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Introduction

» Let N be a normal subgroup of a finite group F. Then it is well- known that
the ordinary irreducible characters Irr(Q) of the quotient group Q = N can
be lifted to F, where the set Irr(Q) is identified with x; € Irr(F) such that
N < ker(x;).

» In this presentation, we wiII use an analogous process to ”Iift” the so-called
Fischer-Clifford matrices M(g,) of the quotient group Q = K >~ P;.G to the
corresponding Fischer-Clifford matrices M(g;) of a finite extension group
G = P.G, where K < G is a non-trivial characteristic subgroup of the
p-group P.

—

» Hence we can add the necessary rows and columns to the matrices M(g;) to
completely construct the matrices M(g;) and ordinary character table of G.



Fischer-Clifford matrices

Let G = N.G be an extension of N by G, where N < G and % =~ G. Also, let
01 = 1pn,02,- -+ ,0; be representatives of the orbits of G on Irr(N), where
H; = {x € G|6* = 6;} is the corresponding inertia group of §; € Irr(N) in G for

1 < < t. In addition, we have the inertia factor H; = % corresponding to H;.



Fischer-Clifford matrices

It follows from Gallagher [11] that

Irr(G)= Ui_ {(¥ B)C|8 € IrrProj(H;), with factor set a1y,

where ;3 is equivalent to an ordinary irreducible character x € Irr(H;) of H;
such that < xpn,0; >n# 0. Moreover 1); is a fixed projective character of H;
with factor set @; and is an extension of 0; to H;, i.e. (¢;)ny = 0;. Since @; is
constant on cosets of N in H; it can be identified as a factor set «; of the inertia
factor H; and is defined as a;(Nv, Nw)= @;(v, w) for v,w € H;.



Fischer-Clifford matrices

Let X(g) = {x1 =&, x2, -+ ,X(g)} be a set of representatives of the conjugacy
classes of G from the coset Ng, where g be a lifting of g € G under the natural
homomorphism G — G. Note that g is identified with the coset Ng.

Y1, Y2, .., ¥r to be representatives of the afl—regular conjugacy classes of
elements of H; that fuse to [g] in G. We define

R(g) ={(i,yk)|1<i<t,HN[g]#0,1<k<r},

where y, are representatives of the ai_l—regular classes of H; that fuse into the
class [g] of G.



Fischer-Clifford matrices

We define y;, € H; such that y;, ranges over all representatives of the conjugacy
classes of elements of H; which map to yx under the homomorphism H; — H;
whose kernel is N.

With notation as above,

WA= 3 ﬁ(yk)ZHCC:%wm

yi:(i.yk)ER(8) ! i




Fischer-Clifford matrices (cont)

Then the Fischer matrix M(g) = (aéiyk)> is defined as

( M) (Z‘|CG(XJ )>’

with columns indexed by X(g) and rows indexed by R(g) and where >} is the
summation over all / for which y; ~ x; in G.



Fischer-Clifford matrices (cont)

The Fischer M(g) (see Figure 1) is partitioned row-wise into blocks, where each
block corresponds to an inertia group H;. We write |Cz(x;)|, for each x; € X(g),
at the top of the columns of M(g) and at the bottom we write m; € N, where

we define mj = [Cz:Cg (XJ)]—\N“'CG &l and C; = {x € G|x(Ng) = (Ng)x}. On

the left of each row we write ’CH,-(}/k)’. where the a; -regular class [yx] fuses
into the class [g] of G.



Fischer-Clifford matrices (cont)

Figure 1: The Fischer Matrix M(g)
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Fischer-Clifford matrices (cont)

In practice we will never compute the y;, or the ordinary irreducible character
tables of the inertia subgroups H; since the ordinary irreducible characters of the
H; are in general much larger and more complicated to compute than the one for
G. Instead of using formal definition, the below arithmetical properties of M(g)
are used to compute the entries of M(g)[15].

(a) a{l g = Lforallj= {1,2,..,c(g)}.

)

()X =R
(© SO mial a = b SSEL N,

j (AN 1) (1"55) TCh, (vie)]

(4) S (i1 Ri8) Zhipe) Ty | 0] = 83 |G
If N is elementary abelian, then we obtain the following additional properties of

Mie): Co(e)]
1 o g
() i) = 1G0T

(8) |a.(1",w<)| 2 |aj("'7}/k)|'
(h) af(,.yk) = a(ll.,yk)(mod p), if [IN| = p", for p a prime and n € N




Fischer-Clifford matrices (cont)

The partial character table of G on the classes {xi, x2, - - - ,xc(g)} is given by

Ci(g) Mi(g)
Ca(g) Ma(g)

Ci(g) Me(g)

where the Fischer matrix M(g) (see Figure 1) is divided into blocks M;(g) with
each block corresponding to an inertia group H; and C;(g) is the partial
character table of H; with factor set ai_l consisting of the columns
corresponding to the ai_l—regular classes that fuse into [g] in G. We obtain the
characters of G by multiplying the relevant columns of the projective characters
of H; with factor set ozfl by the rows of M(g). We can also observe that

t

IIrr(G)| = Z TrrProj(H;, a; b))
i=1



On the conjugacy classes of G, @ and G

Let G = P.G be a finite extension with P< G a p-group. If K< G is a non-trivial
charagteristic subgroup of P then we have the structures G =K.Q and

Q= % >~ P;.G where P; = £ The commutative diagram, depicted as Figure 2,
is associated with the structures G and Q, where 71, 72 and 7 = 12 o 11 are the

natural homomorphisms from G onto @, Q onto G and G onto G, respectively.

1.7
\ lﬁz
G

Figure 2



On the conjugacy classes of G, @ and G

Let's consider @ = € = P1.G, then G is identified with & under the map 7.
Moreover, under the map 7, the pre-image of a conjugacy class [P1g] in P% is a
union U,CS’?[E] of say c/(E) conjugacy classes [q;] in @. Note that each coset
P1g can be identified with a g € G such that G is a lifting for g.

Therefore, corresponding to a representative P1q € [P1q] (or a class
representative g € G) there is a set

of representatives of conjugacy classes [q;] of Q.



On the conjugacy classes of G, @ and G

Similarly, a pre image of a class [q;] of @, with g; € X( ), under the 1e map 71 will
be a union U )[g, ] of c(q,) classes [g; ] of G. Note that a g; € X( ) is

identified with a coset Kgj € 7 =~ Q where g; is a lifting for gj in G. Hence a set
X(qi) = {&i, =80, 8iy 1 8i g }

of representatives of conjugacy classes [Ej] is obtained from the coset Kg; ( or

equivalently a class representative g; € @). Since 1 = 1, o 11 (see Figure 2), it
follows that the pre-image for g € G under the map 7 is a set

c(g)
— L_Jl X(qi) = X(a)Ux@)U...UX(%)

:{517527"'7ﬁc(ﬁ)7§17§27"'7g—2c(q “'7gc/(—g\)1) Jg\.)Z?"’?gC/(E) 7}




On the relationship between the Fischer-Clifford matrices of G
and Q

Since Q is a factor group of G, the set Irr(Q) can be lifted to G and the lifts are
equivalent to characters y; € Irr(G) such that K < Ker(x;). Moreover, the
characters 6; € Irr(P) of P such that K < Ker(6;) are the lifts of 6; € Irr(P1) to
P. Hence the action of G on the lifts of Irr(P1) to P is identical as the action of
G on Irr(Py), i.e. the number and lengths of the orbits of G on the lifts of
lrr(P1) and Irr(P1) and their corresponding inertia factor groups H; coincide.
Suppose that G has s orbits on Irr(P;) with corresponding inertia factors H;,
i=1,2,...,s. Then the blocks M;(g), iil\,Q, ..., s, of the matrix M(g) of G

in Figure 3 will correspond to the matrix M(g) of Q.



On the relationship between the Fischer-Clifford matrices of G
and Q

The columns of M(g) are indexed by the set X(g). The columns (for the s
Mi(g) blocks) of M(g) which correspond to the centralizers Cz(gj,) of class

—

representatives g;, € X(g), i =1,2,..., c/(g\) (see Figure 3) will just be the c(g)
columns of the matrix M(g). Note that the elements g;, are the lifts of

—

g; € X(g) to G. Whereas the other columns of M(g) (for the s M;(g) blocks)
corresponding to the class representatives gj, € X(g), j=2,...,¢c(qi) , are
duplicates of the columns of M(g) associated with the class representatives

g, €X(g)i=12,...,c(g) since the gi,'s come from the coset Kgj . Note if
x € Irr(G) is a lift for ¥ € Irr(@) to G, then x(&i;) = X(Kgi) where Kgj is

—

identified with g; € X(g). For example, in Figure 3, the columns corresponding
to the class representatives g1, € X(q1) € X(g), j =2,3,...,¢c(q1) are the

: L _ _ L
duplicates of the column which is indexed by g1, € X(q1), that is, a(ll.l’yk) = a(,.f;kl;

for 1 <i<s, 1<k <r, since the c(q1) elements g1, come from the coset Kgi.



On the relationship between the Fischer-Clifford matrices of G
and Q

X(a) X(@) X(a)
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Figure 3: M(g) of G



On the relationship between the Fischer-Clifford matrices of G
and Q

Furthermore, suppose G has t orbits on Irr(P) where s of the t orbits contain
the lifts of Irr(P1) and the rest of the characters of Irr(P) are in t — s = b orbits
with corresponding Hsy1, Hs12, ..., Hstp=t inertia factor groups. The total
number of ai_l—regular classes [yx] of the b inertia factors Hsi1, Hs12, ..., Hstp,
that fuse into a class [g] of G will be equal to

d=c(g)— c/(g\r) =c(q1) +c(q2) + -+ c(q R )) c/(g\r) Therefore, to the s

blocks of M(g) containing c(g) columns (as described above) and c/(g\) rows, we
will add d more rows which will be contained in a further b blocks corresponding

to the inertia factors Hst1, Hsy2, ..., Hstp. The d rows will have the form,
— (&) e(=—
all al (a1) 21 24@) c(g) C(qC(g))
(5+i7yk) (5+I,yk) (5+’ayk) (5+i7.)/k) U (S+i7.}/k) e (s+i7yk)

where i =1,2,...,band 1 < k <.



On the relationship between the Fischer-Clifford matrices of G
and Q

Row and orthogonality relations for Fischer-Clifford matrices (see for example [1]

or [16]) will be used to obtain the entries aé’

——

;Yk)' u=1,2....c(g), in the the
blocks Mi(g), i=s+1,5s+2,...,s+ b=t, of the matrix M(g) of G. The
final shape of a M(g) of G is depicted in Figure 3. Note that M(g) is a
(c(g) + d) x (c(g) + d) matrix, which was obtained by adding d columns of

—_— —

sizes c(g) x 1 and d rows of sizes 1 x c(g) to the c(g) x c(g) matrix M(g) of
Q. Hence we can formulate Theorem 0.1 below.

Theorem 0.1

For a class representative g € G, the Fischer-Clifford matrix ﬁ(g\) of the
quotient group Q is embedded (or contained) in the corresponding
Fischer-Clifford matrix M(g) of G.




On the relationship between the Fischer-Clifford matrices of G
and Q

—

In a sense, we can say that the matrix M(g) is a lift for M(g) to G. If there is
no class fusion from the inertia factors Hsy1, ..., Hs1p into [g] then

M(g) = ﬁ(;) except possibly for changes in the class orders of 8, € X(g).
Having constructed the Fischer-Clifford matrices M(g;) of G from those matrices

—

M(g;) of Q together with the fusion maps of the inertia factor groups
Hi,...,Hs,Hsi1,...,Hsyp into Hy = G and the sets IrrProj(H,-,ai_l),

i=1,2,...,s,s+1,5+2,...,s+ b=t, the set Irr(G) can be fully assembled.



Example: N7,(P) = 247 Ag of a radical subgroup P = 24" in

Th

>

>

Let we consider a group of structure G = 2*T> Ag which is the normalizer
N7,(24F2) of a radical 2-subgroup 2**° in the sporadic simple Thompson
group Th (see [24]).

G sits maximally in the 2nd largest maximal subgroup D = 2% GLs(2) [6] of

Th, called the Dempwolff group.

P = 2*+5 is a special 2-group of order 512, where the center Z(P) =2*< G
since Z(P) is a characteristic subgroup of P.
G

» Hence we can construct Q = Z(P) =~ 25 Ag. where we let P; = 2°

» The groups G and Q will be used to illustrate the "lifting of Fischer-Clifford

matrices” technique.



Example: Actions of G and Q on Irr(P) and Irr(P;)

» G has five orbits on Irr(P) with lengths 1, 1, 15, 15, and 120 with
corresponding inertia factors Hy=Ho=Ag, H3=Hy= 23:GL3(2) and
Hs=23:(7:3).

» Orbits of Irr(P) having lengths 1, 1, 15 and 15 contain the lifts of the
characters y; €lrr(2°) to P.

» Therefore, @ has four orbits of lengths 1, 1, 15, 15 on Irr(25) where the
corresponding inertia factors coincide with Hy=H>=Ag and H3=H,=
23:GL3(2).



Example: The Classes and Fischer-Clifford matrices of G and @

We will proceed to compute the Fischer-Clifford matrices M(g;) of G by adding

an appropriate number of rows and columns to the matrices M(g;) of @
according to the number of classes [yx] of Hs fusing into a class [g] of As.

P> Let consider the natural epimorphisms 772:6 — G, 7]1:6 - Q,
n=mon:G— G (see Figure 2) for G = 24> Ag and @ = 2% Ag
> ker(m) = Z(P) = 2* = K, ker(nz) = 2° = P; and ker(n) = 24> = P.

» The sets )@ X(gi) and X(g) = Uc(g)X(q,-) with pre-images under 12, m1
and 7, respectively



Example: The Classes and Fischer-Clifford matrices of G and @

As an example, let's consider the class 3B of G in Table 2 and we follow
notation as discussed earlier.

—

> Under 7, the set X(g) = {q1 € 3B,q2 € 6A,q3 € 68,73 € 6C}
of class representatives q; € @ is obtained from a coset P;1q, where g € 3B
is identified with P;g and we let g1 = q.

> The sets X(q1) = {g11 € 3B,81, € 6B}, X(q2) = {g21 € 6C},
X(q3) = {g31 € 12A, 83, € 12B} and X(qz) = {ga; € 6D} of pre-images of

L —

G;i € X(g) under 7 are obtained.

» Since n = np o7y it follows that the pre-images of a class representative
g € 3B in G under 7 is the set

X(g) = U,ig1):4 X(@) = {g117g127g21)g317g32ag41}-



Example: The Classes and Fischer-Clifford matrices of G and @

—

The Fischer-Clifford matrix M(3B) which is associated with the class 3B of G is
depicted as Figure 4. The columns are indexed by the orders |C5(¢)| of the

—

centralizers of class representatives g; € X(g), g € 3B, and the rows are indexed
by the orders of the centralizers |Cpy,(y1)|of class representatives yy, k = 1, of
the inertia factors H;, i = 1,2, 3,4, which fuse into the class 3B of G.

[Chy (1 € 3B)] 1 1 1 1
_— |Ch, (y1 € 3B)| 1 -1 1 -1

M(3B) = 2
GEY= " G € 34)] 3 3 1 1
[Chy (1 € 34)] 3 3 -1 1

—

Figure 4: M(3B) of @



Example: The Classes and Fischer-Clifford matrices of G and @

Now, the matrix M(3B) will be constructed from M/(3§) following the " lifting
technique” discussed above.

» The set X(g) = Uigl):‘l X(G;) contains the pre-images of g; € )7(;) under
n1 and will index the columns for M(3B).

> Since X(q7) = x(gi;). for gi; € X(@i), X € Irr(Q) and x € Irr(G), the
columns for M(3B) corresponding to the blocks M;(3B), i =1,2,3,4 (see
Figure 5), will just be duplicates of the columns of the m:iriil\/l/(Z%\B).

» For example, the first column of I\/I/(L’E) labelled by g1 € X(g) will be
duplicated for the columns of M(3B) which are labelled by the pre-images
g11, 81, of g1 under n;.

» Since both of/tPEeIements G2 and gz have only one pre-image under 71, the
columns of M(3B) labelled by |C5(q2)| and |C5(qa)| will only be repeated
once for M(3B), that is, the columns labelled by |Cz(g2;)| and |Cz(ga1)|-

X(q1) X(@2) X(a3) X(qs)

|CeEm)| 1Gs(Em)l 1G5@21)| 1Gs(831)] 1C5(32)| | Co(Ea)
|Chy (1 € 3B 1 1
|Chy(y1 € 3B

(
(
[Chy(y1 € 3A
(v
(
(

M(3B)= [Ch, (v1 € 3A

‘CH5 y1 € 3A
|Chg (v2 € 3B)|

) 1 1
) 1 -1
) -1 -1
) 1 1
) d f
) i I

ST W wR R

1
1
3
3
a
g

-0 b w A
L
~ o L oL e

Figure 5: M(3B) of G



Example: The Classes and Fischer-Clifford matrices of G and @

» Furthermore, two classes 3A and 3B of the inertia factor Hy fuse into the
class 3B of G (see Table 1) and hence two more rows (rows 5 and 6 in
Figure 5) will be added to complete the matrix M(3B).

» The entries of rows five and six of M(3B) are obtained by using the column
and row orthogonality relations of Fischer-Clifford matrices and the desired
matrix M(3B) is found in Table 3.

> Note that the entries of the blocks M;(3B) of M(3B) corresponding to the
inertia factors H;, i = 1,2, 3,4, are completely determined by the matrix

M(3B).
» Similarly, all other Fischer-Clifford matrices of G were computed and are
listed in Table 3.



Example: The fusion maps of H3 and Hs into Ag

Table 1: The fusion maps of H; and Hs into Ag

[h]23:GL3(2) - [8]ag [h]23:GL3(2) - lelag
1A 1A 4B 4A
2A 2A 4C 4B
2B 2A 6A 6B
2C 2B TA 7B
3A 3B B TA
4A 4A

(3.7 — [g]ag thly3. 7.3 — lglag
1A 1A 6A 6B
2A 2A 68 6B
3A 3B 7A B
3B 3B 7B 7A




The classes of Q and G

Table 2: The conjugacy classes of @ and G

lele | & f ldg [ 1@l | = Dby || Mg [ 1M1 | = Das gy
1A 32 =1 1A 645120 1A 1A 10321920 1A
2A 688128 2A
fp =1 2A 645120 2B 2B 645120 2A
f3 =15 2B 43008 2C 2C 43008 2A
fp =15 2C 43008 2B 4A 43008 4A
2A 16 =2 2D 1536 2B 4B 3072 4A
2D 3072 2A
f =6 2E 512 2D 4C 512 4B
f3 =8 4A 384 4G 8A 384 8B
2B 8 =2 4B 384 4E 4D 384 4B
fp =6 4C 128 4D 4E 128 4B
3A 2 =1 6A 360 6/ 6A 360 6B
frp =1 3A 360 3C 3A 360 3B
3B 8 =1 3B 144 3B 3B 576 3A
6B 192 6A
b =1 68 144 6K 6C 144 6A
3 =3 6C 48 6L 12A 96 12A
128 96 12A
fa =3 6D 48 6K 6D 48 6A
4A 8 =2 4D 64 4E 4F 64 4A
fp =2 4E 64 4G 8B 64 8A
f3 =4 4F 32 4H 8C 32 8A
4B 4 =2 8A 16 8G 8D 16 8B
fp =2 8B 16 8F 8E 16 8B
5A 2 =1 5A 30 5C 5A 30 5A
fp=1 10A 30 10H 10A 30 10A
6A 2 fi =2 12A 12 121 12C 12 12C
68 4 =1 6E 24 6K 12D 48 12C
6E 48 6C
frp=1 6F 24 6K 12E 48 12C
6F 48 6C
=1 12B 24 12P 24A 24 24A
fa =1 12C 24 12P 24B 24 24A
7A 4 =1 7A 28 7B 7A 56 7A
14A 56 14A
fp=1 14A 28 14C 28A 28 28A
=1 14B 28 14C 14B 28 14A
fa =1 14C 28 14D 14C 28 14A
7B 4 =1 7B 28 7B 7B 56 7A
14D 56 14D
fp=1 14D 28 14C 14E 28 14A
;=1 14E 28 14D 14F 28 14A
fa=1 14F 28 14C 288 28 28A
15A 2 =1 15A 30 15E 15A 30 15A
fh=1 30A 30 30J 30A 30 30A
158 2 =1 158 30 15E 158 30 158
=1 30B 30 30J 308 30 308




The Fischer-Clifford Matrices of and @ and G

Table 3: The Fischer-Clifford Matrices of @ and G
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The Character Table of and Q and G

Table 4: The character tables of Q and G

lelag 1A 2A 2B 3A
[y A 2A 2B 2C | 2D 2E  4A | 4B 4C | 6A 3A
Bl A 2A 2B 2C 4A | 4B 2D 4C B8A | 4D 4E | 6A 3A
p=2 1A A TA 1A 2A | 2A 1A 2A 4A | 2B 2C | 3A 3A
p=3 1A 2A 2B 2C 4A | 4B 2D 4C 8A | 4D 4E | 2B 1A
p=5 1A 2A 2B 2C 4A | 4B 2D 4C 8A | 4D 4E | 6A 3A

—7 1A 2A 2B 2C 4A | 4B 2D 4C 8A | 4D 4E | 6A 3A

X1 1 1 1 1 1 1 1 1 1 1 1 1 1

X2 7 7 7 7 7 1 R . | 3 3 4 4

X3 14 14 14 14 14 6 6 6 6 2 2| 1

Xa 20 20 20 20 20 4 4 4 4 4 4 5 5

X5 21 21 21 21 21 3 3 3 3 1 1 6 6

X6 21 21 21 21 21 3 3 3 3 1 1| 3 =3

X7 21 21 21 21 21 3 3 3 3 1 1] -3 =3

X8 28 28 28 28 28 4 4 4 4 4 4 1 1

X9 35 35 3 35 35 3 3 3 3] 5 5 5 5
X10 45 45 45 45 45 3 3 3 3| 3 3 0 0
X11 45 45 45 45 45 3 3 3 3| 3 3 0 0
X12 56 56 56 56 56 8 8 8 8 0 o 4 4
X13 64 64 64 64 64 0 0 0 0 0 0 4 4
X14 70 70 70 70 70 2 2 2 2 2 2| 5 5
X15 B 8 3 3 B 0 0 0 0 0 0 R
X16 24 24 24 24 24 0 0 0 0 0 0 6 -6
X17 24 24 24 24 24 0 0 0 0 0 0 6 -6
X18 48 48 48 48 48 0 0 0 0 0 o| -6 6
X190 56 56 56 -56 56 0 0 0 0 0 0 4 4
X20 56 56 56 -56 56 0 0 0 0 0 0 4 4
Xo1 56 56 56 -56 56 0 0 0 0 0 0| -2 2
X22 56 56 56  -56 56 0 0 0 0 0 0| -2 2
X23 64 64 64 -64 64 0 0 0 0 0 0| -4 4
X24 5 5 5 5] 1 7 7 1 1 3 1 0 0
X25 45 45 45 3 3 3 3 5 3| -3 1 0 0
X26 45 45 45 3 3 3 3 5 3| -3 1 0 0
Xa7 90 90 90 -6 6 | 18 18 2 -6 6 -2 0 0
X28 105 105 105 -7 7 7 7 1 1 9 3 0 0
X29 105 105 105 -7 7 1 1 9 7| -3 1 0 0
X30 105 105 105 -7 7| 1w o1r 7 1 3 1 0 0
X3t 120 120 120 -8 -8 8 8 s -8 0 0 0 0
X32 210 210 210 -14 -14 | 10 10 -6 2 6 -2 0 0
X33 315 315 315 -21 21 | -21  -21 3 3 3 -1 0 0
X34 315 315 315 21 -21 3 3 5 3| -9 3 0 0
X35 120 120 -120 B 3 0 0 0 0 0 0 0 0
X36 120 120 -120 8 -8 0 0 0 0 0 0 0 0
X37 120 120 -120 8 -8 0 0 0 0 0 0 0 0
X38 360 360 -360 24 24 0 0 0 0 0 0 0 0
X39 360 360 -360 24  -24 0 0 0 0 0 0 0 0
X40 240 16 0 0 0 B K] 0 0 0 0 0 0
Xa1 240 -16 0 0 0 8 -8 0 0 0 0 0 0
X42 240 -16 0 0 0 8 -8 0 0 0 0 0 0
X43 720 -48 0 0 0| 24 24 0 0 0 0 0 0
Xaa 720 -48 0 0 0| 24 24 0 0 0 0 0 0
X45 1680  -112 0 0 0 -8 8 0 0 0 0 0 0
X46 1680  -112 0 0 0 -8 8 0 0 0 0 0 0
Xa7 1680  -112 0 0 0 -8 8 0 0 0 0 0 0
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12C

5A
10A
10A

5A
5A

7B
8B
8E

8A
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aF
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7A
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iF

7D
8B

6D

Table 4 (continued)
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The Character Table of G

3i

A=-2

Z

-3
-3
12
-6
12
-6

X28
X29
X30
X31
X32
X33
X34
X35
X36
X37
X38
X39
X40
Xa1
X42
X43
X44
X45
X46
X471




Examples of groups suitable for " Lifting” technique

The following p-local maximal subgroups of the largest sporadic Monster simple
group M and the Conway group Cos are suitable candidates to apply the "lifting
of Fischer-Clifford matrices":

> 714 (3 x 257)

> 29+16-Sp8(2)

> 25+10+204(53 % L5(2)
[ 23+6+18-(L3(2) % 356)
> 22H12:(Ag x S5)
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