E)
@ (RoS)oT=Ro(SoT)
o <cUp(E)
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Constructing a distributive qRA from a poset: part 1

Let X = (X, <) be a poset and E an equivalence relation on X
such that < C E. Define < on E as follows:

(u,v) 2 (2,y) <= wx<uand v<y

Then E = (E, <) is a poset and the set of up-sets of E, Up (E),
ordered by inclusion, is a distributive lattice.

For R,S,T € Up(E) (i.e. R,S,T C E), we have:
@ RoS e Up(E)
@ (RoS)oT=Ro(SoT)
o <cUp(E)
@ Ro<=<oR=R
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Constructing a distributive qRA from a poset: part 1

Let X = (X, <) be a poset and E an equivalence relation on X
such that < C E. Define < on E as follows:

(u,v) 2 (2,y) <= wx<uand v<y

Then E = (E, <) is a poset and the set of up-sets of E, Up (E),
ordered by inclusion, is a distributive lattice.

For R,S,T € Up(E) (i.e. R,S,T C E), we have:
Ro S e Up(E)

@ (RoS)oT=Ro(SoT)

o <cUp(E)
°
°

R o < = < O R = R
o is residuated: R\S = (R~ o S°)° R/S = (R0 S7)°
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Constructing a distributive qRA from a poset: part 1

Let X = (X, <) be a poset and E an equivalence relation on X
such that < C E. Define < on E as follows:

(u,v) 2 (2,y) <= wx<uand v<y

Then E = (E, <) is a poset and the set of up-sets of E, Up (E),
ordered by inclusion, is a distributive lattice.

For R,S,T € Up(E) (i.e. R,S,T C E), we have:
Ro S e Up(E)

@ (RoS)oT=Ro(SoT)

o <cUp(E)

@ Ro<x=<oR=R

@ o is residuated: R\S = (R~ o S°)¢ R/S = (R0 S7)°
Recall that a quasi relation algebra is an algebra of the form

A= <A,/\,\/,‘,\,/,1,0,,>
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Constructing a distributive qRA from a poset: part 1

Let X = (X, <) be a poset and E an equivalence relation on X
such that < C E. Define < on E as follows:

(u,v) 2 (2,y) <= wx<uand v<y

Then E = (E, <) is a poset and the set of up-sets of E, Up (E),
ordered by inclusion, is a distributive lattice.

For R,S,T € Up(E) (i.e. R,S,T C E), we have:
Ro S e Up(E)

@ (RoS)oT=Ro(SoT)

o <cUp(E)

@ Ro<x=<oR=R

@ o is residuated: R\S = (R~ o S°)¢ R/S = (R0 S7)°
Recall that a quasi relation algebra is an algebra of the form

A= (A NV, \,/,1,0) What is 0?
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Digression: some examples of the construction so far

X2
Ty <= {zz,yy, vy}
Y zx vy {zz, zy} {vy, zy}
) N {zy}
%]
(X,<) (X2, =) (Up ((X2%,%)),9)
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Digression: some examples of the construction so far

X2
it <= {zz,yy, vy}
’ TT vy {vz, 2y} {yy, zy}
x yz {xy}
%]
(X, <) (X%, 2) (Up ((x*,%)), <)

Since —1 =0 =~1 and ~ and — are dual lattice isomorphisms,
the only possibility for 0 is 0 = {zy} = (<) ™.

Representable distributive quasi relation algebras
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Example of a concrete cyclic distributive gRA

X2
e <= {zz,yy, vy}
Y o Yy {zz, 2y} {vy, zy}
. yx {zy}
%]
(X, <) (X%,x) (Up ((X%=)),9)

~Azz,zy} = —{zx, 2y} = {yy, 2y} = ({zz,2y}°)~
~A{yy, vy} = —{yy, 2y} = {zz, 2y} = ({yy, 2y}°)~
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Example of a concrete cyclic distributive gRA

X2
e <= {zz,yy, vy}
Y o Yy {zz, 2y} {vy, zy}
. yx {zy}
%]
(X, <) (X%,x) (Up ((X%=)),9)

~Azz,zy} = —{zx, 2y} = {yy, 2y} = ({zz,2y}°)~
~A{yy, vy} = —{yy, 2y} = {zz, 2y} = ({yy, 2y}°)~

{zx, 2y} = {zz, zy} = {ay,yx} o {zz, zy}° o {xy, ya}
{yy, zy} = {yy, 2y} = {zy, yz} o {yy, 2y}° o {xy, yx}
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Digression: non-cyclic examples

@ Possibility for 0: 1 yy U1 zz = (<)~ o {zz,yz, 2y}
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Digression: non-cyclic examples

(X.<) (X% =)

@ Possibility for 0: 1 yy U1 zz = (<)~ o {zz,yz, 2y}

o If we set R' = {zx,yz, 2y} o (R°)™ o {xw,yz, 2y}, we can
show that (Di) holds.

Andrew Craig, Claudette Robinson Representable distributive quasi relation algebras



Digression: non-cyclic examples

(X.<) (X% =)

@ Possibility for 0: 1 yy U1 zz = (<)~ o {zz,yz, 2y}

o If we set R' = {zx,yz, 2y} o (R°)™ o {xw,yz, 2y}, we can
show that (Di) holds.
@ In this case (Dp) fails.
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Digression: non-cyclic examples

(X.<) (X% =)

@ Possibility for 0: 1 yy U1 zz = (<)~ o {zz,yz, 2y}

o If we set R’ = {zx,yz, 2y} o (R)™ o {xx,yz, zy}, we can
show that (Di) holds.

@ In this case (Dp) fails.

o (Dp) fails for all possibilities of / (even if 0 = (<°)).
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Constructing a distributive qRA from a poset: part 2

be a poset and E an equivalence relation on X

)
E.

Let X = (X, <
such that < C
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Constructing a distributive qRA from a poset: part 2

Let X = (X, <) be a poset and E an equivalence relation on X
such that < C E. Let

@ a: X — X be an order automorphism of X such that o C E,
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Constructing a distributive qRA from a poset: part 2

Let X = (X, <) be a poset and E an equivalence relation on X
such that < C E. Let

@ a: X — X be an order automorphism of X such that o C E,

o 0: X — X a self-inverse dual order automorphism of X such
that 6 C F,
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Constructing a distributive qRA from a poset: part 2

Let X = (X, <) be a poset and E an equivalence relation on X
such that < C E. Let

@ a: X — X be an order automorphism of X such that o C E,

o 0: X — X a self-inverse dual order automorphism of X such
that 8 C E, and

@ =aofoa.
Set1=<and0=a0 (<)~ = (<) oa
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Constructing a distributive qRA from a poset: part 2

Let X = (X, <) be a poset and E an equivalence relation on X
such that < C E. Let

@ a: X — X be an order automorphism of X such that o C E,
o 0: X — X a self-inverse dual order automorphism of X such
that 8 C E, and
@ f=aofoaq.
Setl=<and0=ao(<)" =(<)"oa. For R € Up(E),
define R = ao 3o R0 3.
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Constructing a distributive qRA from a poset: part 2

Let X = (X, <) be a poset and E an equivalence relation on X
such that < C E. Let

@ a: X — X be an order automorphism of X such that o C E,

o 0: X — X a self-inverse dual order automorphism of X such
that 8 C E, and

@ f=aofoaq.
Setl=<and0=ao(<)" =(<)"oa. For R € Up(E),
define R' = avo 3o R°o 3. Then the algebra

Q(E)=(Up(E),N,U,0,\,/,1,0,)

is a distributive quasi relation algebra.
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Constructing a distributive qRA from a poset: part 2

Let X = (X, <) be a poset and E an equivalence relation on X
such that < C E. Let

@ a: X — X be an order automorphism of X such that o C E,

o 0: X — X a self-inverse dual order automorphism of X such
that 8 C E, and

@ f=aofoaq.
Setl=<and0=ao(<)" =(<)"oa. For R € Up(E),
define R' = avo 3o R°o 3. Then the algebra

Q(E)=(Up(E),N,U,0,\,/,1,0,)

is a distributive quasi relation algebra. If a is the identity, then
Q(E) is a cyclic distributive quasi relation algebra.
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Equivalence distributive qRAs

We will refer to the algebra Q(E) as an equivalence distributive
quasi relation algebra. The class of equivalence distributive quasi
relation algebras will be denoted by EdqRA.
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Proof of (Di)

Some helpful equivalences:

(R7) = (R~ Boa~=aoB A=p"

Andrew Craig, Claudette Robinson Representable distributive quasi relation algebras



Proof of (Di)

Some helpful equivalences:

(R7) = (R~ Boa~=aoB A=p"

Let X be a set and R, S C X?. Ifv: X — X is an injective
function, then the following hold:

Q@ (YoR) =7oR°
@ (Ro7)°=R°oqy
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Proof of (Di)

Some helpful equivalences:

(R7) = (R~ Boa~=aoB A=p"

Let X be a set and R, S C X?. Ifv: X — X is an injective
function, then the following hold:
@ (yoR)=~v0R"
@ (Ro7)°=Roy

Let X = (X, <) be a poset and E an equivalence relation on X
such that < C E. If a: X — X is an order automorphism of X
such that « C E, then 0 = a0 (<) = (<) o« iff
~R=(R°)" oawand —R =« o (R°)™ for all R € Up (E).
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Proof of (Di)

Let R € Up(E). Then we have

(~R) =aofo(~ )COB
=aofo((R) " oa)o
= (aopo(R)™ OaOﬁ)
(aofo ( ORC) o B)°
= (o (BT o0aToR0f7)7)°
( ORCOB)V)C

o(Bo
o((Bea”oR e f)7)
= ((aOBORCOﬂ) )

e (7))
v
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Full distributive qRAs

Let X = (X, <) be a poset, and let
@ a: X — X be an order automorphism of X,

Andrew Craig, Claudette Robinson Representable distributive quasi relation algebras



Full distributive qRAs

Let X = (X, <) be a poset, and let
@ a: X — X be an order automorphism of X,

@ 0: X — X a self-inverse dual order automorphism of X,
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Full distributive qRAs

Let X = (X, <) be a poset, and let
@ a: X — X be an order automorphism of X,
e B: X — X a self-inverse dual order automorphism of X, and
@ f=waofocq.

Setl=<and0=ao (<) = (<) oa.
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Full distributive qRAs

Let X = (X, <) be a poset, and let
@ a: X — X be an order automorphism of X,
e B: X — X a self-inverse dual order automorphism of X, and
@ f=waofocq.

Setl=<and0=ao (<) = (<) " oa. For

R e Up ((XZ, j)) define R' = ao B0 R0 f5.
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Full distributive qRAs

Let X = (X, <) be a poset, and let
@ a: X — X be an order automorphism of X,
e B: X — X a self-inverse dual order automorphism of X, and
@ f=waofocq.

Setl=<and0=ao (<) = (<) " oa. For

R e Up ((XZ, j)) define R' = ao 30 R°o 3. Then the algebra

Q((x%2)) = (Up ((X*,2)),N,U,0.\, /,1,0,")

is a distributive quasi relation algebra.
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Full distributive qRAs

Let X = (X, <) be a poset, and let
@ a: X — X be an order automorphism of X,
e B: X — X a self-inverse dual order automorphism of X, and
@ f=waofocq.

Setl=<and0=ao (<) = (<) " oa. For

R e Up ((XZ, j)) define R' = ao 30 R°o 3. Then the algebra

Q((x%2)) = (Up ((X*,2)),N,U,0.\, /,1,0,")

is a distributive quasi relation algebra.

We will refer to this algebra as a full distributive quasi relation
algebra and denote the class of full distributive quasi relation
algebras by FdqRA.
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Representable distributive qRAs

ISP (FdgRA) = IS (EdqRA)
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Representable distributive qRAs

ISP (FdgRA) = IS (EdqRA)

A distributive quasi relation algebra A is representable if

A € ISP (FdqRA)

or, equivalently,

A €IS (EdqRA) .
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Future research

@ Are there non-representable distributive qRAs?
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Future research

@ Are there non-representable distributive qRAs?

@ Does the class of representable distributive quasi relation
algebras form a variety? If so, is it finitely axiomatizable?

@ Do the answers to the above change when we restrict to
representable cyclic distributive quasi reltion algebras?
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Future research

@ Are there non-representable distributive qRAs?

@ Does the class of representable distributive quasi relation
algebras form a variety? If so, is it finitely axiomatizable?

@ Do the answers to the above change when we restrict to
representable cyclic distributive quasi reltion algebras?

@ Can we use TiRS graphs (or some other class of dual
structures) to define representability for (cyclic) quasi relation
algebras?
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Thank you!
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