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Setting

A an n× n matrix with only nonnegative entries.

Without loss of generality row-stochastic (i.e., row sums are all

one).

Perron-Frobenius theorem with all its ramifications gives infor-

mation on where the eigenvalues can be:

• 1 is an eigenvalue, and is the largest eigenvalue in modulus,

• there are restrictions on the eigenvalues on the unit circle,

• all eigenvalues are in the so-called Karpelevich region.
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Problem statement: background

Given a set of n complex numbers, Λ = {λ1, . . . , λn}
give necessary and sufficient conditions
for the existence of an n× n nonnegative matrix A such that
the set of eigenvalues of A is the set Λ.

Obvious conditions: Perron-Frobenius needs to be satisfied, the
set Λ must be in the Karpelevich region, and must be symmetric
with respect to the real line.

Very hard problem: solution exists only for n = 3 and n = 4
(despite decades of work).

Many extra necessary conditions are known by now.

Very nice review papers, among them one by C.R. Johnson et
al. (2018).

Interesting observation: for n = 5 with the additional condition
that the trace is zero (so the diagonal is zero) there are necessary
and sufficient conditions.
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Problem statement

Let Λ = {1, λ2, λ3} be a set of three numbers in the Karpelevich

region for n = 3,

with the obvious condition λ3 = λ2 in case λ2,3 6∈ R,

and take λ3 ≤ λ2 in case λ2,3 ∈ R.

Let also a zero pattern in 3×3 matrices be given. Give necessary

and sufficient conditions for there to exist a nonnegative matrix

A with the prescribed zero pattern and such that σ(A) = Λ.

In other words, what extra restrictions does a zero pattern im-

pose on the location of the eigenvalues of a nonnegative matrix?

In this lecture only a few interesting cases, but a complete de-

scription for all possible zero patterns in the 3×3 case is available.
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First observations

Without loss of generality A is row stochastic, that is, A1 = 1.

A is called reducible if there is a permutation of rows and columns

such that A =

∗ ∗ ∗0 ∗ ∗
0 ∗ ∗

.

Otherwise A is called irreducible.

The reducible cases are simple: because of row stochasticity

there are three real eigenvalues, one equal to 1, one positive,

and the third one may be positive or negative, depending on the

sign of the determinant.

So we focus on irreducible and row stochastic matrices.

The problem is not completely invariant under similarity with

permutation matrices: A→ P−1AP with P a permutation matrix,

because that changes a zero pattern into an equivalent one.
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Zeroes on the diagonal

One zero on the diagonal.

Use: P−1AP has same eigenvalues as A for any permutation P

to place that zero in (1,1) position.

A =

0 α 1− α
β γ 1− β − γ
δ φ 1− δ − φ

 nonnegative matrix. σ(A) = {1, λ2, λ3}.

Then

i. If λ2,3 = a± ib with b 6= 0 then a+ b2 < 1
4.

ii. If λ3 ≤ λ2 are real, then −1 < λ2 + λ3 < 1, and the point

(λ2, λ3) lies in the region in the real plane bounded by the lines

λ2 = λ3, λ2 + λ3 = −1, λ3 = −1, λ2 = 1 and the parabola

1− 2λ2 − 2λ3 − 2λ2λ3 + λ2
2 + λ2

3 = 0.

Conversely, for any such pair (λ2, λ3), there is a row-stochastic

matrix of this form with spectrum {1, λ2, λ3}.

Faculty of Science



Zeroes on the diagonal

If λ2,3 = a± ib with b 6= 0 then a+ b2 < 1
4 (figure left).

If λ3 ≤ λ2 are real, then −1 < λ2 + λ3 < 1, and the point

(λ2, λ3) lies in the region in the real plane bounded by the lines

λ2 = λ3, λ2 + λ3 = −1, λ3 = −1, λ2 = 1 and the parabola

1− 2λ2 − 2λ3 − 2λ2λ3 + λ2
2 + λ2

3 = 0 (figure right).
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Zeroes on the diagonal

Two zeroes on the diagonal.

A =

0 α 1− α
β 0 1− β
γ δ 1− γ − δ

 nonnegative matrix. σ(A) = {1, λ2, λ3}.

Then
i. If λ2,3 = a± ib with b 6= 0 then (a+ 1)2 + b2 < 1.
ii. If λ3 ≤ λ2 are real, then −1 < λ2 + λ3 < 0.

Conversely, for any such pair (λ2, λ3), there is a row-stochastic
matrix of this form with spectrum {1, λ2, λ3}.
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Zeroes on the diagonal

Three zeroes on the diagonal and no other zero entries.

Trace is zero, so sum of the eigenvalues is zero.

Then

either σ(A) = {1,−1
2 + bi,−1

2 − bi} with 0 < b <
√

3
2 ,

or σ(A) = {1,−1
2 + a,−1

2 − a} with 0 ≤ a < 1
2.
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Boundary of the Karpelevich region forces a pattern

Suppose A is a row stochastic matrix with eigenvalues 1 and

λ1,2 = a± ib with b =
√

3
3 (1− a)

(so on the line segments connecting 1 and −1
2 ±

√
3

2 i).

Then there is a permutation matrix P and 0 ≤ t ≤ 1 such that

A = P

 t 0 1− t
1− t t 0

0 1− t t

P−1.
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Circulant zero pattern

A =

 α 0 1− α
1− β β 0

0 1− γ γ

, with σ(A) = {1, λ2, λ3}.

Then

i. if λ2, λ3 are real they are both positive,

ii. if λ2,3 = a ± bi are non-real then we have (a + 1)2 + b2 > 1
and |b| ≤

√
3(1− a).

Conversely, for any such pair (λ2, λ3), there is a row-stochastic
matrix of this form with spectrum {1, λ2, λ3}.
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Circulant zero pattern plus one extra zero on diagonal

A =

 0 1 0
0 α 1− α

1− β 0 β

, with σ(A) = {1, λ2, λ3}.

Then

i. If λ2,3 = a±bi with b 6= 0, then a ∈ (−1
2,

1
4) with (a+1)2+b2 > 1

and a+ b2 < 1
4;

ii. If λ2 ≥ λ3 are real, then λ2, λ3 > 0
and ∆ := 1 + λ2

2 + λ2
3 − 2(λ2 + λ3 + λ2λ3) > 0.

Conversely, for any such pair (λ2, λ3), there is a row-stochastic
matrix of this form with spectrum {1, λ2, λ3}.
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Circulant zero pattern plus two extra zeroes on diagonal

A =

 0 1 0
0 0 1

1− α 0 α

, 0 < α < 1, with σ(A) = {1, λ2, λ3}.

Then λ2,3 = a± bi with b 6= 0, and (a+ 1)2 + b2 = 1.
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An example in dimension four

A =


α 1− α 0 0
0 β 1− β 0
0 0 γ 1− γ

1− δ 0 0 δ

 .
Introduce the region

R = {z = a+ bi | z ∈ K, a > 0, (b2 + a2 + a)2 + 2a2 − b2 > 0}.

We conjecture the following.

Conjecture For any irreducible nonnegative matrix A of this form

the non-real eigenvalues of A are in the region R.
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The region R and some support for the conjecture

Spectrum of 104 random matrices of the form above.

Eigenvalues of matrices of the form A(α) =


α 1− α 0 0
0 0 1 0
0 0 0 1
1 0 0 0


are on the curve (b2 + a2 + a)2 + 2a2 − b2 = 0.

The boundary curve of the region R, indicated in dark blue.
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The region R and some support for the conjecture

A(t) = tA(α) + (1− t)I =


tα+ (1− t) t(1− α) 0 0

0 1− t t 0
0 0 1− t t
t 0 0 1− t

 .

Eigenvalues are on the straight line segments connecting points

on the boundary curve with the point 1.

That fills out the region R.
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Some comments on proofs and techniques

Usually the hard part is to prove that a given set of numbers in

the region is realised as the set of eigenvalues of a nonnegative

matrix with the prescribed zero pattern.

Sometimes this can be done by explicit construction of a non-

negative matrix with more zeroes, and then using the implicit

function theorem to prove that it also works with fewer zeroes.

Important point: λ2, λ3 are fully determined by det(A) and trace (A).
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Conclusions

Almost all zero patterns in the three dimensional case impose

extra conditions.

For each given zero pattern in dimension three we can describe

what these extra conditions are.

In dimension four almost everything is still open.

Obviously, the nonnegative inverse eigenvalue problem is still very

much on the wish list of many people, but also unlikely to be

solved in the near future in all its generality.
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Thank you for your attention
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