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JC -spaces

JConnected Spaces

A space X is JC -space if whenever X is a union of two of its closed
subsets with a connected intersection, then one of the closed sets is
connected.

Theorem

Every connected space is a JC-space.

Proof.

Idea: If we express a connected space X as a union of two of its closed
subsets whose intersection is connected, then both of the two closed
subsets are connected.
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Examples

Theorem

If a space X is a union of two non-empty disjoint connected subsets, then
it is a JC-space.

EXAMPLES
1. Consider X = (−∞, 0) ∪ (0,∞) as a subspace of R. Then X is a
disconnected JC -space.
2. GJ: clR+ \ R+ and clR− \ R− are disjoint connected subsets of βR
and their union is βR \ R.
So, βR \ R is another disconnected JC -space.
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Non-examples

Non-examples of JC -sapces

1. Consider the space Q as a subspace of R. Put

A = (−∞, 0] ∩Q and B = [0,∞) ∩Q.

Then Q = A ∪ B, A,B are closed subsets in Q and A ∩ B = {0} is
connected. However neither A nor B is connected in Q. Thus Q is
not a JC -space.

2. Consider X = (−3, 0) ∪ (0, 1) ∪ (1, 2), as subspace of R. Then X
is not a JC -space: Simply note that

A = (−3, 0) ∪ (0, 1) and B = (0, 1) ∪ (1, 2)

are closed subsets of X such that A ∩ B is connected, but neither A
nor B is connected.
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More on JC -spaces

Basic Results

1. Let f : X → Y be a monotone closed mapping from X onto Y .
Then X is a JC -space if and only if Y is a JC -space.

2. Let Z be a connected space and Y be any space. Then Z × Y is a
JC -space if and only if Y is a JC -space.

3.. . . one can say more about JC -spaces. . .
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F -compactness

J-spaces

1. A space X is a J-space if any closed binary cover with a compact
intersection has a compact member (E. Michael, 2000).

2. Let L be a complete lattice. An element a ∈ L is called F-compact
if whenever a ∧ (

∧
S) = 0 for some S ⊆ L, then there exists a finite

F ⊆ S such that a ∧ (
∧
F ) = 0.

3. Let CL(X ) be the lattice of closed subsets of X .

Theorem

A ∈ CL(X ) is F -compact if and only if A is a compact subset of X .
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J-things

J-lattices

1. A complete lattice L is called a J-lattice if whenever a ∨ b = 1 in L
and a ∧ b is F -compact, then a or b is F -compact.

2. CL(X ) is a J-lattice if and only if X is a J-space.

J-frames

1. We say that a frame L is a J-frame if whenever a ∧ b = 0 in L and
the frame c(a ∨ b) is compact, then c(a) or c(b) is compact.

2. A Hausdorff space X is a J-space if and only if OX is a J-frame.

EXAMPLES
A) OR is not a J-frame.
B) OR+ is a J-frame.
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J-frames with no points

Theorem

A frame with no points is a J-frame if and only if it is connected.

Example

Let L be a Boolean frame which has no points. Such an L is disconnected
non-spatial frame which is not J-frame.
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Characterisation

Theorem

The following conditions are equivalent for a frame L:
1. L is a J-frame.
2. Whenever a ∈ L, and c(a ∨ a∗) compact, then either c(a) or c(a∗) is
compact.

Proof.

(1) =⇒ (2) This is clear from the definition of J-frame.
(2) =⇒ (1) Suppose c(a ∨ b) is compact, with a ∧ b = 0 in L. We need to
show that c(a) or c(b) is compact.Now, b ≤ a∗ implies that
(a ∨ b) ≤ (a ∨ a∗), therefore c(a ∨ a∗) is compact.Thus, c(a) or c(a∗) is
compact, by hypothesis.If c(a) is compact then we are done.If c(a∗) is
compact, then c(a∗) ∨ c(a ∨ b) is compact. But
c(a∗) ∨ c(a ∨ b) = c(a∗ ∧ (a ∨ b)) = c(a∗ ∧ b).So c(a∗ ∧ b) is compact, and
hence c(b) is compact.
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(2) =⇒ (1) Suppose c(a ∨ b) is compact, with a ∧ b = 0 in L. We need to
show that c(a) or c(b) is compact.Now, b ≤ a∗ implies that
(a ∨ b) ≤ (a ∨ a∗), therefore c(a ∨ a∗) is compact.Thus, c(a) or c(a∗) is
compact, by hypothesis.If c(a) is compact then we are done.If c(a∗) is
compact, then c(a∗) ∨ c(a ∨ b) is compact. But
c(a∗) ∨ c(a ∨ b) = c(a∗ ∧ (a ∨ b)) = c(a∗ ∧ b).So c(a∗ ∧ b) is compact, and
hence c(b) is compact.
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Relative connectedness and J-frames

DEFINITION:
A sublocale S of a frame L is relatively connected in L if whenever S ⊆ U,
where U is an open sublocale of L with U = U1 ∨ U2 for some open
sublocales U1,U2 of L such that U1 ∩ U2 = O, then S ∩ U1 = O or
S ∩ U2 = O.

Theorem

The following conditions are equivalent for a non-compact completely
regular frame L:

1. L is a J-frame.

2. M ∖ L is relatively connected in M, for any compactification M of
L.

3. βL∖ L is relatively connected in βL.

4. If βL = c(I ) ∨ c(J) for some I , J ∈ βL and c(I ) ∩ c(J) ⊆ L, then
c(I ) ⊆ L or c(J) ⊆ L.
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