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Introduction

Background

Many problems in science and engineering are modeled by partial differential
equations that are often difficult to solve for an exact solution and, in some
cases, impossible.

Numerical methods have proven a good alternative in providing approximate
solutions close to the exact solution. As a result, several accurate numerical
methods, such as the Crank-Nicolson method [7], finite element methods [4],
finite volume methods [10], spectral methods [8] and nonstandard finite differ-
ence methods [2, 19], have been developed.

Developing better numerical methods continues to stimulate a lot of interest
amongst researchers.

Motivated by the continued need for better performing numerical methods, in
this work, we propose a hybrid method that is based on combining elements
of the higher order unconditionally positive finite difference method (HUPFD)
and the proper orthogonal decomposition method (POD).
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Introduction

Background

HUPFD is a finite difference-based method that guarantees the positivity of
solutions, independent of the time step and mesh size. On the other hand, the
POD is a powerful technique, widely used in statistics and image processing
[21, 22], to reduce a large number of interdependent variables to a much smal-
ler number of uncorrelated variables while retaining as much possible of the
variation in the original variables.

Numerical schemes that preserve the positivity of solutions are important in
physical applications. To have significant meaning, quantities such as chemical
species concentration, population sizes, neutron numbers, etc., require positive
solutions.

By utilizing the POD, the EHUPFD involves the extraction of a set of basis
functions from the HUPFD solution called the snapshot matrix and then uses
a small subset of leading basis functions to construct state variable approxim-
ations.
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Introduction

Background

We test the applicability of the EHUPFD on the ADR equations given below

∂u

∂t
+ Ua

∂u

∂x
− D

∂2u

∂x2
= f (t, x , u), (1)

u(0, x) = u0(x) ≥ 0, (2)

u(a, t) = ua(t) u(b, t) = ub(t).

The ADR equation is used to model exponential travelling waves, absorption of
pollutants in soil, semiconductors, modelling of biological systems, and diffusion
of neutrons [5, 11–13].
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Literature Review

The UPFD was developed by Chen-Charpentier & Kojouharov [6] for the
advection-diffusion-reaction equation (ADR) and has since been used by several
other researchers [3, 9, 20].

The POD has been used to reduce the dimensions of numerical methods such
as the Crank-Nicolson method [1, 14, 15, 17, 18, 23].

The POD is useful when it is impossible to perform numerical simulations due
to large scale computing requirements.
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Research Aim and Objectives

Aim:

The main contribution of this work is to extend the POD coupling by hybridising
it with the HUPFD to obtain a novel numerical method that exhibits higher
accuracy with less computing time, fewer degrees of freedom in numerical
computations, and reduced truncation error, as well as ensuring positivity of
the solutions.

Objectives:

The objectives of the study is to:

Investigate the consistency and stability of the unconditionally positive finite
difference methods.

Compare the performance of the EHUPFD method to the Crank-Nicolson,
NSFD methods in terms of computational time, error and convergence rate.
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Problem formulation: UPFD

In this section, we present details of the UPFD schemes [6] as given below,

∂u

∂x
≈


uni − un+1

i−1

∆x

un+1
i − uni−1

∆x

(3a)

(3b)

∂u

∂t
≈

un+1
i − uni

∆t
, (4)

∂2u

∂x2
≈

uni+1 − 2un+1
i + uni−1

(∆x)2
. (5)
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Problem formulation: HUPFD 1

In this case, we consider the first-order formula for the first space derivative and
the fourth order for the second space derivative approximations to obtain the higher
order schemes as given below,

∂u

∂x
≈


uni − un+1

i−1

∆x

un+1
i − uni−1

∆x

(6a)

(6b)

∂u

∂t
≈

un+1
i − uni

∆t
, (7)

∂2u

∂x2
≈
−un+1

i+2 + 16uni+1 − 30un+1
i + 16uni−1 − un+1

i−2

12∆x2
. (8)
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Problem formulation:HUPFD 2

In this case, the second order formula for first space derivative and fourth order for
second space derivative is considered to obtain the HUPFD schemes as given below,

∂u

∂x
≈


un+1
i+1 − uni−1

2∆x

uni+1 − un+1
i−1

2∆x

(9a)

(9b)

∂u

∂t
≈

un+1
i − uni

∆t
, (10)

∂2u

∂x2
≈
−un+1

i+2 + 16uni+1 − 30un+1
i + 16uni−1 − un+1

i−2

12∆x2
. (11)
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Problem formulation:HUPFD 3

In this case , the fourth order formula for first and second space derivatives is
considered to obtain the HUPFD schemes as given below,

∂u

∂x
≈


−uni+2 + 8un+1

i+1 − 8uni−1 + un+1
i−2

12∆x

−un+1
i+2 + 8uni+1 − 8un+1

i−1 + uni−2

12∆x

(12a)

(12b)

∂u

∂t
≈

un+1
i − uni

∆t
(13)

∂2u

∂x2
≈
−un+1

i+2 + 16uni+1 − 30un+1
i + 16uni−1 + un+1

i−2

12∆x2
(14)
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Implementation of the higher order unconditionally positive
finite difference schemes on the linear ADR equation

In this section, we set f (t, x , u) = −u, Ua = 1, and D = 1 in equation (1) to obtain
the equation given below

∂u

∂t
+
∂u

∂x
=
∂2u

∂x2
− u, (15)

subject to the following initial and boundary conditions u(x , 0) = e−x , 0 ≤ x ≤ 10
u(0, t) = et , 0 ≤ t ≤ 0.85
ux(10, t) = −u(10, t), 0 ≤ t ≤ 0.85

(16)

with the exact solution given by u(x , t) = e(t−x) [6].
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Implementation of the higher order unconditionally positive
finite difference schemes on the linear ADR equation.........

Solving the linear ADR equation using the HUPFD 1 scheme

Since the coefficient of
∂u

∂x
in equation (15) is positive, we use equations (6b), (7),

and (8) to find the UPFD scheme. Therefore, the HUPFD discretization of equation
(15) is given by the equation below

un+1
i − uni

∆t
+

un+1
i − uni−1

∆x
=
−un+1

i+2 + 16uni+1 − 30un+1
i + 16uni−1 − un+1

i−2

12∆x2
− un+1

i , (17)

which simplifies to the following

1

12∆x2
un+1
i−2 +

(
1

∆t
+

1

∆x
+

30

12∆x2
+ 1

)
un+1
i (18)

+
1

12∆x2
un+1
i+2 =

1

∆t
uni +

(
1

∆x
+

16

12Dx2

)
u2
i−1 +

16

12∆x2
uni+1.

let p1 =
1

∆t
+

1

∆x
+

30

12∆x2
+ 1,p2 =

1

12∆x2
,p3 =

1

2∆t
, p4 =

1

∆x
+

16

12∆x2
, thus

p1u
n+1
i + p2u

n+1
i+2 + p2u

n+1
i−2 = p3u

n
i + p4u

n
i−1 + 16p2u

n
i+1. (19)
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Consistency

We investigate the consistency by using the Taylor expansion on the point (m, n).
The Taylor expansions of un+1

i , un−1
i , uni−1, u

n
i+1, u

n+1
i−2 , u

n+1
i+2 are as follows

un+1
i ≈ uni + ∆t

∂u

∂t
+

(∆t)2

2

∂2u

∂t2
+

(∆t)3

6

∂3u

∂t3
+ · · ·

un−1
i ≈ uni −∆t

∂u

∂t
+

(∆t)2

2

∂2u

∂t2
− (∆t)3

6

∂3u

∂t3
+ · · ·

uni−1 ≈ uni −∆x
∂u

∂x
+

(∆x)2

2

∂2u

∂x2
− (∆x)3

6

∂3u

∂x3
+ · · · (20)

uni+1 ≈ uni + ∆x
∂u

∂x
+

(∆x)2

2

∂2u

∂x2
+

(∆x)3

6

∂3u

∂x3
+ · · ·

un+1
i−2 ≈ uni + ∆t

∂u

∂t
− 2∆x

∂u

∂x
+ 2(∆x)2 ∂

2u

∂x2
− 2(∆t∆x)

∂2u

∂t∂x
+

(∆t)2

2

∂2u

∂t2
+ · · ·

un+1
i+2 ≈ uni + ∆t

∂u

∂t
+ 2∆x

∂u

∂x
+ 2(∆x)2 ∂

2u

∂x2
+ 2(∆t∆x)

∂2u

∂t∂x
+

(∆t)2

2

∂2u

∂t2
+ · · ·
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Consistency................

By substituting equation (20) into the scheme (17) leads to the following equation

uni +

(
∆t

∆x
+

32∆t

12(∆x)2
+ ∆t + 1

)
∂u

∂t
+
∂u

∂x
−
(

1 +
∆x

2

)
∂2u

∂x2

+

(
31

12

(
∆t

∆x

)2

+
1

2

(∆t)2

(∆x)
+

(∆t)2

2
+

(∆t)2

2

)
∂2u

∂t2
= 0, (21)

When ∆t −→ 0 and ∆x −→ 0, equation (21) is not consistent, hence we set
∆t = (∆x)3 to obtain the following equation

uni +

(
(∆x)2 +

32

12
∆x + (∆x)3 + 1

)
∂u

∂t
+
∂u

∂x
−
(

1 +
∆x

2

)
∂2u

∂x2

+

(
(∆t)3

2
+

(∆x)5

2
+

30(∆x)4

12
+

(∆x)6

2
+

(∆x)2

12

)
∂2u

∂t2
= 0, (22)
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Consistency................

When ∆x −→ 0, equation (22) leads to the follow equation

∂u

∂t
+
∂u

∂x
=
∂2u

∂x2
− u. (23)

Thus, the original equation (15) is obtained, which implies the scheme is consistent
when ∆t = (∆x)3.
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Stability

The Von-Neumann stability analysis is used to investigate the stability region for the
finite difference schemes. By applying Fourier series analyses to terms in equation
(19), we obtain the following



uni = ξne j∆ti∆x

un+1
i−2 = ξn+1e j∆t(i−2)∆x

un+1
i = ξn+1e j∆t(i)∆x

un+1
i+2 = ξn+1e j∆t(i+2)∆x

uni−1 = ξne j∆t(i−1)∆x

un−1
i−1 = ξn−1e j∆t(i−1)∆x

uni+1 = ξne j∆t(i+1)∆x

un−1
i = ξn−1e j∆t(i)∆x ,

(24)
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Stability............

The Von Neuman stability analyses is applied to terms in the dicritised equation,
and we obtain the following

ξn+1
(
s1 + s2e

j∆t∆x + s3e
−2j∆∆x + s3e

2j∆t∆x
)

= ξn
(
(16s3 + s2)e−j∆t∆x + 16s3e

j∆t∆x + s3

)
, (25)

Since |ξ|2 ≤ 1 from the Von Neuman stability analysis, we have the following

−1 +
1

3(∆x)2 + 1
≤ ∆t (26)

The HUPFD scheme is stable, and that implies the scheme is convergence since is
stable and consistent when ∆t = (∆x)3.
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Numerical Results

We validate the results of the method by comparing them to the exact, Crank
Nicolson, and NSFD solutions. The convergence rates, absolute errors, and compu-
tational time are calculated as to evaluate the methods’ performance. The numerical
and analytical solutions are denoted by ūi,j and ui,j , respectively. The error is de-
noted by ei,j , and its magnitude is measured by the L∞-norm given by the formula
below,

||ei,n||∞ = ||ui,n − ūi,n||∞ = Max |ui,n − ūi,n| (27)

The convergence rate is calculated by using the formula below,

q(∆tk) =
log2

(
ek
ek+1

)
log2

(
∆t

∆tk+1

) or q(∆xk) =
log2

(
ek
ek+1

)
log2

(
∆x

∆xk+1

) (28)
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Numerical Results............

The accuracy of the EUPFD relies on the size of the snapshot, L. Therefore, finding
the best snapshot size such that the accuracy is a maximum is paramount. To
determine the best snapshot size, we first set L = 1 and find the solution. We then
make increments of 1 on L until there is no significant change in the solution. To
do this, we set up a tolerance as follows;

||uexact − uL||∞ ≤ ε, L = 1, 2, 3, . . . (29)

where uexact is the exact solution, and uL is the solution at the specific value of L.
The first value of L that satisfies (29) is the optimal value of L. In this work, we set
ε to be 10−10.
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Numerical Results.....................

Numerical results for the linear advection-diffusion-reaction equation

Table: Convergence rates for the linear ADR equation by the UPFD,NSFD, Crank-Nicolson
and HUPFD with respect to varying ∆x and ∆t.

q(∆tk)
∆tk ∆xk UPFD EHUPFD 1 EHUPFD 2 EHUPFD 3 Crank-Nicolson NSFD
0.00005 0.6667 2.1675 2.5233 1.6978 1.0006 2.5606 2.0579
0.0001 0.6667 0.9973 1.0054 1.1996 1.0212 1.0051 1.9427
0.0002 0.6667 1.8201 1.9990 1.5640 1.0023 2.7372 1.8871
0.0004 0.6667
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Numerical Results............

Table: Infinity norm results of the linear ADR equation by using the exact, UPFD, Crank-
Nicolson, NSFD and HUPFD solutions.

(t, x) Exact HUPFD Error First and Fourth order
(HUPFD)

Error Second and Fourth order
(HUPFD)

Error Fourth order
(HUPFD)

Error Enhanced Fourth order
(HUPFD)

Error Crank Nicolson Error NSFD Error

u(:, 0.0002) 1.1654 1.1654 0.0025 1.1654 0.0025 1.1655 0.0025 1.1653 0.0025 1.1652 0.0047 1.1654 0.0025 1.1654 0.0025
u(:, 0.0004) 1.1657 1.1657 0.0025 1.1657 0.0025 1.1657 0.0025 1.1652 0.0027 1.1650 0.0059 1.1657 0.0025 1.1657 0.0025
u(:, 0.0006) 1.1659 1.1660 0.0025 1.1660 0.0025 1.1660 0.0025 1.1652 0.0030 1.1648 0.0077 1.1660 0.0025 1.1660 0.0025

Time 0.004230 0.002748 0.002717 0.003089 0.001396 0.002689 0.001033

In this table we compare the infinity norms of the proposed HUPFD with the UPFD
and the NSFD methods in solving the linear ADR equation. For this example, results
show that HUPFD method preserve the accuracy.
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Numerical Results.....................

Numerical results for the linear advection-diffusion-reaction equation
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Figure: (a) POD modes for linear reaction diffusion equation. (b) Number of POD Modes
vs CPU Time for the linear reaction diffussion equation.
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Numerical Results.....................

Numerical results for the linear advection-diffusion-reaction equation
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Figure: (a) Comparison of the exact and EHUPFD Solutions of the linear ADR equation.
(b) Number of POD modes vs error.
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Conclusion

The results shows that the EHUPFD is a good approximation to the ADR
problem.

The EHUPFD saves computational time, reduces degrees of freedom in numer-
ical computations, alleviates truncation error accumulation, and it preserves
the positivity of the solution.

We also observed that increasing the order of the UPFD scheme leads to the
implicit scheme that is unconditionally stable with an increased order of accur-
acy in respect of time and space.
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