On modular quasi-metric spaces

Tlotlo Phawe
Department of Mathematics and Applied Mathematics,
North West University
tlotlo.odacious@gmail.com

SAMS Congress, Stellenbosch University, 08 December 2022

Overview

- 1 Introduction
- 2 Modular quasi-metric spaces
- 3 Normality on modular quasi-metric spaces
- 4 References
- 5 Conclusion

Introduction

The concept of modular metric spaces was introduced by V.V. Chistyakov [2] in 2010. The author presented a complete description of generators of Lipschitz continous, bounded and some other classes of superposition operators. Several extensions to his findings then followed. One such study is by Abdou [1] where he investigated 1-local retracts in modular metric spaces with focus on the existence of common fixed points of modular nonexpansive mappings. In his PhD thesis, Sebogodi [4] also extended the results of modular metric spaces to the asymmetric setting where he introduced the concept of Isbell convexity in modular quasi-metric spaces and presented some fixed point theorems.

Modular quasi-metric spaces

In this section, we define concepts in modular quasi-metric spaces.

Definition

Let X be a set. A function $w:(0,\infty)\times X\times X\to [0,\infty]$ is said to be a modular quasi-pseudometric on X if the following conditions are satisfied:

- (i) $w(\lambda, x, x) = 0$ whenever $x \in X$ and $\lambda \in (0, \infty)$,
- (ii) $w(\lambda + \mu, x, y) \le w(\lambda, x, z) + w(\mu, z, y)$ whenever $x, y, z \in X$ and $\lambda, \mu \in (0, \infty)$.

Example

Let
$$X = \mathbb{R}$$
. Define $w : (0, \infty) \times \mathbb{R} \times \mathbb{R} \to [0, \infty]$ by

$$w(\lambda, x, y) = \begin{cases} \infty, & \text{if } x > y \\ 0, & \text{otherwise} \end{cases}$$

whenever $\lambda > 0$. Then w is a modular quasi-metric on \mathbb{R} .

For a modular quasi-pseudometric w on a set X, the function $w^t(\lambda, x, y): (0, \infty) \times X \times X \to [0, \infty]$ defined by

$$w^{t}(\lambda, x, y) = w(\lambda, y, x) \ \forall x, y \in X \ \text{and} \ \lambda \in (0, \infty)$$

is also a modular quasi-pseudometric on X, called the transpose modular quasi-pseudometric of w.

Moreover, it should also be noted that for any modular quasi-pseudometric w on X, the function

$$w^{s}(\lambda, x, y) = \max\{w(\lambda, x, y), w^{t}(\lambda, y, x)\}$$

for all $x, y \in X$ and $\lambda \in (0, \infty)$ is a modular pseudometric on X in the sense of Chistyakov.

For any modular quasi-pseudometric w on a set X, if $w = w^t$, then w is a modular pseudometric on X.

On a set X endowed with a modular quasi-pseudometric w, we have

$$w(\lambda, x, y) \le w^{s}(\lambda, x, y) \tag{1}$$

$$w^t(\lambda, x, y) \le w^s(\lambda, x, y)$$
 (2)

whenever $\lambda > 0$ and $x, y \in X$.

$$X_w(x) = \left\{ y \in X : \lim_{\lambda \to \infty} w(\lambda, x, y) = 0 = \lim_{\lambda \to \infty} w^t(\lambda, x, y) \right\}.$$

The set $X_w(x)$ is called a w-modular set. Let us consider an element $x_0 \in X$. The set

$$X_w^*(x_0) = \left\{ x_0 \in X : w(\lambda, x, x_0) < \infty \quad \text{and} \quad w(\lambda, x_0, x) < \infty \right\}$$

for some $\lambda > 0$.

The set $X_w^*(x_0)$ is also referred to as a w-modular set (around x_0) and x_0 is called the center of X_w^* . Moreover, the function q_w defined by

$$q_w(x,y) = \inf\{\lambda > 0 : w(\lambda, x, y) \le \lambda\}$$

for all $x, y \in X_w$, is a quasi-pseudometric on X_w , whenever w is modular quasi-pseudometric on X.

Note that

$$q_{w^t}(x, y) = q_w(y, x) = (q_w)^t(x, y)$$

for all $x, y \in X_w$.

$$B_{\lambda,\mu}^{w}(x) = \left\{ z \in X_{w} : w(\lambda, x, z) < \mu \right\}$$

and

$$C_{\lambda,\mu}^{w}(x) = \{z \in X_{w} : w(\lambda,x,z) \leq \mu\}.$$

The set $B_{\lambda,\mu}^{w}(x)$ is called a w <-entourage about x relative to λ and μ , and the set $C_{\lambda,\mu}^{w}(x)$ is called a $w \leq$ -entourage about xrelative to λ and μ .

Remark

Let w be a modular quasi-pseudometric on a set X. Then

$$B_{\lambda,\mu}^{w^s}(x) \subseteq B_{\lambda,\mu}^w(x)$$

and

$$C_{\lambda,\mu}^{w^s}(x)\subseteq C_{\lambda,\mu}^w(x)$$

whenever $x, y \in X_w$ and $\lambda, \mu > 0$.

Let w be a modular quasi-pseudometric on a set X. Given $x, y \in X$,

(i) w is said to be continuous from the right on $(0, \infty)$ if for any $\lambda > 0$ we have

$$w(\lambda, x, y) = w_{+0}(\lambda, x, y).$$

(ii) w is said to be continuous from the left on $(0, \infty)$ if for any $\lambda > 0$ we have

$$w(\lambda, x, y) = w_{-0}(\lambda, x, y).$$

(iii) w is said to be continuous on $(0,\infty)$ if w is continuous from the right and continuous from the left on $(0,\infty)$.

References

Remark

If w is continuous from the right on $(0,\infty)$, then for any $x,y\in X_w$ and $\lambda > 0$ we have that $q_w(x, y) \leq \lambda$ if and only if $w(\lambda, x, y) \leq \lambda$.

Normality on modular quasi-metric spaces

Definition

Let w be a modular quasi-pseudometric on X. A nonempty subset A of X_w is said to be w-bounded if there exists $x \in X_w$ such that $A \subseteq C_{\lambda,\lambda}^w(x) \cap C_{u,\mu}^{w^t}(x)$ for some $\lambda, \mu > 0$.

Remark

Let w be a modular quasi-pseudometric on a set X, then boundedness on (X_w, q_w) implies w-boundedness. This observation follows from the fact that $C_{q_w}(x, \lambda) \subseteq C_{\lambda, \lambda}^w(x)$ and $C_{(q_w)^t}(x, \lambda) \subseteq C_{\lambda, \lambda}^{w^t}(x)$ whenever $\lambda > 0$ and $x \in X_w$.

Definition

Let A be a w-bounded subset of X_w . The diameter of A, denoted by diam $_w(A)$, is defined by

$$diam_w(A) = \sup\{w(\lambda, x, y) : x, y \in A\}$$

for some $\lambda > 0$.

Lemma

Let w be a modular quasi-pseudometric on X and A be a subset of X_w . Then $diam_w(A) \leq diam_{q_w}(A)$.

Lemma

Let w be a modular quasi-pseudometric on X. If A is a w-bounded subset of X_w , then $diam_w(A) < \infty$.

Lemma

Let w be a modular quasi-pseudometric on X. If w is continuous from the right on $(0,\infty)$, then boundedness on (X_w,q_w) is equivalent to w-boundedness.

For a w-bounded subset $A \subset X_w$, we set

$$cov(A)_w = \bigcap \left\{ C_{\lambda,\lambda}^w(x) : A \subseteq C_{\lambda,\lambda}^w(x), x \in X_w, \lambda > 0 \right\}$$
 (3)

and

$$cov(A)_{w^t} = \bigcap \left\{ C_{\mu,\mu}^{w^t}(x) : A \subset C_{\mu,\mu}^{w^t}(x), x \in X_w, \mu > 0 \right\}$$
 (4)

Furthermore, we define the w - bicover of A by

$$bicov_w(A) = cov(A)_w \cap cov(A)_{w^t}$$
.

Let w be a modular quasi-pseudometric on X. A nonempty and w-bounded subset A of X_w is called w-admissible if

Remark

 $A = bicov_w(A)$.

Note that a w-admissible subset of X_w can be written as the intersection of a family of the form $C_{\lambda,\lambda}^w(x) \cap C_{\mu,\mu}^{w^t}(x)$, where $x \in X_w$ and $\lambda, \mu > 0$.

It should be observed that the collection of all w-admissible subsets of X_w will be denoted by $A_w(X_w)$.

Let w be a modular quasi-pseudometric on X which is continuous from the right on $(0,\infty)$. Then

$$C_{q_w}(x,\lambda) = C_{\lambda,\lambda}^w(x)$$

and

$$C_{(q_w)^t}(x,\lambda) = C_{\lambda,\lambda}^{w^t}(x)$$

whenever $\lambda > 0$ and $x \in X_w$.

Corollary

Let w be a modular quasi-pseudometric on X which is continuous from the right on $(0,\infty)$ and $A\subseteq X_w$. Then A is w-admissible if and only if A is q_w -admissible.

Definition

Let w be a modular quasi-metric on X. We say that:

- (i) The collection $A_w(X_w)$ is compact if every descending chain of nonempty subsets of $A_w(X_w)$ has a nonempty intersection.
- (ii) The collection $A_w(X_w)$ is normal (or has a normal structure) if for any $A \in A_w(X_w)$ with A having more than one point, there exists $\lambda > 0, \mu > 0$ such that $\lambda < diam_w(A)$ and $\mu < diam_w(A)$ and for $a \in A$ with $A \subseteq C_{\lambda,\lambda}^w(a) \cap C_{\mu,\mu}^{w^t}(a)$.

Lemma

Let w be a modular quasi-metric on X. Then

- (i) If $A_w(X_w)$ is compact, then $A_{q_w}(X_w)$ is compact.
- (ii) If $A_w(X_w)$ is normal, then $A_{q_w}(X_w)$ is normal.

Theorem

Let w be a modular quasi-metric on X. If X_w is q_w -bounded and $T: X_w \to X_w$ is a w-nonexpansive map, then T has at least one fixed point whenever $A_w(X_w)$ is compact and normal.

- A.A.N. Abdou, M.A. Khamsi, On the fixed points of nonexpansive mappings in modular metric spaces, Fixed Point Theory and Applications, Vol. 229, 2013.
- V.V. Chistyakov, Modular metric spaces, I: Basic concepts, Nonlinear Anal. 72 (2010) 1 - 14.
- J. Musielak, W. Orlicz, On modular spaces, Studia Math. 18 (1959) 49 - 56.
- K. Sebogodi, Some topological aspects of modular quasi-metric spaces, Ph.D thesis, University of the Witwatersrand, 2019.

Kea leboga.

Thank you.

Dankie.

