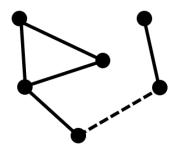
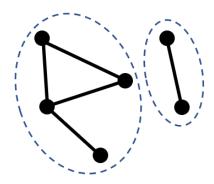
Locally connected categories SAMS congress 2022

Samantha Parle

University of Cape Town

6 December 2022





Lextensivity

Definition

Let $\mathbb C$ be a category with finite coproducts and finite limits. $\mathbb C$ is said to be *lextensive* if for every two objects A and B in $\mathbb C$, the coproduct functor

$$+: (\mathbb{C} \downarrow A) \times (\mathbb{C} \downarrow B) \rightarrow (\mathbb{C} \downarrow A + B)$$

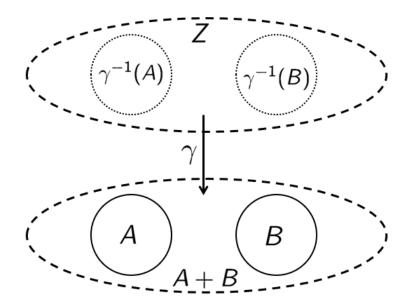
is an equivalence of categories.

Definition

Let $\mathbb C$ be a category with finite limits. $\mathbb C$ is said to be *infinitary lextensive* if, for every family of objects $(A_i)_{i\in I}$ in $\mathbb C$, the coproduct $\sum_{i\in I} A_i$ exists and the functor

$$\sum_{i\in I}: \prod_{i\in I}(\mathbb{C}\downarrow A_i)\to (\mathbb{C}\downarrow \sum_{i\in I}A_i)$$

is a category equivalence.



Connected objects

Definition

An object C in a lextensive category \mathbb{C} is said to be *connected* when any of the following equivalent definitions hold:

- **①** $C \neq 0$, and if $X \rightarrow C \leftarrow Y$ is a coproduct diagram, then either X = 0 or Y = 0.
- ② $C \neq 0$, and if $X \rightarrow C \leftarrow Y$ is a coproduct diagram, then either $X \rightarrow C$ or $Y \rightarrow C$ is an isomorphism.
- **3** Any morphism from C to a coproduct A+B factors through exactly one of the two coproduct injections $A \rightarrow A+B$ and $B \rightarrow A+B$.
- **1** The functor $\operatorname{Hom}(C,-):\mathbb{C}\to Set$ preserves binary (finite) coproducts.

Let \mathbb{A} be an arbitrary category. We define the category $\mathsf{Fam}(\mathbb{A})$ of families of objects in \mathbb{A} .

Fam(A) (finite version denoted FinFam(A))

Objects: families $(A_i)_{i \in I}$ of objects in \mathbb{A}

Morphisms: (f, α) , where $f: I \to J$ is a function and

 $\alpha = (\alpha_i : A_i \to B_{f(i)})_{i \in I}$ is a family of morphisms in \mathbb{A} .

Composition of morphisms

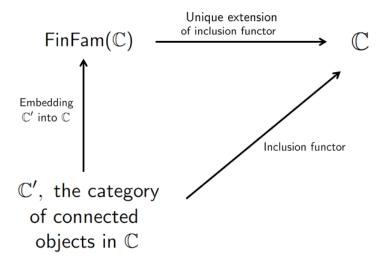
$$(A_i)_{i\in I} \xrightarrow{(f,\alpha)} (B_j)_{j\in J} \xrightarrow{(g,\beta)} (C_k)_{k\in K}$$

defined by

$$(g,\beta)(f,\alpha) = (gf,(\beta_{f(i)}\alpha_i:A_i \to C_{gf(i)})_{i\in I})$$

Considering elements of $\mathbb A$ as one-object families gives a full embedding

$$\mathbb{A} \hookrightarrow \mathsf{Fam}(\mathbb{A}).$$



Locally connected

Definition

A category $\mathbb C$ with finite limits is said to be *locally connected* if it is infinitary lextensive, and every object in $\mathbb C$ can be presented as a coproduct of connected objects.

Examples

Examples

Set, Cat, Preord

Nonexamples

Top (consider the space $X = \{1, \frac{1}{2}, \frac{1}{3}, \ldots\} \cup \{0\}$ with the subspace topology from \mathbb{R})

Theorem

Let $\mathbb C$ be a category with finite limits. Then the following conditions are equivalent:

- ℂ is locally connected;
- ② \mathbb{C} is equivalent to $Fam(\mathbb{A})$ for some \mathbb{A} , and any such equivalence induces an equivalence between \mathbb{A} and the category of connected objects in \mathbb{C} .

References

G. Janelidze, *Reflections and generalized connectedness*, notes based on seminar talks given at University of Cape Town (2006)