Constructing Fischer-Clifford matrices of a finite extension group from its factor group

Abraham Love Prins

Department of Mathematics and Applied Mathematics, Nelson Mandela University, Port Elizabeth, email: abraham.prinsab@mandela.ac.za

6 December 2022

Introduction

- Let N be a normal subgroup of a finite group F. Then it is well-known that the ordinary irreducible characters Irr(Q) of the quotient group $Q = \frac{F}{N}$ can be lifted to F, where the set Irr(Q) is identified with $\chi_i \in Irr(F)$ such that $N \leq \ker(\chi_i)$.
- In this presentation, we will use an analogous process to "lift" the so-called Fischer-Clifford matrices $\widehat{M(g_i)}$ of the quotient group $\overline{Q} = \frac{\overline{G}}{K} \cong P_1.G$ to the corresponding Fischer-Clifford matrices $M(g_i)$ of a finite extension group $\overline{G} = P.G$, where $K \triangleleft \overline{G}$ is a non-trivial characteristic subgroup of the p-group P.
- ▶ Hence we can add the necessary rows and columns to the matrices $\widehat{M}(g_i)$ to completely construct the matrices $M(g_i)$ and ordinary character table of \overline{G} .

Let $\overline{G}=N.G$ be an extension of N by G, where $N \triangleleft \overline{G}$ and $\overline{\frac{G}{N}} \cong G$. Also, let $\theta_1=1_N,\theta_2,\cdots,\theta_t$ be representatives of the orbits of \overline{G} on $\mathrm{Irr}(N)$, where $\overline{H_i}=\left\{x\in\overline{G}|\theta_i^x=\theta_i\right\}$ is the corresponding inertia group of $\theta_i\in\mathrm{Irr}(N)$ in \overline{G} for $1\leq i\leq t$. In addition, we have the inertia factor $H_i=\overline{\frac{H_i}{N}}$ corresponding to $\overline{H_i}$.

It follows from Gallagher [11] that

$$\operatorname{Irr}(\overline{G}) = \bigcup_{i=1}^t \{(\psi_i \overline{\beta})^{\overline{G}} | \beta \in \operatorname{IrrProj}(H_i), \text{ with factor set } \alpha_i^{-1} \},$$

where $\psi_i \overline{\beta}$ is equivalent to an ordinary irreducible character $\chi \in \operatorname{Irr}(\overline{H}_i)$ of \overline{H}_i such that $<\chi_N, \theta_i>_N \neq 0$. Moreover ψ_i is a fixed projective character of \overline{H}_i with factor set $\overline{\alpha}_i$ and is an extension of θ_i to \overline{H}_i , i.e. $(\psi_i)_N = \theta_i$. Since $\overline{\alpha}_i$ is constant on cosets of N in \overline{H}_i it can be identified as a factor set α_i of the inertia factor H_i and is defined as $\alpha_i(Nv,Nw)=\overline{\alpha}_i(v,w)$ for $v,w\in\overline{H}_i$.

Let $X(g) = \{x_1 = \overline{g}, x_2, \cdots, x_{c(g)}\}$ be a set of representatives of the conjugacy classes of \overline{G} from the coset $N\overline{g}$, where \overline{g} be a lifting of $g \in G$ under the natural homomorphism $\overline{G} \longrightarrow G$. Note that g is identified with the coset $N\overline{g}$. $y_1, y_2, ..., y_r$ to be representatives of the α_i^{-1} -regular conjugacy classes of elements of H_i that fuse to [g] in G. We define

$$R(g) = \{(i, y_k) \mid 1 \le i \le t, H_i \cap [g] \neq \emptyset, 1 \le k \le r\},\$$

where y_k are representatives of the α_i^{-1} -regular classes of H_i that fuse into the class [g] of G.

We define $y_{l_k} \in \overline{H_i}$ such that y_{l_k} ranges over all representatives of the conjugacy classes of elements of $\overline{H_i}$ which map to y_k under the homomorphism $\overline{H_i} \longrightarrow H_i$ whose kernel is N.

Lemma 1

With notation as above,

$$(\psi_i \overline{\beta})^{\overline{G}}(x_j) = \sum_{y_k: (i, y_k) \in R(g)} \beta(y_k) \sum_{l}' \frac{|C_{\overline{G}}(x_j)|}{|C_{\overline{H_i}}(y_{l_k})|} \psi_i(y_{l_k})$$

Proof.

See [22]

Then the Fischer matrix $M(g) = \left(a_{(i,\gamma_k)}^j\right)$ is defined as

$$\left(a_{(i,y_k)}^j\right) = \left(\sum_{l}' \frac{|C_{\overline{G}}(x_j)|}{|C_{\overline{H_i}}(y_{l_k})|} \psi_i(y_{l_k})\right),\,$$

with columns indexed by X(g) and rows indexed by R(g) and where \sum_{l}' is the summation over all l for which $y_{l_k} \sim x_j$ in \overline{G} .

The Fischer M(g) (see Figure 1) is partitioned row-wise into blocks, where each block corresponds to an inertia group \overline{H}_i . We write $|C_{\overline{G}}(x_j)|$, for each $x_j \in X(g)$, at the top of the columns of M(g) and at the bottom we write $m_j \in \mathbb{N}$, where we define $m_j = [C_{\overline{g}}:C_{\overline{G}}(x_j)] = |N| \frac{|C_G(g)|}{|C_{\overline{G}}(x_j)|}$ and $C_{\overline{g}} = \{x \in \overline{G} | x(N_{\overline{g}}) = (N_{\overline{g}})x \}$. On the left of each row we write $|C_{H_i}(y_k)|$, where the α_i^{-1} -regular class $[y_k]$ fuses into the class [g] of G.

Figure 1: The Fischer Matrix M(g)

$$|C_{G}(x_{1})| \quad |C_{G}(x_{2})| \quad \cdots \quad |C_{G}(x_{c(g)})|$$

$$|C_{G}(g)| \quad \begin{cases} a_{(1,g)}^{1} & a_{(1,g)}^{2} & \cdots & a_{(1,g)}^{c(g)} \\ a_{(1,g)}^{1} & a_{(2,y_{1})}^{2} & \cdots & a_{(2,y_{1})}^{c(g)} \\ a_{(2,y_{1})}^{1} & a_{(2,y_{2})}^{2} & \cdots & a_{(2,y_{2})}^{c(g)} \\ \vdots & \vdots & \vdots & \vdots \\ |C_{H_{2}}(y_{2})| & \vdots & \vdots \\ |C_{H_{1}}(y_{2})| & \vdots & \vdots \\ |C_{H_{2}}(y_{2})| & \vdots & \vdots$$

In practice we will never compute the y_{l_k} or the ordinary irreducible character tables of the inertia subgroups \overline{H}_i since the ordinary irreducible characters of the \overline{H}_i are in general much larger and more complicated to compute than the one for \overline{G} . Instead of using formal definition, the below arithmetical properties of M(g) are used to compute the entries of M(g)[15].

(a)
$$a_{(1,g)}^j = 1$$
 for all $j = \{1, 2, ..., c(g)\}.$

(b)
$$|X(g)| = |R(g)|$$
.

(c)
$$\sum_{j=1}^{c(g)} m_j a_{(i,y_k)}^j \overline{a_{(i',y_k')}^j} = \delta_{(i,y_k),(i',y_k')} \frac{|C_G(g)|}{|C_{H_i}(y_k)|} |N|.$$

$$(\mathsf{d}) \sum_{(i,y_k) \in R(\mathsf{g})} a^j_{(i,y_k)} \overline{a^{j'}_{(i,y_k)}} |C_{H_i}(y_k)| = \delta_{jj'} |C_{\overline{G}}(x_j)|.$$

If N is elementary abelian, then we obtain the following additional properties of M(g):

(f)
$$a_{(i,y_k)}^1 = \frac{|C_G(g)|}{|C_{H_i}(y_k)|}$$
.

(g)
$$|a_{(i,y_k)}^1| \ge |a_{(i,y_k)}^j|$$
.

(h)
$$a^j_{(i,y_k)}\equiv a^1_{(i,y_k)}(\operatorname{mod}\, p)$$
, if $|N|=p^n$, for p a prime and $n\in\mathbb{N}$

The partial character table of \overline{G} on the classes $\{x_1, x_2, \cdots, x_{c(g)}\}$ is given by

$$\begin{bmatrix} C_1(g) M_1(g) \\ C_2(g) M_2(g) \\ \vdots \\ C_t(g) M_t(g) \end{bmatrix}$$

where the Fischer matrix M(g) (see Figure 1) is divided into blocks $M_i(g)$ with each block corresponding to an inertia group \overline{H}_i and $C_i(g)$ is the partial character table of H_i with factor set α_i^{-1} consisting of the columns corresponding to the α_i^{-1} -regular classes that fuse into [g] in G. We obtain the characters of \overline{G} by multiplying the relevant columns of the projective characters of H_i with factor set α_i^{-1} by the rows of M(g). We can also observe that

$$|\operatorname{Irr}(\overline{G})| = \sum_{i=1}^{t} |\operatorname{IrrProj}(H_i, \alpha_i^{-1})|.$$

On the conjugacy classes of \overline{G} , \overline{Q} and G

Let $\overline{G}=P.G$ be a finite extension with $P \triangleleft \overline{G}$ a p-group. If $K \triangleleft \overline{G}$ is a non-trivial characteristic subgroup of P then we have the structures $\overline{G}=K.\overline{Q}$ and $\overline{Q}=\frac{\overline{G}}{K}\cong P_1.G$ where $P_1\cong \frac{P}{K}$. The commutative diagram, depicted as Figure 2, is associated with the structures \overline{G} and \overline{Q} , where η_1 , η_2 and $\eta=\eta_2\circ\eta_1$ are the natural homomorphisms from \overline{G} onto \overline{Q} , \overline{Q} onto G and \overline{G} onto G, respectively.

Figure 2

On the conjugacy classes of \overline{G} , \overline{Q} and G

Let's consider $\overline{Q}=\frac{\overline{G}}{K}\cong P_1.G$, then G is identified with \overline{Q} under the map η_2 . Moreover, under the map η_2 , the pre-image of a conjugacy class $[P_1\overline{q}]$ in \overline{Q} is a union $\bigcup_{i=1}^{\widehat{C(g)}}[\overline{q_i}]$ of say $\widehat{C(g)}$ conjugacy classes $[\overline{q_i}]$ in \overline{Q} . Note that each coset $P_1\overline{q}$ can be identified with a $g\in G$ such that \overline{q} is a lifting for g. Therefore, corresponding to a representative $P_1\overline{q}\in [P_1\overline{q}]$ (or a class representative $g\in G$) there is a set

$$\widehat{X(g)} = \{\overline{q_1} = \overline{q}, \overline{q_2}, \dots, \overline{q_{\widehat{c(g)}}}\}$$

of representatives of conjugacy classes $[\overline{q_i}]$ of \overline{Q} .

On the conjugacy classes of \overline{G} , \overline{Q} and G

Similarly, a pre-image of a class $[\overline{q_i}]$ of \overline{Q} , with $\overline{q_i} \in \widehat{X}(g)$, under the map η_1 will be a union $\bigcup_{j=1}^{c(\overline{q_i})} [\overline{g_i}_j]$ of $c(\overline{q_i})$ classes $[\overline{g_i}_j]$ of \overline{G} . Note that a $\overline{q_i} \in \widehat{X}(g)$ is identified with a coset $K\overline{g_i} \in \overline{\overline{G}} \cong \overline{Q}$ where $\overline{g_i}$ is a lifting for $\overline{q_i}$ in \overline{G} . Hence a set

$$X(\overline{q_i}) = \{\overline{g_i}_1 = \overline{g_i}, \overline{g_i}_2, \dots, \overline{g_i}_{c(\overline{q_i})}\}$$

of representatives of conjugacy classes $[\overline{g_{i_j}}]$ is obtained from the coset $K\overline{g_i}$ (or equivalently a class representative $\overline{q_i} \in \overline{Q}$). Since $\eta = \eta_2 \circ \eta_1$ (see Figure 2), it follows that the pre-image for $g \in G$ under the map η is a set

$$X(g) = \bigcup_{i=1}^{c(g)} X(\overline{q_i}) = X(\overline{q_1}) \bigcup X(\overline{q_2}) \bigcup \cdots \bigcup X(\overline{q_{c(g)}})$$

$$= \{\overline{g_1}, \overline{g_1}, \cdots, \overline{g_1}_{c(\overline{q_1})}, \overline{g_2}, \overline{g_2}, \cdots, \overline{g_2}_{c(\overline{q_2})}, \cdots, \overline{g_{c(g)}}, \overline{g_{c(g)}}, \cdots, \overline{g_{c(g)}}, \cdots, \overline{g_{c(g)}}\}$$

Since \overline{Q} is a factor group of \overline{G} , the set $\operatorname{Irr}(\overline{Q})$ can be lifted to \overline{G} and the lifts are equivalent to characters $\chi_i \in \operatorname{Irr}(\overline{G})$ such that $K \leq \operatorname{Ker}(\chi_i)$. Moreover, the characters $\theta_i \in \operatorname{Irr}(P)$ of P such that $K \leq \operatorname{Ker}(\theta_i)$ are the lifts of $\widehat{\theta_i} \in \operatorname{Irr}(P_1)$ to P. Hence the action of G on the lifts of $\operatorname{Irr}(P_1)$ to P is identical as the action of G on $\operatorname{Irr}(P_1)$, i.e. the number and lengths of the orbits of G on the lifts of $\operatorname{Irr}(P_1)$ and $\operatorname{Irr}(P_1)$ and their corresponding inertia factor groups H_i coincide. Suppose that G has G orbits on $\operatorname{Irr}(P_1)$ with corresponding inertia factors G in Figure 3 will correspond to the matrix G of G.

The columns of M(g) are indexed by the set X(g). The columns (for the s $M_i(g)$ blocks) of M(g) which correspond to the centralizers $C_{\overline{G}}(\overline{g_i}, g)$ of class representatives $\overline{g_i} \in X(g)$, $i = 1, 2, \dots, c(g)$ (see Figure 3) will just be the c(g)columns of the matrix M(g). Note that the elements $\overline{g_i}$ are the lifts of $\overline{q_i} \in X(g)$ to \overline{G} . Whereas the other columns of M(g) (for the s $M_i(g)$ blocks) corresponding to the class representatives $\overline{g_i}_j \in X(g), j=2,\ldots,c(\overline{q_i})$, are duplicates of the columns of M(g) associated with the class representatives $\overline{g_{i_1}} \in X(g)$, $i=1,2,\ldots,c(g)$, since the $\overline{g_{i_1}}$'s come from the coset $K\overline{g_i}$. Note if $\chi \in \operatorname{Irr}(\overline{G})$ is a lift for $\widehat{\chi} \in \operatorname{Irr}(\overline{Q})$ to \overline{G} , then $\chi(\overline{g_i}) = \widehat{\chi}(K\overline{g_i})$ where $K\overline{g_i}$ is identified with $\overline{q_i} \in \widehat{X}(g)$. For example, in Figure 3, the columns corresponding to the class representatives $\overline{g_1}_i \in X(q_1) \subseteq X(g)$, $j=2,3,\ldots,c(\overline{q_1})$ are the duplicates of the column which is indexed by $\overline{g_1}_1 \in X(q_1)$, that is, $a_{(i,y_\ell)}^{1_1} = a_{(i,y_\ell)}^{1_{c(\overline{q_1})}}$ for $1 \le i \le s$, $1 \le k \le r$, since the $c(\overline{q_1})$ elements $\overline{g_1}$, come from the coset $K\overline{g_1}$.

Figure 3: M(g) of \overline{G}

Furthermore, suppose G has t orbits on Irr(P) where s of the t orbits contain the lifts of $Irr(P_1)$ and the rest of the characters of Irr(P) are in t-s=b orbits with corresponding $H_{s+1}, H_{s+2}, \ldots, H_{s+b=t}$ inertia factor groups. The total number of α_i^{-1} -regular classes $[y_k]$ of the b inertia factors $H_{s+1}, H_{s+2}, \ldots, H_{s+b}$, that fuse into a class [g] of G will be equal to $d=c(g)-\widehat{c(g)}=c(\overline{q_1})+c(\overline{q_2})+\cdots+c(\overline{q_{c(g)}})-\widehat{c(g)}$. Therefore, to the s blocks of M(g) containing c(g) columns (as described above) and $\widehat{c(g)}$ rows, we will add d more rows which will be contained in a further b blocks corresponding to the inertia factors $H_{s+1}, H_{s+2}, \ldots, H_{s+b}$. The d rows will have the form,

$$\left[a_{(s+i,y_k)}^{1_1} \cdots a_{(s+i,y_k)}^{1_{c(\overline{q_1})}} a_{(s+i,y_k)}^{2_1} \cdots a_{(s+i,y_k)}^{2_{c(\overline{q_2})}} \cdots a_{(s+i,y_k)}^{\widehat{c(g)}_1} \cdots a_{(s+i,y_k)}^{\widehat{c(g)}_{c(\overline{q_{\overline{c(g)}}})}}\right],$$

where $i = 1, 2, \dots, b$ and $1 \le k \le r$.

Row and orthogonality relations for Fischer-Clifford matrices (see for example [1] or [16]) will be used to obtain the entries $a_{(i,y_k)}^{u_j}$, $u=1,2...,\widehat{c(g)}$, in the the blocks $M_i(g)$, $i=s+1,s+2,\ldots,s+b=t$, of the matrix M(g) of \overline{G} . The final shape of a M(g) of \overline{G} is depicted in Figure 3. Note that M(g) is a $\widehat{(c(g)+d)}\times\widehat{(c(g)+d)}$ matrix, which was obtained by adding d columns of sizes $\widehat{c(g)}\times 1$ and d rows of sizes $1\times c(g)$ to the $\widehat{c(g)}\times\widehat{c(g)}$ matrix $\widehat{M(g)}$ of \overline{Q} . Hence we can formulate Theorem 0.1 below.

Theorem 0.1

For a class representative $g \in G$, the Fischer-Clifford matrix M(g) of the quotient group \overline{Q} is embedded (or contained) in the corresponding Fischer-Clifford matrix M(g) of \overline{G} .

In a sense, we can say that the matrix M(g) is a lift for M(g) to \overline{G} . If there is no class fusion from the inertia factors H_{s+1},\ldots,H_{s+b} into [g] then $M(g)=\widehat{M(g)}$ except possibly for changes in the class orders of $\overline{g_i}_j\in X(g)$. Having constructed the Fischer-Clifford matrices $M(g_i)$ of \overline{G} from those matrices $\widehat{M(g_i)}$ of \overline{Q} together with the fusion maps of the inertia factor groups $H_1,\ldots,H_s,H_{s+1},\ldots,H_{s+b}$ into $H_1=G$ and the sets $\mathrm{Irr}\mathrm{Proj}(H_i,\alpha_i^{-1}),$ $i=1,2,\ldots,s,s+1,s+2,\ldots,s+b=t,$ the set $\mathrm{Irr}(\overline{G})$ can be fully assembled.

Example: $N_{Th}(P) = 2^{4+5} \cdot A_8$ of a radical subgroup $P = 2^{4+5}$ in Th

- Let we consider a group of structure $\overline{G}=2^{4+5}$. A_8 which is the normalizer $N_{Th}(2^{4+5})$ of a radical 2-subgroup 2^{4+5} in the sporadic simple Thompson group Th (see [24]).
- ▶ \overline{G} sits maximally in the 2nd largest maximal subgroup $D = 2^{5} \cdot GL_5(2)$ [6] of Th, called the Dempwolff group.
- ▶ $P = 2^{4+5}$ is a special 2-group of order 512, where the center $Z(P) = 2^4 \triangleleft \overline{G}$ since Z(P) is a characteristic subgroup of P.
- ▶ Hence we can construct $\overline{Q} = \frac{\overline{G}}{Z(P)} \cong 2^{5 \cdot} A_8$, where we let $P_1 = 2^5$
- ▶ The groups \overline{G} and \overline{Q} will be used to illustrate the "lifting of Fischer-Clifford matrices" technique.

Example: Actions of \overline{G} and Q on Irr(P) and $Irr(P_1)$

- ▶ \overline{G} has five orbits on Irr(P) with lengths 1, 1, 15, 15, and 120 with corresponding inertia factors $H_1=H_2=A_8$, $H_3=H_4=2^3$: $GL_3(2)$ and $H_5=2^3$:(7:3).
- ▶ Orbits of Irr(P) having lengths 1, 1, 15 and 15 contain the lifts of the characters $\hat{\chi_i} \in Irr(2^5)$ to P.
- ► Therefore, \overline{Q} has four orbits of lengths 1, 1, 15, 15 on Irr(2⁵) where the corresponding inertia factors coincide with $H_1=H_2=A_8$ and $H_3=H_4=2^3$: $GL_3(2)$.

We will proceed to compute the Fischer-Clifford matrices $M(g_i)$ of \overline{G} by adding an appropriate number of rows and columns to the matrices $M(g_i)$ of \overline{Q} according to the number of classes $[y_k]$ of H_5 fusing into a class [g] of A_8 .

- Let consider the natural epimorphisms $\eta_2:\overline{Q}\to G$, $\eta_1:\overline{G}\to \overline{Q}$, $\eta=\eta_2\circ\eta_1:\overline{G}\to G$ (see Figure 2) for $\overline{G}=2^{4+5}\cdot A_8$ and $\overline{Q}=2^{5}\cdot A_8$
- ightharpoonup ker $(\eta_1) = Z(P) = 2^4 = K$, ker $(\eta_2) = 2^5 = P_1$ and ker $(\eta) = 2^{4+5} = P$.
- ▶ The sets $\widehat{X(g)}$, $X(\overline{q_i})$ and $X(g) = \bigcup_{i=1}^{\widehat{c(g)}} X(\overline{q_i})$ with pre-images under η_2, η_1 and η , respectively

As an example, let's consider the class 3B of G in Table 2 and we follow notation as discussed earlier.

- ▶ Under η_2 the set $\widehat{X}(g) = \{\overline{q_1} \in 3B, \overline{q_2} \in 6A, \overline{q_3} \in 6B, \overline{q_3} \in 6C\}$ of class representatives $\overline{q_i} \in \overline{Q}$ is obtained from a coset $P_1\overline{q}$, where $g \in 3B$ is identified with $P_1\overline{q}$ and we let $\overline{q_1} = \overline{q}$.
- ▶ The sets $X(\overline{q_1}) = \{\overline{g_1}_1 \in 3B, \overline{g_1}_2 \in 6B\}$, $X(\overline{q_2}) = \{\overline{g_2}_1 \in 6C\}$, $X(\overline{q_3}) = \{\overline{g_3}_1 \in 12A, \overline{g_3}_2 \in 12B\}$ and $X(\overline{q_4}) = \{\overline{g_4}_1 \in 6D\}$ of pre-images of $\overline{q_i} \in \widehat{X(g)}$ under η_1 are obtained.
- Since $\eta = \eta_2 \circ \eta_1$ it follows that the pre-images of a class representative $g \in 3B$ in G under η is the set

$$X(g) = \bigcup_{i=1}^{c(g)=4} X(\overline{q_i}) = \{\overline{g_1}_1, \overline{g_1}_2, \overline{g_2}_1, \overline{g_3}_1, \overline{g_3}_2, \overline{g_4}_1\}.$$

Example: The Classes and Fischer-Clifford matrices of \overline{G} and \overline{Q}

The Fischer-Clifford matrix $\widehat{M}(3B)$ which is associated with the class 3B of G is depicted as Figure 4. The columns are indexed by the orders $|C_{\overline{Q}}(\overline{q_i})|$ of the centralizers of class representatives $\overline{q_i} \in \widehat{X(g)}$, $g \in 3B$, and the rows are indexed by the orders of the centralizers $|C_{H_i}(y_1)|$ of class representatives y_k , k=1, of the inertia factors H_i , i=1,2,3,4, which fuse into the class B of G.

$$\widehat{M(3B)} = \begin{array}{c} |C_{H_1}(y_1 \in 3B)| & |C_{\overline{Q}}(\overline{q_1})| & |C_{\overline{Q}}(\overline{q_2})| & |C_{\overline{Q}}(\overline{q_3})| \\ |C_{H_2}(y_1 \in 3B)| & 1 & 1 & 1 \\ |C_{H_3}(y_1 \in 3A)| & 1 & -1 & 1 \\ |C_{H_4}(y_1 \in 3A)| & 3 & 3 & -1 & -1 \\ |C_{H_4}(y_1 \in 3A)| & 3 & -3 & -1 & 1 \end{array} \right)$$

Figure 4: $\widehat{M(3B)}$ of \overline{Q}

Example:The Classes and Fischer-Clifford matrices of \overline{G} and \overline{Q}

Now, the matrix M(3B) will be constructed from $\widehat{M}(3B)$ following the "lifting technique" discussed above.

- ▶ The set $X(g) = \bigcup_{i=1}^{\widehat{c(g)}=4} X(\overline{q_i})$ contains the pre-images of $\overline{q_i} \in \widehat{X(g)}$ under η_1 and will index the columns for M(3B).
- ▶ Since $\widehat{\chi}(\overline{q_i}) = \chi(\overline{g_{ij}})$, for $\overline{g_{ij}} \in X(\overline{q_i})$, $\widehat{\chi} \in \operatorname{Irr}(\overline{Q})$ and $\chi \in \operatorname{Irr}(\overline{G})$, the columns for M(3B) corresponding to the blocks $M_i(3B)$, i = 1, 2, 3, 4 (see Figure 5), will just be duplicates of the columns of the matrix $\widehat{M}(3B)$.
- ▶ For example, the first column of M(3B) labelled by $\overline{q_1} \in X(g)$ will be duplicated for the columns of M(3B) which are labelled by the pre-images $\overline{g_1}, \overline{g_1}_2$ of $\overline{q_1}$ under η_1 .
- ▶ Since both of the elements $\overline{q_2}$ and $\overline{q_4}$ have only one pre-image under η_1 , the columns of $\widehat{M(3B)}$ labelled by $|C_{\overline{Q}}(\overline{q_2})|$ and $|C_{\overline{Q}}(\overline{q_4})|$ will only be repeated once for M(3B), that is, the columns labelled by $|C_{\overline{G}}(\overline{g_2}_1)|$ and $|C_{\overline{G}}(\overline{g_4}_1)|$.

Figure 5: M(3B) of \overline{G}

Example: The Classes and Fischer-Clifford matrices of \overline{G} and \overline{Q}

- ▶ Furthermore, two classes 3A and 3B of the inertia factor H_5 fuse into the class 3B of G (see Table 1) and hence two more rows (rows 5 and 6 in Figure 5) will be added to complete the matrix M(3B).
- ▶ The entries of rows five and six of M(3B) are obtained by using the column and row orthogonality relations of Fischer-Clifford matrices and the desired matrix M(3B) is found in Table 3.
- Note that the entries of the blocks $M_i(3B)$ of M(3B) corresponding to the inertia factors H_i , i=1,2,3,4, are completely determined by the matrix $\widehat{M(3B)}$.
- Similarly, all other Fischer-Clifford matrices of \overline{G} were computed and are listed in Table 3.

Example: The fusion maps of H_3 and H_5 into A_8

Table 1: The fusion maps of H_3 and H_5 into A_8

$[h]_{2^3:GL_3(2)} \longrightarrow$	[g] _{A8}	$[h]_{2^3:GL_3(2)} \longrightarrow$	[g] _{A8}	
1Å	1 <i>A</i>	4 <i>B</i>	4 <i>A</i>	
2 <i>A</i>	2 <i>A</i>	4 <i>C</i>	4 <i>B</i>	
2 <i>B</i>	2 <i>A</i>	6 <i>A</i>	6 <i>B</i>	
2 <i>C</i>	2 <i>B</i>	7 <i>A</i>	7 <i>B</i>	
3 <i>A</i>	3 <i>B</i>	7 <i>B</i>	7 <i>A</i>	
4 <i>A</i>	4 <i>A</i>			
$[h]_{2^3:(7:3)} \longrightarrow$	[g] _{A8}	$[h]_{2^3:(7:3)} \longrightarrow$	[g] _{A8}	
1 <i>A</i>	1 <i>A</i>	6 <i>A</i>	6 <i>B</i>	
2 <i>A</i>	2 <i>A</i>	6 <i>B</i>	6 <i>B</i>	
3 <i>A</i>	3 <i>B</i>	7 <i>A</i>	7 <i>B</i>	
3 <i>B</i>	3 <i>B</i>	7 <i>B</i>	7 <i>A</i>	

The classes of \overline{Q} and \overline{G}

Table 2: The conjugacy classes of \overline{Q} and \overline{G}

[g] _G	k	fj	$[q]_{\overline{Q}}$	$ C_{\overline{Q}}(q) $	$\rightarrow [y]_{2.Co_1}$	[x] _G	$ C_{\overline{G}}(x) $	$\rightarrow [y]_{2^5 \cdot GL_5(2)}$
1 <i>A</i>	32	$f_1 = 1$	1 <i>A</i>	645120	1 <i>A</i>	1 <i>A</i>	10321920	1 <i>A</i>
						2 <i>A</i>	688128	2 <i>A</i>
		$f_2 = 1$	2 <i>A</i>	645120	2 <i>B</i>	2 <i>B</i>	645120	2 <i>A</i>
		$f_3 = 15$	2 <i>B</i>	43008	2 <i>C</i>	2 <i>C</i>	43008	2 <i>A</i>
		$f_4 = 15$	2 <i>C</i>	43008	2 <i>B</i>	4 <i>A</i>	43008	4 <i>A</i>
2A	16	$f_1 = 2$	2D	1536	2 <i>B</i>	4 <i>B</i>	3072	4 <i>A</i>
						2D	3072	2 <i>A</i>
		$f_2 = 6$	2 <i>E</i>	512	2D	4 <i>C</i>	512	4 <i>B</i>
		$f_3 = 8$	4 <i>A</i>	384	4 <i>G</i>	8 <i>A</i>	384	8 <i>B</i>
2 <i>B</i>	8	$f_1 = 2$	4 <i>B</i>	384	4E	4D	384	4 <i>B</i>
		$f_2 = 6$	4 <i>C</i>	128	4D	4 <i>E</i>	128	4 <i>B</i>
3 <i>A</i>	2	$f_1 = 1$	6 <i>A</i>	360	6/	6 <i>A</i>	360	6 <i>B</i>
		$f_2 = 1$	3 <i>A</i>	360	3 <i>C</i>	3 <i>A</i>	360	3 <i>B</i>
3 <i>B</i>	8	$f_1 = 1$	3 <i>B</i>	144	3 <i>B</i>	3 <i>B</i>	576	3 <i>A</i>
						6 <i>B</i>	192	6 <i>A</i>
		$f_2 = 1$	6 <i>B</i>	144	6 <i>K</i>	6 <i>C</i>	144	6 <i>A</i>
		$f_3 = 3$	6 <i>C</i>	48	6 <i>L</i>	12 <i>A</i>	96	12 <i>A</i>
		-				12B	96	12 <i>A</i>
		$f_4 = 3$	6 <i>D</i>	48	6 <i>K</i>	6 <i>D</i>	48	6 <i>A</i>
4 <i>A</i>	8	$f_1 = 2$	4D	64	4E	4F	64	4 <i>A</i>
		$f_2 = 2$	4 <i>E</i>	64	4 <i>G</i>	8 <i>B</i>	64	8 <i>A</i>
		$f_3 = 4$	4 <i>F</i>	32	4 <i>H</i>	8 <i>C</i>	32	8 <i>A</i>
4 <i>B</i>	4	$f_1 = 2$	8 <i>A</i>	16	8 <i>G</i>	8 <i>D</i>	16	8 <i>B</i>
		$f_2 = 2$	8 <i>B</i>	16	8 <i>F</i>	8 <i>E</i>	16	8 <i>B</i>
5 <i>A</i>	2	$f_1 = 1$	5 <i>A</i>	30	5 <i>C</i>	5 <i>A</i>	30	5 <i>A</i>
		$f_2 = 1$	10 <i>A</i>	30	10 <i>H</i>	10 <i>A</i>	30	10 <i>A</i>
6 <i>A</i>	2	$f_1 = 2$	12 <i>A</i>	12	12L	12 <i>C</i>	12	12 <i>C</i>
6 <i>B</i>	4	$f_1 = 1$	6 <i>E</i>	24	6 <i>K</i>	12D	48	12 <i>C</i>
						6 <i>E</i>	48	6 <i>C</i>
		$f_2 = 1$	6 <i>F</i>	24	6 <i>K</i>	12 <i>E</i>	48	12 <i>C</i>
						6 <i>F</i>	48	6 <i>C</i>
		$f_3 = 1$	12 <i>B</i>	24	12 <i>P</i>	24 <i>A</i>	24	24 <i>A</i>
		$f_4 = 1$	12 <i>C</i>	24	12 <i>P</i>	24 <i>B</i>	24	24 <i>A</i>
7 <i>A</i>	4	$f_1 = 1$	7 <i>A</i>	28	7 <i>B</i>	7 <i>A</i>	56	7 <i>A</i>
						14 <i>A</i>	56	14 <i>A</i>
		$f_2 = 1$	14 <i>A</i>	28	14 <i>C</i>	28 <i>A</i>	28	28 <i>A</i>
		$f_3 = 1$	14 <i>B</i>	28	14 <i>C</i>	14 <i>B</i>	28	14 <i>A</i>
		$f_4 = 1$	14 <i>C</i>	28	14 <i>D</i>	14 <i>C</i>	28	14 <i>A</i>
7 <i>B</i>	4	$f_1 = 1$	7 <i>B</i>	28	7 <i>B</i>	7 <i>B</i>	56	7 <i>A</i>
						14D	56	14 <i>D</i>
		$f_2 = 1$	14 <i>D</i>	28	14 <i>C</i>	14 <i>E</i>	28	14 <i>A</i>
		$f_3 = 1$	14 <i>E</i>	28	14 <i>D</i>	14 <i>F</i>	28	14 <i>A</i>
		$f_4 = 1$	14 <i>F</i>	28	14 <i>C</i>	28 <i>B</i>	28	28 <i>A</i>
15 <i>A</i>	2	$f_1 = 1$	15 <i>A</i>	30	15 <i>E</i>	15 <i>A</i>	30	15 <i>A</i>
		$f_2 = 1$	30 <i>A</i>	30	30 <i>J</i>	30 <i>A</i>	30	30 <i>A</i>
15 <i>B</i>	2	$f_1 = 1$	15 <i>B</i>	30	15 <i>E</i>	15 <i>B</i>	30	15 <i>B</i>
		$f_2 = 1$	30 <i>B</i>	30	30 <i>J</i>	30 <i>B</i>	30	30 <i>B</i>

The Fischer-Clifford Matrices of and \overline{Q} and \overline{G}

Table 3: The Fischer-Clifford Matrices of \overline{Q} and \overline{G}

$\widehat{M(1A)}$	$\widehat{M(2A)}$	M(1A)	M(2A)			
$\left(\begin{array}{ccccc} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ 15 & 15 & -1 & -1 \\ 15 & -15 & 1 & -1 \end{array}\right)$	$\left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 6 & -2 & 0 \end{array}\right)$	$\left(\begin{array}{ccccccc}1&1&1&1&1&1\\1&1&-1&-1&1\\15&15&15&-1&-1\\15&15&-15&1&-1\\240&-16&0&0&0\end{array}\right)$	$\left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 6 & 6 & -2 & 0 \\ 8 & -8 & 0 & 0 \end{array}\right)$			
$\widehat{M(2B)}$	$\widehat{M(3A)}$	M(2B)	M(3A)			
$\begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$			
$\widehat{M(3B)}$	$\widehat{M(4A)}$	M(3B)	M(4A)			
$\left(\begin{array}{ccccc} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 3 & 3 & -1 & -1 \\ 3 & -3 & -1 & 1 \end{array}\right)$	$M(4A) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & -2 & 0 \end{pmatrix}$	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & -2 & 0 \end{array}\right)$			
$\widehat{M(4B)}$	$\widehat{M(5A)}$	M(4B)	M(5A)			
$\left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right)$	$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	$\left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right)$	$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$			
$\widehat{M(6A)}$	M(6B)	M(6B)	M(6A)			
(1)	$\left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -$	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)			
$\widehat{M(7A)}$	M(7B)	M(7A)	M(7B)			
$ \left(\begin{array}{ccccc} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 \end{array}\right) $	$\left(\begin{array}{ccccc} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & -1 \\ 1 & 1 & -1 & -$	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\widehat{M(15A)}$	M(15B)	M(15A)	M(15B)			
$\left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right)$	$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$			

The Character Table of and \overline{Q} and \overline{G}

Table 4: The character tables of \overline{Q} and \overline{G}

[g] _{A8}			1 <i>A</i>					2 <i>A</i>			2 <i>B</i>		3 <i>A</i>
[q]	1 <i>A</i>		2 <i>A</i>	2 <i>B</i>	2 <i>C</i>	2D		2 <i>E</i>	4 <i>A</i>	4 <i>B</i>	4 <i>C</i>	6 <i>A</i>	3 <i>A</i>
$[\overline{g}]_{\overline{G}}$	1 <i>A</i>	2 <i>A</i>	2 <i>B</i>	2 <i>C</i>	4 <i>A</i>	4 <i>B</i>	2D	4 <i>C</i>	8 <i>A</i>	4D	4 <i>E</i>	6 <i>A</i>	3 <i>A</i>
p=2	1 <i>A</i>	1 <i>A</i>	1 <i>A</i>	1 <i>A</i>	2 <i>A</i>	2 <i>A</i>	1 <i>A</i>	2 <i>A</i>	4 <i>A</i>	2 <i>B</i>	2 <i>C</i>	3 <i>A</i>	3 <i>A</i>
p=3	1 <i>A</i>	2 <i>A</i>	2 <i>B</i>	2 <i>C</i>	4 <i>A</i>	4 <i>B</i>	2D	4 <i>C</i>	8 <i>A</i>	4D	4 <i>E</i>	2 <i>B</i>	1 <i>A</i>
p=5	1 <i>A</i>	2 <i>A</i>	2 <i>B</i>	2 <i>C</i>	4 <i>A</i>	4 <i>B</i>	2D	4 <i>C</i>	8 <i>A</i>	4D	4 <i>E</i>	6 <i>A</i>	3 <i>A</i>
p=7	1 <i>A</i>	2 <i>A</i>	2 <i>B</i>	2 <i>C</i>	4 <i>A</i>	4 <i>B</i>	2D	4 <i>C</i>	8 <i>A</i>	4D	4 <i>E</i>	6 <i>A</i>	3 <i>A</i>
χ1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ2	7	7	7	7	7	-1	-1	-1	-1	3	3	4	4
χ ₃	14	14	14	14	14	6	6	6	6	2	2	-1	-1
χ4	20	20	20	20	20	4	4	4	4	4	4	5	5
χ ₅	21	21	21	21	21	-3	-3	-3	-3	1	1	6	6
X6	21	21	21	21	21	-3	-3	-3	-3	1	1	-3	-3
χ7	21	21	21	21	21	-3	-3	-3	-3	1	1	-3	-3
χ8	28	28	28	28	28	-4	-4	-4	-4	4	4	1	1
χ9	35	35	35	35	35	3	3	3	3	-5	-5	5	5
X10	45	45	45	45	45	-3	-3	-3	-3	-3	-3	0	0
X11	45	45	45	45	45	-3	-3	-3	-3	-3	-3	0	0
X12	56	56 64	56	56	56 64	8	8 0	8 0	8 0	0	0	-4 4	-4 4
X13	64 70	70	64 70	64 70	70	-2	-2	-2	-2	2	2	-5	-5
X14	8	8	-8	-8	8	0	-2	-2	-2	0	0	-5 4	-4
X15	24	24	-0 -24	-o -24	24	0	0	0	0	0	0	6	-6
X16	24	24	-24	-24	24	Ö	0	0	0	0	0	6	-6
X17	48	48	-48	-48	48	Ö	0	0	0	0	0	-6	6
X18 X19	56	56	-56	-56	56	ő	0	0	0	ő	0	4	-4
X20	56	56	-56	-56	56	ő	0	Ö	Ö	ő	Ö	4	-4
X20 X21	56	56	-56	-56	56	ő	Ö	Ö	Ö	ő	ő	-2	2
X22	56	56	-56	-56	56	0	0	0	0	0	0	-2	2
χ23	64	64	-64	-64	64	0	0	0	0	0	0	-4	4
X24	15	15	15	-1	-1	7	7	-1	-1	3	-1	0	0
X25	45	45	45	-3	-3	-3	-3	5	-3	-3	1	0	0
X26	45	45	45	-3	-3	-3	-3	5	-3	-3	1	0	0
X27	90	90	90	-6	-6	18	18	2	-6	6	-2	0	0
X28	105	105	105	-7	-7	-7	-7	1	1	9	-3	0	0
X29	105	105	105	-7	-7	1	1	9	-7	-3	1	0	0
X30	105	105	105	-7	-7	17	17	-7	1	-3	1	0	0
X31	120	120	120	-8	-8	8	8	8	-8	0	0	0	0
X32	210	210	210	-14	-14	10	10	-6	2	6	-2	0	0
X33	315	315	315	-21	-21	-21	-21	3	3	3	-1	0	0
X34	315	315	315	-21	-21	3	3	-5	3	-9	3	0	0
X35	120	120	-120	8	-8	0	0	0	0	0	0	0	0
X36	120 120	120 120	-120 -120	8 8	-8 -8	0	0 0	0	0	0	0	0	0
X37	360	360	-120 -360	8 24	-8 -24	0	0	0 0	0	0	0	0	0
X38	360 360	360 360	-360 -360	24	-24 -24	0	0	0	0	0	0	0	0
X39	240	-16	-360	0	-24	8	-8	0	0	0	0	0	0
X40	240	-16 -16	0	0	0	8	-8	0	0	0	0	0	0
X41	240	-16	0	0	0	8	-o -8	0	0	0	0	0	0
X42	720	-48	0	0	0	24	-o -24	0	0	0	0	0	0
X43 X44	720	-48	0	0	0	24	-24	0	0	0	0	0	0
X44 X45	1680	-112	0	0	0	-8	8	0	0	0	0	0	0
	1680	-112	0	0	0	-8	8	0	0	0	0	0	ő
X46 X47	1680	-112	0	0	0	-8	8	0	0	ő	0	0	ő
	1000										v		

The Character Table of \overline{G}

Table 4 (continued)

[g] _{A8}			3 <i>B</i>					4 <i>A</i>			4 <i>B</i>		5 <i>A</i>	6 <i>A</i>
$[q]_{\overline{Q}}$	3 <i>B</i>		6 <i>B</i>	6 <i>C</i>		6 <i>D</i>	4D	4 <i>E</i>	4F	8 <i>A</i>	8 <i>B</i>	5 <i>A</i>	10 <i>A</i>	12 <i>A</i>
[<u>g</u>]	3 <i>B</i>	6 <i>B</i>	6 <i>C</i>	12 <i>A</i>	12 <i>B</i>	6 <i>D</i>	8 <i>B</i>	4 <i>F</i>	8 <i>C</i>	8 <i>D</i>	8 <i>E</i>	5 <i>A</i>	10 <i>A</i>	12 <i>C</i>
p=2	3 <i>B</i>	3 <i>B</i>	3 <i>B</i>	6 <i>B</i>	6 <i>B</i>	3 <i>B</i>	4 <i>B</i>	2D	4 <i>C</i>	4D	4 <i>E</i>	5 <i>A</i>	5 <i>A</i>	6 <i>A</i>
p=3	1 <i>A</i>	2 <i>A</i>	2 <i>B</i>	4 <i>A</i>	4 <i>A</i>	2 <i>C</i>	8 <i>B</i>	4 <i>F</i>	8 <i>C</i>	8 <i>D</i>	8 <i>E</i>	5 <i>A</i>	10 <i>A</i>	4D
p=5	3 <i>B</i>	6 <i>B</i>	6 <i>C</i>	12 <i>B</i>	12A	6D	8 <i>B</i>	4 <i>F</i>	8 <i>C</i>	8 <i>D</i>	8 <i>E</i>	1 <i>A</i>	2 <i>B</i>	12 <i>C</i>
p=7	3 <i>B</i>	6 <i>B</i>	6 <i>C</i>	12A	12 <i>B</i>	6D	8 <i>B</i>	4F	8 <i>C</i>	8D	8 <i>E</i>	5 <i>A</i>	10 <i>A</i>	12 <i>C</i>
X1	1 1	1 1	1 1	1 1	1 1	1 1	1 -1	1 -1	1 -1	1 1	1 1	1 2	1 2	1 0
X2 X3	2	2	2	2	2	2	2	2	2	0	0	-1	-1	-1
X3 X4	-1	-1	-1	-1	-1	-1	0	0	0	ő	0	ō	Ō	1
χ5	0	0	0	0	0	0	1	1	1	-1	-1	1	1	-2
χ6	0	0	0	0	0	0	1	1	1	-1	-1	1	1	1
χ7	0	0	0	0	0	0	1	1	1	-1	-1	1	1	1
χ8	1	1	1	1	1	1	0	0	0	0	0	-2	-2	1
χ9	2 0	2	2	2	2	2 0	-1 1	-1 1	-1 1	-1 1	-1 1	0	0 0	1 0
X10	0	0	0	0	0	0	1	1	1	1	1	0	0	0
X11 X12	-1	-1	-1	-1	-1	-1	0	0	Ō	0	Ō	1	1	0
X13	-2	-2	-2	-2	-2	-2	0	Ō	Ō	Ö	Ö	-1	-1	0
X14	1	1	1	1	1	1	-2	-2	-2	0	0	0	0	-1
X15	2	2	-2	2	2	-2	0	0	0	0	0	-2	2	0
X16	0	0	0	0	0	0	0	0	0	0	0	-1	1	0
X17	0	0	0	0	0 0	0 0	0	0	0 0	0	0 0	-1 -2	1 2	0
X18 X19	-1	-1	1	-1	-1	1	0	0	0	0	0	1	-1	0
X19 X20	-1	-1	1	-1	-1	1	0	Ö	Ö	ő	0	1	-1	ő
X21	2	2	-2	2	2	-2	0	0	0	0	0	1	-1	0
χ22	2	2	-2	2	2	-2	0	0	0	0	0	1	-1	0
X23	-2	-2	2	-2	-2	2	0	0	0	0	0	-1	1	0
X24	3 0	3	3	-1 0	-1 0	-1 0	3 1	-1 -3	-1 1	1 1	-1 -1	0	0 0	0
X25	0	0	0	0	0	0	1	-3 -3	1	1	-1 -1	0	0	0
X26 X27	Ö	Ö	0	ő	0	0	2	2	-2	Ō	Ō	ő	ő	ő
X28	3	3	3	-1	-1	-1	-3	1	1	1	-1	0	0	0
X29	3	3	3	-1	-1	-1	-3	1	1	-1	1	0	0	0
X30	3	3	3	-1	-1	-1	1	-3	1	-1	1	0	0	0
X31	-3	-3 -3	-3 -3	1 1	1	1	0 -2	0 -2	0 2	0	0	0	0	0
X32	-3 0	-3 0	-3 0	0	1 0	1 0	-2 3	-2 -1	-1	0 -1	1	0	0	0
X33 X34	0	0	0	0	0	0	-1	-1	-1 -1	1	-1	0	0	0
X35	6	6	-6	-2	-2	2	0	0	0	0	0	0	0	0
X36	-3	-3	3	1	1	-1	0	Ō	0	ō	0	0	ō	0
X37	-3	-3	3	1	1	-1	0	0	0	0	0	0	0	0
X38	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X39	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X40	12 -6	-4 2	0	0 A	0 -A	0	0	0	0	0	0	0	0	0
X41 X42	-6	2	0	-A	-A A	0	0	0	0	0	0	0	0	0
X42 X43	ő	0	Ö	0	0	ő	ő	ő	ő	ő	ő	ő	ő	ő
X44	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X45	12	-4	0	0	0	0	0	0	0	0	0	0	0	0
X46	-6	2	0	Α	-A	0	0	0	0	0	0	0	0	0
X47	-6	2	0	-A	A	0	0	0	0	0	0	0	0	0

 $A = -2\sqrt{3}i$

Examples of groups suitable for "Lifting" technique

The following p-local maximal subgroups of the largest sporadic Monster simple group \mathbb{M} and the Conway group Co_3 are suitable candidates to apply the "lifting of Fischer-Clifford matrices":

- $ightharpoonup 7^{1+4}_+:(3\times 2S_7)$
- \triangleright 2⁹⁺¹⁶· $Sp_8(2)$
- \triangleright 2⁵⁺¹⁰⁺²⁰·($S_3 \times L_5(2)$
- $\triangleright 2^{3+6+18} \cdot (L_3(2) \times 3S_6)$
- $ightharpoonup 2^{2+12}: (A_8 \times S_3)$

The Bibliography

- [1] F. Ali and J. Moori, The Fischer-Clifford matrices of a maximal subgroup of Fi₂₄, Representation Theory, 7 (2003), 300-321.
- [2] A.Basheer and J. Moori, Fischer matrices of Dempwolff group 2⁵ GL(5, 2), Int. J. Group Theory, Vol. 1 No.4 (2012), 43-63.
- [3] A. B. M. Basheer and J. Moori, On a Maximal Subgroup of the Affine General Linear Group of GL(6, 2), Advances in Group Theory and Applications, 11 (2021), 1-30.
- [4] W. Bosma and J.J. Canon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, November 1994.
- J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilson, Atlas of Finite Groups, Oxford University Press, Oxford, 1985.
- [6] U. Dempwolff, On extensions of elementary abelian groups of order 2⁵ by GL(5, 2), Rend. Sem. Mat. Univ. Padova, 48(1972), 359 364
- [7] B. Fischer, Clifford-matrices, Progr. Math. 95, Michler G.O. and Ringel C.(eds), Birkhauser, Basel (1991), 1 16.
- D. Gorenstein, Finite Groups, Harper and Row Publishers, New York, 1968.
- [9] R.J. Haggarty and J.F. Humphreys, Projective characters of finite groups, Proc. London Math. Soc. (3)36 (1975), 176 192.
- [10] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, San Diego, 1976.
- [11] G. Karpilovsky, Group Representations: Introduction to Group Representations and Characters, Vol 1 Part B, North Holland Mathematics Studies 175, Amsterdam, 1992.
- [12] G. Karpilovsky, Projective representations of finite groups, Marcel Dekker, New York and Basel, 1985.
- [13] K. Lux and H. Pahlings, Representations of Groups: A Computational Approach, Cambridge University Press, Cambridge, 2010
- [14] J. Moori, On certain groups associated with the smallest Fischer group, J. London Maths Soc, Vol 2 (1981), 61 67.
- [15] Z. Mpono, Fischer-Clifford Theory and Character Tables of Group Extensions, PhD Thesis, University of Natal, 1998
- [16] J. Moori and Z.E. Mpono, The Fischer-Clifford matrices of the group 2⁶:SP₆(2), Quaestiones Mathematicae, 22 (1999), 257-298.
- [17] H. Pahlings, The character table of 2¹⁺²² · Co₂, J. Algebra 315 (2007), no. 1,301-325
- [18] A.L. Prins, On the projective character tables of the maximal subgroups of M₁₁, M₁₂ and Aut(M₁₂), Advances in Group Theory and Applications, in press.
- [19] A.L. Prins, The character table of an involution centralizer in the Dempwolff group 2⁵ GL₅(2), Quaestiones Mathematicae 39 (2016), 561-576.
- [20] R.L. Fray, R.L. Monaledi and A.L. Prins, Fischer-Clifford matrices of a group 2⁸:(U₄(2):2) as a subgroup of O₁₀⁺(2), Afr. Mat., 27 (2016), 1295-1310.
- [21] The GAP Group, GAP --Groups, Algorithms, and Programming, Version 4.6.3; 2013. (http://www.gap-system.org).
- [22] N.S. Whitley, Fischer Matrices and Character Tables of Group Extensions, MSc Thesis, University of Natal, 1994.
- [23] R.A. Wilson, P. Walsh, J. Tripp, I. Suleiman, S. Rogers, R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray and R. Abbot, ATLAS of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas/v3/.
- [24] S. Yoshiara, The radical 2-subgroups of the sporadic simple groups J₄, Co₂ and Th, J. Algebra, 233 (2000), 309-341