

0-Cauchy completions in strong partial *b*-metric spaces

Templeton Ncongwane

joint work with Prof S.P Moshokoa and Dr M. Aphane Department of Mathematics and Statistics Tshwane University of Technology

December 8, 2022

Outline of the talk

- Introduction.
- ▶ Strong *b*-metric spaces and partial *b*-metric spaces.
- Completeness in strong partial b-metric spaces.
- ► Completions of strong partial *b*-metric spaces.
- Conclusions.

1.1. Introduction

► In the book

W. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, (2014)

Strong b-metric spaces were introduced by Kirk and Shahzad as generalization of metric spaces. And

- ▶ In the article.
 - S. Shukla, Partial *b*-metric spaces and fixed point theorems. Mediterr.

 J. 703-711 (2014)

partial *b*-metric spaces were introduced as generalization of partial metric spaces. In this talk we introduce a new notion, called strong partial *b*-metric space, which is the generalization of both strong *b*-metric spaces and partial metric spaces, we will also present 0-Cauchy completions of a strong partial *b*-metric space. Strong *b*-metric spaces and partial *b*-metric spaces, were introduced with the aim of generalizing Banach fixed point theorem.

1.2. Strong b-metric spaces and partial b-metric spaces

▶ In the article

T. Van An. N. Van Dung. Answers to Kirk-Shahzad's questions on strong *b*-metric spaces, Taiwan.J. Math. 20 (5) (2016) 1175–1184.

The following notion is defined.

Definition

Let X be a nonempty set and $\alpha \geq 1$ a real constant. A map d: $X \times X \longrightarrow [0, \infty)$ is a strong b-metric on X if for all $x, y, z \in X$ the following conditions hold:

(i)
$$d(x, y) = 0$$
 if and only if $x = y$;

(ii)
$$d(x, y) = d(y, x)$$
;

(iii)
$$d(x,z) \leq d(x,y) + \alpha d(y,z)$$
.

The pair (X, d) is called strong *b*-metric space.

- ▶ In the article
 - S. Shukla, Partial *b*-metric spaces and fixed point theorems, Mediterr.J. Math. 11 (5) (2014) 703–711.

The following notion is defined.

Definition

Let X be a nonempty set. A map $d: X \times X \to [0, \infty)$ is called a partial b-metric on X if for all $x, y, z \in X$ and $\alpha \ge 1$ the following conditions hold:

(i)
$$x = y$$
 if and only if $d(x,x) = d(x,y) = d(y,y)$;

(ii)
$$d(x,x) \leq d(x,y)$$
;

(iii)
$$d(x,y) = d(y,x)$$
;

$$(iv) \ d(x,y) \leq \alpha \left[d(x,z) + d(z,y) \right] - d(z,z)$$

The pair (X, d) is called a partial *b*-metric space.

▶ We now introduce a new notion called strong partial *b*-metric space.

1.3. Completeness of a strong partial b-metric space

▶ In the article

S.P Moshokoa, F.T Ncongwane On completeness in strong partial b-metric spaces, strong b-metric spaces and 0-Cauchy completions, Topology and its Applications. 275, (2020) 107011.

Definition

Let X be a nonempty set. A map $d: X \times X \longrightarrow [0, \infty)$ is a strong partial b-metric on X if for all $x, y, z \in X$, and $\alpha \ge 1$ the following conditions hold:

(i)
$$x = y$$
 if $d(x, x) = d(x, y) = d(y, y)$;

(ii)
$$d(x,x) \leq d(x,y)$$
;

(iii)
$$d(x, y) = d(y, x)$$
;

(iv)
$$d(x,z) \leq d(x,y) + \alpha d(y,z) - d(y,y)$$
.

The pair (X, d) is called strong partial *b*-metric space.

Remark

Every strong b-metric space is a strong partial b-metric space but the converse is not necessarily true.

Definition

Let (X, d) be a strong partial b-metric space.

(i) a sequence $\{x_n\}$ converges to a point $x \in X$ if $d(x,x) = \lim_n d(x_n,x) = \lim_n d(x_n,x_n)$.

Remark

Every strong b-metric space is a strong partial b-metric space but the converse is not necessarily true.

Definition

- (i) a sequence $\{x_n\}$ converges to a point $x \in X$ if $d(x,x) = \lim_n d(x_n,x) = \lim_n d(x_n,x_n)$.
- (ii) a sequence $\{x_n\}$ is called Cauchy if $\lim_{n,m} d(x_n, x_m)$ exists and is finite.

Remark

Every strong b-metric space is a strong partial b-metric space but the converse is not necessarily true.

Definition

- (i) a sequence $\{x_n\}$ converges to a point $x \in X$ if $d(x,x) = \lim_n d(x_n,x) = \lim_n d(x_n,x_n)$.
- (ii) a sequence $\{x_n\}$ is called Cauchy if $\lim_{n,m} d(x_n, x_m)$ exists and is finite.
- (iii) (X, d) is called Cauchy complete if every Cauchy sequence $\{x_n\}$ converges to $x \in X$.

Remark

Every strong b-metric space is a strong partial b-metric space but the converse is not necessarily true.

Definition

- (i) a sequence $\{x_n\}$ converges to a point $x \in X$ if $d(x,x) = \lim_n d(x_n,x) = \lim_n d(x_n,x_n)$.
- (ii) a sequence $\{x_n\}$ is called Cauchy if $\lim_{n,m} d(x_n, x_m)$ exists and is finite.
- (iii) (X, d) is called Cauchy complete if every Cauchy sequence $\{x_n\}$ converges to $x \in X$.
- (iv) A sequence $\{x_n\}$ is called 0-Cauchy if $\lim_{n,m} d(x_n, x_m) = 0$.

Remark

Every strong b-metric space is a strong partial b-metric space but the converse is not necessarily true.

Definition

- (i) a sequence $\{x_n\}$ converges to a point $x \in X$ if $d(x,x) = \lim_n d(x_n,x) = \lim_n d(x_n,x_n)$.
- (ii) a sequence $\{x_n\}$ is called Cauchy if $\lim_{n,m} d(x_n, x_m)$ exists and is finite.
- (iii) (X, d) is called Cauchy complete if every Cauchy sequence $\{x_n\}$ converges to $x \in X$.
- (iv) A sequence $\{x_n\}$ is called 0-Cauchy if $\lim_{n,m} d(x_n, x_m) = 0$.
- (v) (X, d) is called 0- Cauchy complete if every 0-Cauchy sequence converges to a point $x \in X$ and d(x, x) = 0.

Remark

- (i) Every 0-Cauchy sequence is a Cauchy sequence but the converse is not necessarily true.
- (ii) Every Cauchy complete strong partial b-metric space is 0-Cauchy complete but the converse is not necessarily true.

1.4. Completions of strong partial *b*-metric spaces Definition

Let (X, d) be a strong partial b-metric space and Y be a subset of solve X. We say Y is sequentially dense in X if for $x \in X$, there is a sequence $\{y_n\}$ in Y that converges to x.

Definition

Let $T:(X,d_X)\longrightarrow (Y,d_Y)$ be a map between partial b-metric spaces. T is called an isometry if

$$d_Y(Tx, Ty) = d_X(x, y),$$

for all $x, y \in X$.

Definition

Let (X,d) be a strong partial b-metric space. We say that a strong partial b-metric space (\bar{X},\bar{d}) is a 0-Cauchy completion of (X,d) if (i) (\bar{X},\bar{d}) is 0-Cauchy complete

- (ii) $X \subseteq \bar{X}$, and $\bar{d}|_{X \times X = d}$
- (iii) there exists $T:(X,d)\longrightarrow (\bar{X},\bar{d})$, such that T is an isometry;
- (iv) TX is sequentially dense in \bar{X} .

Given a strong partial *b*-metric space (X, d). Let $\mathcal{C} = \{x_n : \{x_n\} \text{ be a 0-Cauchy sequence}\}$. And

 $\mathcal{K} =$

 $\{x: \{x\} \text{ is a constant sequence which is not a 0-Cauchy sequence}\}$. \sim is an equivalent relation on the class of 0-Cauchy sequences $\mathcal C$ and on the class of eventually constant sequences $\mathcal K$. Let $\bar X$ be the set of all equivalent classes in $\mathcal K$ together with the set of all equivalent classes in $\mathcal C$, that is

 $ar{X} = \{[\{x\}] : x \in \mathcal{K}\} \cup \{[\{x_n]\} : \{x_n\} \in \mathcal{C}\}$. For every $\bar{x}, \bar{y} \in \bar{X}$, define $\bar{d} : \bar{X} \times \bar{X} \longrightarrow [0, \infty)$ by

$$\bar{d}(\bar{x},\bar{y})=\lim_{n}d(x_{n},y_{n}),$$

where $\bar{x} = [\{x_n\}]$ and $\bar{y} = [\{y_n\}]$.

Theorem

Every strong partial b-metric space (X, d) admits a 0-Cauchy completion (\bar{X}, \bar{d}) .

Proof of summary.

- (i) \bar{d} is well defined.
- (ii) (\bar{X}, \bar{d}) is a strong partial *b*-metric space.
- (iii) $T: X \longrightarrow \bar{X}$ is an isometry.
- (iv) TX is a sequentially dense in \bar{X} .
- (v) (\bar{X}, \bar{d}) is 0-Cauchy complete.

Theorem

The 0-Cauchy completion of a strong partial b-metric space (X,d), is unique up isometry.

Proof.

Let (\bar{X},\bar{d}) and (\acute{X},\acute{d}) be the two 0-Cauchy completions of (X,d). Then there exists isometric embeddings $T_1:X\longrightarrow \bar{X}$ and $T_2:X\longrightarrow \acute{X}$. For each $\bar{x}\in \bar{X}$, we can find $\{x_n\}$ in X such that T_1x_n converges to \bar{x} . Also T_2x_n converges to to some $\acute{x}\in \acute{X}$. Define $\varphi:\bar{X}\longrightarrow \acute{X}$, by $\varphi(\bar{x})=\acute{x}$. The map φ is bijective and an isometry

1.5. Conclusions

- If (X, d) is a partial metric space then (\bar{X}, \bar{d}) is a 0-Cauchy completion. As obtained in
 - S.P Moshokoa. On the 0-Cauchy completion of a partial metric space, Turk. J. Math. Comput. Sci. 4(2016) 10–15.
 - N. Van Dung. On completion of partial metric spaces, Quaestiones Mathematicae. 40:5 (2017) 589–597.
- ▶ If (X, d) is a strong *b*-metric space then (\bar{X}, \bar{d}) is a strong *b*-metric completion. As obtained in
 - T. Van An. N. Van Dung. Answers to Kirk-Shahzad's questions on strong *b*-metric spaces, Taiwan.J. Math. 20 (5) (2016) 1175–1184.
- ▶ If (X, d) is a metric space then (\bar{X}, \bar{d}) is the well known standard metric completion.

References

Further study

X Ge S Lin 2015

Completions of partial metric spaces.

Topology Appl. 182: 16-23.

S.P Moshokoa, F.T Ncongwane 2020.

On completeness in strong partial b-metric spaces, strong b-metric spaces and the 0-Cauchy completions. Topology Appl. 275: 107011.

S. Shukla 2014.

Partial b-metric spaces and fixed point theorems,

Mediterr. J. Math. 11:703-711.

N. Van Dung 2017.

On completion of partial metric spaces.

Quaetiones Mathematicae, 40:5, 589-597.

Thank you for listening