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Introduction

The concept of modular metric spaces was introduced by V.V
Chistyakov [2] in 2010. The author presented a complete
description of generators of Lipschitz continous, bounded and some
other classes of superposition operators. Several extensions to his
findings then followed. One such study is by Abdou [1] where he
investigated 1-local retracts in modular metric spaces with focus
on the existence of common fixed points of modular nonexpansive
mappings. In his PhD thesis, Sebogodi [4] also extended the
results of modular metric spaces to the asymmetric setting where
he introduced the concept of Isbell convexity in modular
quasi-metric spaces and presented some fixed point theorems.
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Modular quasi-metric spaces

In this section, we define concepts in modular quasi-metric spaces.

Definition

Let X be a set. A function w : (0,∞)× X × X → [0,∞] is said to
be a modular quasi-pseudometric on X if the following conditions
are satisfied:

(i) w(λ, x , x) = 0 whenever x ∈ X and λ ∈ (0,∞),

(ii) w(λ+ µ, x , y) ≤ w(λ, x , z) + w(µ, z , y) whenever x , y , z ∈ X
and λ, µ ∈ (0,∞).
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Example

Let X = R. Define w : (0,∞)× R× R → [0,∞] by

w(λ, x , y) =

{
∞, if x > y
0, otherwise

whenever λ > 0. Then w is a modular quasi-metric on R.
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For a modular quasi-pseudometric w on a set X , the function
w t(λ, x , y) : (0,∞)× X × X → [0,∞] defined by

w t(λ, x , y) = w(λ, y , x) ∀x , y ∈ X and λ ∈ (0,∞)

is also a modular quasi-pseudometric on X , called the transpose
modular quasi-pseudometric of w .
Moreover, it should also be noted that for any modular
quasi-pseudometric w on X , the function

w s(λ, x , y) = max
{
w(λ, x , y),w t(λ, y , x)

}
for all x , y ∈ X and λ ∈ (0,∞) is a modular pseudometric on X in
the sense of Chistyakov.
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For any modular quasi-pseudometric w on a set X , if w = w t ,
then w is a modular pseudometric on X .
On a set X endowed with a modular quasi-pseudometric w , we
have

w(λ, x , y) ≤ w s(λ, x , y) (1)

w t(λ, x , y) ≤ w s(λ, x , y) (2)

whenever λ > 0 and x , y ∈ X .
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Furthermore, for any x ∈ X , the set Xw (x) is defined as follows:

Xw (x) =

{
y ∈ X : lim

λ→∞
w(λ, x , y) = 0 = lim

λ→∞
w t(λ, x , y)

}
.

The set Xw (x) is called a w−modular set.
Let us consider an element x0 ∈ X . The set

X ∗
w (x0) =

{
x0 ∈ X : w(λ, x , x0) < ∞ and w(λ, x0, x) < ∞

}
for some λ > 0.
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The set X ∗
w (x0) is also referred to as a w−modular set (around x0)

and x0 is called the center of X ∗
w .

Moreover, the function qw defined by

qw (x , y) = inf
{
λ > 0 : w(λ, x , y) ≤ λ

}
for all x , y ∈ Xw , is a quasi-pseudometric on Xw , whenever w is
modular quasi-pseudometric on X .
Note that

qw t (x , y) = qw (y , x) = (qw )
t(x , y)

for all x , y ∈ Xw .
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For any x ∈ Xw and λ, µ > 0, we define the sets Bw
λ,µ(x) and

Cw
λ,µ(x) by

Bw
λ,µ(x) =

{
z ∈ Xw : w(λ, x , z) < µ

}
and

Cw
λ,µ(x) =

{
z ∈ Xw : w(λ, x , z) ≤ µ

}
.

The set Bw
λ,µ(x) is called a w <-entourage about x relative to λ

and µ, and the set Cw
λ,µ(x) is called a w ≤-entourage about x

relative to λ and µ.
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Remark

Let w be a modular quasi-pseudometric on a set X . Then

Bw s

λ,µ(x) ⊆ Bw
λ,µ(x)

and
Cw s

λ,µ(x) ⊆ Cw
λ,µ(x)

whenever x , y ∈ Xw and λ, µ > 0.
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Definition (V.V. Chistyakov)

Let w be a modular quasi-pseudometric on a set X . Given
x , y ∈ X,

(i) w is said to be continuous from the right on (0,∞) if for any
λ > 0 we have

w(λ, x , y) = w+0(λ, x , y).

(ii) w is said to be continuous from the left on (0,∞) if for any
λ > 0 we have

w(λ, x , y) = w−0(λ, x , y).

(iii) w is said to be continuous on (0,∞) if w is continuous from
the right and continuous from the left on (0,∞).
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Remark

If w is continuous from the right on (0,∞), then for any x , y ∈ Xw

and λ > 0 we have that qw (x , y) ≤ λ if and only if w(λ, x , y) ≤ λ.
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Normality on modular quasi-metric spaces

Definition

Let w be a modular quasi-pseudometric on X . A nonempty subset
A of Xw is said to be w-bounded if there exists x ∈ Xw such that
A ⊆ Cw

λ,λ(x) ∩ Cw t

µ,µ(x) for some λ, µ > 0.

Remark

Let w be a modular quasi-pseudometric on a set X , then
boundedness on (Xw , qw ) implies w-boundedness. This
observation follows from the fact that Cqw (x , λ) ⊆ Cw

λ,λ(x) and

C(qw )t (x , λ) ⊆ Cw t

λ,λ(x) whenever λ > 0 and x ∈ Xw .
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Definition

Let A be a w-bounded subset of Xw . The diameter of A, denoted
by diamw (A), is defined by

diamw (A) = sup{w(λ, x , y) : x , y ∈ A}

for some λ > 0.

Lemma

Let w be a modular quasi-pseudometric on X and A be a subset of
Xw . Then diamw (A) ≤ diamqw (A).
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Lemma

Let w be a modular quasi-pseudometric on X . If A is a w-bounded
subset of Xw , then diamw (A) < ∞.

Lemma

Let w be a modular quasi-pseudometric on X . If w is continuous
from the right on (0,∞), then boundedness on (Xw , qw ) is
equivalent to w-boundedness.
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For a w -bounded subset A ⊂ Xw , we set

cov(A)w =
⋂{

Cw
λ,λ(x) : A ⊆ Cw

λ,λ(x), x ∈ Xw , λ > 0

}
(3)

and

cov(A)w t =
⋂{

Cw t

µ,µ(x) : A ⊂ Cw t

µ,µ(x), x ∈ Xw , µ > 0

}
(4)

Furthermore, we define the w − bicover of A by

bicovw (A) = cov(A)w ∩ cov(A)w t .
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Definition

Let w be a modular quasi-pseudometric on X . A nonempty and
w-bounded subset A of Xw is called w-admissible if
A = bicovw (A).

Remark

Note that a w-admissible subset of Xw can be written as the
intersection of a family of the form Cw

λ,λ(x) ∩ Cw t

µ,µ(x), where
x ∈ Xw and λ, µ > 0.

It should be observed that the collection of all w -admissible
subsets of Xw will be denoted by Aw (Xw ).
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Lemma

Let w be a modular quasi-pseudometric on X which is continuous
from the right on (0,∞). Then

Cqw (x , λ) = Cw
λ,λ(x)

and
C(qw )t (x , λ) = Cw t

λ,λ(x)

whenever λ > 0 and x ∈ Xw .
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Corollary

Let w be a modular quasi-pseudometric on X which is continuous
from the right on (0,∞) and A ⊆ Xw . Then A is w-admissibe if
and only if A is qw -admissible.
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Definition

Let w be a modular quasi-metric on X . We say that:

(i) The collection Aw (Xw ) is compact if every descending chain
of nonempty subsets of Aw (Xw ) has a nonempty intersection.

(ii) The collection Aw (Xw ) is normal (or has a normal structure)
if for any A ∈ Aw (Xw ) with A having more than one point,
there exists λ > 0, µ > 0 such that λ < diamw (A) and
µ < diamw (A) and for a ∈ A with A ⊆ Cw

λ,λ(a) ∩ Cw t

µ,µ(a).
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Lemma

Let w be a modular quasi-metric on X . Then

(i) If Aw (Xw ) is compact, then Aqw (Xw ) is compact.

(ii) If Aw (Xw ) is normal, then Aqw (Xw ) is normal.

Theorem

Let w be a modular quasi-metric on X . If Xw is qw -bounded and
T : Xw → Xw is a w-nonexpansive map, then T has at least one
fixed point whenever Aw (Xw ) is compact and normal.
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Kea leboga.

Thank you.

Dankie.

Tlotlo Phawe Department of Mathematics and Applied Mathematics, North West University tlotlo.odacious@gmail.com

On modular quasi-metric spaces


	Introduction
	Modular quasi-metric spaces
	Normality on modular quasi-metric spaces
	References
	Conclusion

