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Banach lattice-bundle

Let E be a topological space (total space), Ω a locally compact space
(base space), and pE : E −→ Ω a continuous, open, and surjective
mapping (bundle projection).

Banach bundle E over Ω Banach lattice-bundle E over Ω

(i) fibers Ex := p−1E (x) are Banach spaces. fibers are Banach lattices.
+ : E ×Ω E −→ E , (u, v) 7→ u +EpE (v)

v where E ×Ω E := ∪x∈ΩEx × Ex ; and

(ii)
· : K× E −→ E , (λ, v) 7→ λ.EpE (v)

v are continuous.

(iii) || · || : E −→ R+, v 7→ ||v ||EpE (v)
is upper semicontinuous (bundle norm).

(iv) — | · | : E −→ E , v 7→ |v |EpE (v)

is continuous (bundle modulus).
(v) For each x ∈ Ω and each open set W ⊆ E containing zero 0x ∈ Ex

there are ε > 0 and open set U ⊆ Ω with
{
v ∈ p−1E (U) | ||v ||EpE (v)

≤ ε
}
⊆ W .

e.g., E := Ω× Z ; Z a Banach space. E := Ω× Z ; Z a Banach lattice.

Γ0(Ω,E ) := {s : Ω −→ E |pE ◦ s = IdΩ
s continuously vanish at ”infinity”} Becomes AM m-lattice-module.
||s|| := supx∈Ω ||s(x)||Ex ; AM-module |s| : Ω −→ E ; x −→ |s(x)|Ex

If the bundle norm is continuous, then E is a continuous topological Banach lattice-bundle over Ω.
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Banach bundle
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Banach lattice-bundle
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Banach lattice-module

Let A be a commutative Banach algebra. And L a commutative Banach
lattice-algebra.

Banach module Γ over A Banach lattice-module Γ over L

(i) Γ is a Banach space Is a Banach lattice
(ii) A× Γ −→ Γ; (a, s) 7→ a · s is a module the same
(iii) ||a · s||Γ ≤ ||a||A||s||Γ; a ∈ A, s ∈ Γ the same
(iv) — |f · s|Γ ≤ |f |L · |s|Γ; f ∈ L, s ∈ Γ

e.g., Banach algebra A; Banach lattice-algebra L;
A× A −→ A; (a, b) 7→ a ⋆ b |f ⋆ g | ≤ |f | ⋆ |g |; f , g ∈ L
Γ0(Ω,E ) over C0(Ω); E Banach bundle

(v) — If |f · s|Γ = |f |L · |s|Γ; f ∈ L, s ∈ Γ;
we call it an m-Banach lattice-module
e.g., Γ0(Ω,E ) over C0(Ω);
E Banach lattice-bundle

submodules lattice-submodules; ideal-submodules
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Gelfand and Kakutani Representation theorems

Theorem (Gelfand’s [3])

Let A be a commutative C ∗-algebraa. Then, there exists a unique
(up to homeomorphism) compact spaceb K such that A −→ C (K )
is an isometric ∗-algebra isomorphism.

a
with unit

b
the character space of A.

Theorem (Kakutani’s [5])

Let L be an AM-spacea with unitb. Then, there exists a unique (up
to homeomorphism) compact spacec K such that L −→ C (K ) is
an isometric lattice isomorphism.

a||f1 ∨ f2|| = max {||f1||, ||f2||} ∀f1, f2 ∈ L+;
b
L = Lu := {f ∈ L : |f | ≤ λu, λ > 0, u ∈ L+fixed}.

c
the S̆ilov boundary of L.
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Semigroup Representations

Let G be a locally compact group, and S a closed subsemigroup of G
containing the neutral element e, i.e., a closed ’submonoid’ of G .

(Strongly Continuous) Semigroup Representations

For a Banach space X, a monoid representationa

T : S −→ L (X ); t 7→ T (t)

is called strongly continuous if the mapping

S −→ X ; t 7→ T (t)x

is continuous for each x ∈ X . And we call T = (T (t))t∈S a strongly
continuous semigroup representation on X .

a
i.e., T (t1t2) = T (t1)T (t2) ∀ t1, t2 ∈ S and T (e) = IdX .

Note: If G = R, S = R≥0, then (T (t))t≥0 is a C0-semigroup on X .
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Topological versus C ∗-algebra G -dynamical systems

Gelfand’s theorem ascertains a contravariant equivalence of categories{
φ : G

cont−→
t 7→φt

Aut(K )

}
7→

{
Tφ : G

strongly ,cont−→
t 7→Tφt

Aut(C (K ))

}
θ 7→ Vθ

between the category of topological G -dynamical systems1 and the
category of commutative G -dynamical C∗-algebras2.

For each t ∈ G ;

K1 K2

K1 K2

φt

θ

ψt

θ

⇐⇒

C (K1) C (K2)

C (K1) C (K2)

Tφt f=f ◦φt−1

f ◦θ
Vθ←−[f

Tψt g=g◦ψt−1

Vθ

1
denoted as (K , (φt)t∈G ); and (φt)t∈G is called a continuous flow on K .

2
denoted as (C(K),Tφ); the Koopman group representation on C(K).
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Topological versus AM-space G -dynamical systems

Kakutani’s theorem also ascertains a contravariant equivalence of
categories

{
φ : G

cont−→
t 7→φt

Aut(K )

}
7→

{
Tφ : G

strongly ,cont−→
t 7→Tφt

Aut(C (K ))

}
θ 7→ Vθ

between the category of topological G -dynamical systems3 and the
category of G -dynamical AM-spaces4 with units5.

3
(on compact spaces)

4||f1 ∨ f2|| = max {||f1||, ||f2||} ∀f1, f2 ∈ L+;
5
L = Lu := {f ∈ L : |f | ≤ λu, λ > 0, u ∈ L+fixed}
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Gelfand-type theorem for dynamical Banach modules

Example (from Cocycles and Skew-products)

Consider a continuous cocycle {ϕ(x) ∈ L (Z) : x ∈ Ω} associated to a
homeomorphism φ : Ω −→ Ω on a locally compact space Ω with Banach space Z , i.e.,

ϕ0(x) = IdZ for x ∈ Ω;

ϕn+m(x) = ϕn(φm(x))ϕm(x) for x ∈ Ω and n,m ∈ N; and
Ω× Z −→ Z ; (x , v) 7→ ϕ(x)v is continuous for all v ∈ Z ,

and the Koopman operator Tφ : C0(Ω) −→ C0(Ω); f 7→ f ◦ φ−1.

Then, the continuous linear skew-product

Φ : E −→ E ; (x , v) 7→ (φ(x), ϕ(x)v) where E := Ω× Z

induces a weighted Koopman operator TΦ : C0(Ω,Z) −→ C0(Ω,Z); s 7→ Φ ◦ s ◦ φ−1;

i.e., TΦ ∈ L (C0(Ω,Z)) and TΦfs = Tφf TΦs for f ∈ C0(Ω) and s ∈ C0(Ω,Z) with
(fs)(x) := f (x)s(x) for all x ∈ Ω.
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Gelfand-type theorem for dynamical Banach modules:
Motivation

The notion of a cocycle over a continuous flow is useful:

(i) in modelling non-autonomous problems, e.g., dissipative partial
differential equations, in particular, the Navier-Stokes equation;

(ii) as an abstract framework for the study of random dynamical
systems;

(iii) in the general theory of ideal fluid dynamics;

(iv) in detecting the existence of the so-called exponential dichotomy(or
hyperbolicity); and

(v) in the generalisation of the classical notion of two-parameter
evolution family.

Note: Weighted Koopman operators are also known in the literature as weighted
composition or weighted shift operators in general operator theory, as transfer
operators in dynamical systems theory, and as push-forward operators in the theory of
differentiable manifolds.
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Gelfand-type theorem for dynamical Banach modules

Theorem (H. Kreidler and S. Siewert ’s [4])

Let G be a locally compact group, S ⊆ G a closed submonoid, and
(Ω, (φt)t∈G ) a topological G-dynamical system. Then the
assignments

(E ,Φ) 7−→ (Γ0(Ω,E ), TΦ)

Θ 7−→ VΘ

define an essentially surjective, fully faithful functor from the
category of S-dynamical topological Banach bundles over
(Ω, (φt)t∈G ) to the category of S-dynamical AM-modulesa over
(C0(Ω),Tφ).

a
locally convex C0(Ω)-modules
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Gelfand-type theorem for dynamical Banach
lattice-modules

Theorem (David’s thesis, 2022)

Let G be a locally compact group, S ⊆ G a closed submonoid, and
(Ω, (φt)t∈G ) a topological G-dynamical system. Then the
assignments

(E ,Φ) 7−→ (Γ0(Ω,E ), TΦ)

Θ 7−→ VΘ

define an essentially surjective, fully faithful functor from the
category of positive S-dynamical topological Banach
lattice-bundles over (Ω, (φt)t∈G ) to the category of S-dynamical
AM m-lattice-modulesa over (C0(Ω),Tφ).

a
locally convex C0(Ω)-m-lattice-modules
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Gelfand-type theorem for dynamical Banach
lattice-modules: Positive weighted semigroup

Let T : G −→ Aut(L); t 7→ Tt be a strongly continuous group representation on a
commutative Banach lattice-algebra L, denoted as (L,T).

A positive S-dynamical Banach lattice-module over (L,T) is a pair (Γ,T )
consisting of Γ a Banach lattice-module over L and a monoid
representation

T : S −→ L (Γ); t 7→ T (t)

such that:

(i) T (t) is positive Tt-homomorphism for each t ∈ S , i.e., T (t) is
positive and T (t)fs = Tt f T (t)s for every f ∈ L, s ∈ Γ;

(ii) T is strongly continuous, i.e.,

S −→ Γ, t 7→ T (t)s

is continuous for every s ∈ Γ.

We call T = (T (t))t∈S a positive weighted semigroup representation on
Γ over (L,T) (or over T = (Tt)t∈G on L).
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Main theorem: Gelfand-type theorem for dynamical
Banach lattice-modules

Theorem (David’s thesis, 2022)

Let Γ be an AM m-lattice-module over C0(Ω). Then, any positive
weighted semigroup representation T = (T (t))t∈S on Γ over
(C0(Ω),Tφ) is (unique up to isometric isomorphy) a positive
weighted Koopman semigroup representation over (C0(Ω),Tφ).

Precisely, there exists a unique (up to isometric isomorphy) pair
(E ,Φ) of positive S-dynamical topological Banach lattice-bundle
over (Ω, (φt)t∈G ) such that:

(T (t))t∈S ∼= (TΦ(t))t∈S on Γ ∼= Γ0(Ω,E ).

Moreover, T = (T (t))t∈S is a positive-isometry if and only if
Φ = (Φt)t∈S is a positive-isometry.
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Gelfand-type theorem for dynamical Banach modules:
AM-module

Theorem (H. Kreidler and S. Siewert ’s [4])

Let Γ be a Banach module over commutative Banach algebra
C0(Ω). Then the following are equivalent:

(i) Γ is an AM-module.

(ii) ||(f1 ∨ f2)s|| = max(||f1s||, ||f2s||) for all f2, f2 ∈ C0(Ω)+ and
s ∈ Γ.

(iii) Γ is isometrically isomorphic to the Banach space Γ0(Ω,E ) of
continuous sections vanishing at ”infinity” of a (unique up to
isometric isomorphy) topological Banach bundle
pE : E −→ Ω.

Rough sketch of the proof: Let E :=
⋃̇

x∈ΩEx for each x ∈ Ω, identifying
the Banach space Ex := Γ/Jx with

Jx := lin {fs : f ∈ C0(Ω) with f (x) = 0 and s ∈ Γ} .
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Gelfand-type theorem for dynamical Banach
lattice-modules: AM m-lattice-module
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Gelfand-type theorem for dynamical Banach
lattice-modules

For each t ∈ S ;

Ω E F Ω

Ω E F Ω

φt

PE

Φt

Θ

Ψt

PF

φt

PE Θ PF

⇐⇒

Γ0(Ω,E ) Γ0(Ω,F )

Γ0(Ω,E ) Γ0(Ω,F )

TΦ(t)s=Φt◦s◦φt−1

s
VΘ7−→Θ◦s

TΨ (t)r=Ψt◦r◦φt−1

VΘ
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Banach lattice-modules: Banach lattice algebra

Banach lattice-algebra ([6])
(L, | · |, ⋆):

Is a Banach lattice (L, | · |);
a Banach algebra (L, ⋆)
such that

|f ⋆ g | ≤ |f | ⋆ |g |
for all f , g ∈ L.
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Conclusion. What is new?

What is now known?

Every Banach lattice-algebra is a Banach lattice-module over itself.

In fact, every Banach lattice is an m-Banach lattice-module over its
center.

What is new?

1 There does not seem to be a concise concept of a Banach lattice
being a Banach module over a commutative Banach lattice-algebra.
So, we propose the definition of a Banach lattice-module for our
study.

2 More so, our definition can be seen to be the generalisation of
certain Banach lattice L∞(G)-module as defined by K-T. Eisele and
S. Taieb, see [2, Definition 5.3(iii), p.531-532].
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Thank you for your attention!

Supervisor: Dr Retha Heymann

(If I have seen further, it is by standing on the shoulders of giants. - Sir Isaac Newton, 1675)
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