JC-spaces and J-frames

by Simo S. Mthethwa

Stellenbosch University, 06-08 December 2022

simomthethwa@gmail.com

SAMS2022

JConnected Spaces

 A space X is JC-space if whenever X is a union of two of its closed subsets with a connected intersection, then one of the closed sets is connected.

Theorem

Every connected space is a JC-space.

Proof

Idea: If we express a connected space X as a union of two of its closed subsets whose intersection is connected, then both of the two closed subsets are connected.

JConnected Spaces

 A space X is JC-space if whenever X is a union of two of its closed subsets with a connected intersection, then one of the closed sets is connected.

Theorem

Every connected space is a JC-space.

Proof

Idea: If we express a connected space X as a union of two of its closed subsets whose intersection is connected, then both of the two closed subsets are connected.

JConnected Spaces

 A space X is JC-space if whenever X is a union of two of its closed subsets with a connected intersection, then one of the closed sets is connected.

Theorem

Every connected space is a JC-space.

Proof

Idea: If we express a connected space X as a union of two of its closed subsets whose intersection is connected, then both of the two closed subsets are connected.

JConnected Spaces

 A space X is JC-space if whenever X is a union of two of its closed subsets with a connected intersection, then one of the closed sets is connected.

Theorem

Every connected space is a JC-space.

Proof.

Idea: If we express a connected space X as a union of two of its closed subsets whose intersection is connected, then both of the two closed subsets are connected.

Theorem

If a space X is a union of two non-empty disjoint connected subsets, then it is a JC-space.

EXAMPLES

- 1. Consider $X=(-\infty,0)\cup(0,\infty)$ as a subspace of $\mathbb R$. Then X is a disconnected JC-space.
- 2. **GJ**: $\operatorname{cl} \mathbb{R}^+ \setminus \mathbb{R}^+$ and $\operatorname{cl} \mathbb{R}^- \setminus \mathbb{R}^-$ are disjoint connected subsets of $\beta \mathbb{R}$ and their union is $\beta \mathbb{R} \setminus \mathbb{R}$.
- So, $\beta \mathbb{R} \setminus \mathbb{R}$ is another disconnected JC-space.

Theorem

If a space X is a union of two non-empty disjoint connected subsets, then it is a JC-space.

EXAMPLES

- 1. Consider $X=(-\infty,0)\cup(0,\infty)$ as a subspace of $\mathbb R$. Then X is a disconnected JC-space.
- 2. **GJ**: $\operatorname{cl} \mathbb{R}^+ \setminus \mathbb{R}^+$ and $\operatorname{cl} \mathbb{R}^- \setminus \mathbb{R}^-$ are disjoint connected subsets of $\beta \mathbb{R}$ and their union is $\beta \mathbb{R} \setminus \mathbb{R}$.
- So, $\beta \mathbb{R} \setminus \mathbb{R}$ is another disconnected JC-space.

Theorem

If a space X is a union of two non-empty disjoint connected subsets, then it is a JC-space.

EXAMPLES

- 1. Consider $X=(-\infty,0)\cup(0,\infty)$ as a subspace of $\mathbb R$. Then X is a disconnected JC-space.
- 2. **GJ**: $cl \mathbb{R}^+ \setminus \mathbb{R}^+$ and $cl \mathbb{R}^- \setminus \mathbb{R}^-$ are disjoint connected subsets of $\beta \mathbb{R}$ and their union is $\beta \mathbb{R} \setminus \mathbb{R}$.
- So, $\beta \mathbb{R} \setminus \mathbb{R}$ is another disconnected *JC*-space.

Simo S Mthethwa (UKZN)

Theorem

If a space X is a union of two non-empty disjoint connected subsets, then it is a JC-space.

EXAMPLES

- 1. Consider $X=(-\infty,0)\cup(0,\infty)$ as a subspace of $\mathbb R$. Then X is a disconnected JC-space.
- 2. **GJ**: $cl \mathbb{R}^+ \setminus \mathbb{R}^+$ and $cl \mathbb{R}^- \setminus \mathbb{R}^-$ are disjoint connected subsets of $\beta \mathbb{R}$ and their union is $\beta \mathbb{R} \setminus \mathbb{R}$.
- So, $\beta \mathbb{R} \setminus \mathbb{R}$ is another disconnected *JC*-space.

Non-examples

Non-examples of JC-sapces

ullet 1. Consider the space ${\mathbb Q}$ as a subspace of ${\mathbb R}$. Put

$$A = (-\infty, 0] \cap \mathbb{Q}$$
 and $B = [0, \infty) \cap \mathbb{Q}$

Then $\mathbb{Q} = A \cup B$, A, B are closed subsets in \mathbb{Q} and $A \cap B = \{0\}$ is connected. However neither A nor B is connected in \mathbb{Q} . Thus \mathbb{Q} is not a JC-space.

• 2. Consider $X=(-3,0)\cup(0,1)\cup(1,2)$, as subspace of $\mathbb R$. Then X is not a JC-space: Simply note that

$$A = (-3,0) \cup (0,1)$$
 and $B = (0,1) \cup (1,2)$

are closed subsets of X such that $A \cap B$ is connected, but neither A nor B is connected.

Simo S Mthethwa (UKZN)

Non-examples

Non-examples of JC-sapces

ullet 1. Consider the space $\mathbb Q$ as a subspace of $\mathbb R$. Put

$$A = (-\infty, 0] \cap \mathbb{Q}$$
 and $B = [0, \infty) \cap \mathbb{Q}$.

Then $\mathbb{Q} = A \cup B$, A, B are closed subsets in \mathbb{Q} and $A \cap B = \{0\}$ is connected. However neither A nor B is connected in \mathbb{Q} . Thus \mathbb{Q} is not a JC-space.

• 2. Consider $X = (-3,0) \cup (0,1) \cup (1,2)$, as subspace of \mathbb{R} . Then X is not a JC-space: Simply note that

$$A = (-3,0) \cup (0,1)$$
 and $B = (0,1) \cup (1,2)$

are closed subsets of X such that $A \cap B$ is connected, but neither A nor B is connected.

Non-examples

Non-examples of JC-sapces

ullet 1. Consider the space ${\mathbb Q}$ as a subspace of ${\mathbb R}$. Put

$$A = (-\infty, 0] \cap \mathbb{Q}$$
 and $B = [0, \infty) \cap \mathbb{Q}$.

Then $\mathbb{Q} = A \cup B$, A, B are closed subsets in \mathbb{Q} and $A \cap B = \{0\}$ is connected. However neither A nor B is connected in \mathbb{Q} . Thus \mathbb{Q} is not a JC-space.

• 2. Consider $X = (-3,0) \cup (0,1) \cup (1,2)$, as subspace of \mathbb{R} . Then X is not a JC-space: Simply note that

$$A = (-3,0) \cup (0,1)$$
 and $B = (0,1) \cup (1,2)$

are closed subsets of X such that $A \cap B$ is connected, but neither A nor B is connected.

Simo S Mthethwa (UKZN) UKZN SAMS2022 4 / 11

- 1. Let f: X → Y be a monotone closed mapping from X onto Y.
 Then X is a JC-space if and only if Y is a JC-space.
- 2. Let Z be a connected space and Y be any space. Then $Z \times Y$ is a JC-space if and only if Y is a JC-space.
- 3.... one can say more about *JC*-spaces...

- 1. Let $f: X \to Y$ be a monotone closed mapping from X onto Y. Then X is a JC-space if and only if Y is a JC-space.
- 2. Let Z be a connected space and Y be any space. Then $Z \times Y$ is a JC-space if and only if Y is a JC-space.
- 3.... one can say more about *JC*-spaces...

- 1. Let $f: X \to Y$ be a monotone closed mapping from X onto Y. Then X is a JC-space if and only if Y is a JC-space.
- 2. Let Z be a connected space and Y be any space. Then $Z \times Y$ is a JC-space if and only if Y is a JC-space.
- 3.... one can say more about JC-spaces

- 1. Let $f: X \to Y$ be a monotone closed mapping from X onto Y. Then X is a JC-space if and only if Y is a JC-space.
- 2. Let Z be a connected space and Y be any space. Then $Z \times Y$ is a JC-space if and only if Y is a JC-space.
- 3.... one can say more about JC-spaces...

J-spaces

- 1. A space X is a *J-space* if any closed binary cover with a compact intersection has a compact member (E. Michael, 2000).
- 2. Let L be a complete lattice. An element $a \in L$ is called F-compact if whenever $a \land (\bigwedge S) = 0$ for some $S \subseteq L$, then there exists a finite $F \subseteq S$ such that $a \land (\bigwedge F) = 0$.
- 3. Let CL(X) be the lattice of closed subsets of X.

Theorem

 $A \in CL(X)$ is F-compact if and only if A is a compact subset of X.

J-spaces

- 1. A space X is a *J-space* if any closed binary cover with a compact intersection has a compact member (E. Michael, 2000).
- 2. Let L be a complete lattice. An element $a \in L$ is called F-compact if whenever $a \land (\bigwedge S) = 0$ for some $S \subseteq L$, then there exists a finite $F \subseteq S$ such that $a \land (\bigwedge F) = 0$.
- 3. Let CL(X) be the lattice of closed subsets of X.

Theorem

 $A \in \mathit{CL}(X)$ is F-compact if and only if A is a compact subset of X.

J-spaces

- 1. A space X is a *J-space* if any closed binary cover with a compact intersection has a compact member (E. Michael, 2000).
- 2. Let L be a complete lattice. An element $a \in L$ is called F-compact if whenever $a \land (\bigwedge S) = 0$ for some $S \subseteq L$, then there exists a finite $F \subseteq S$ such that $a \land (\bigwedge F) = 0$.
- 3. Let CL(X) be the lattice of closed subsets of X.

Theorem

 $A \in CL(X)$ is F-compact if and only if A is a compact subset of X.

J-spaces

- 1. A space X is a *J-space* if any closed binary cover with a compact intersection has a compact member (E. Michael, 2000).
- 2. Let L be a complete lattice. An element $a \in L$ is called F-compact if whenever $a \land (\bigwedge S) = 0$ for some $S \subseteq L$, then there exists a finite $F \subseteq S$ such that $a \land (\bigwedge F) = 0$.
- 3. Let CL(X) be the lattice of closed subsets of X.

Theorem

 $A \in CL(X)$ is F-compact if and only if A is a compact subset of X.

J-spaces

- 1. A space X is a *J-space* if any closed binary cover with a compact intersection has a compact member (E. Michael, 2000).
- 2. Let L be a complete lattice. An element $a \in L$ is called F-compact if whenever $a \land (\bigwedge S) = 0$ for some $S \subseteq L$, then there exists a finite $F \subseteq S$ such that $a \land (\bigwedge F) = 0$.
- 3. Let CL(X) be the lattice of closed subsets of X.

Theorem

 $A \in CL(X)$ is F-compact if and only if A is a compact subset of X.

Simo S Mthethwa (UKZN)

J-lattices

- 1. A complete lattice L is called a J-lattice if whenever a ∨ b = 1 in L and a ∧ b is F-compact, then a or b is F-compact.
- 2. CL(X) is a J-lattice if and only if X is a J-space

I-frames

1. We say that a frame L is a L-frame if whenever a A b=0 in L and the frame $c(a \lor b)$ is compact, then c(a) or c(b) is compact.

2. A Hausdorff space X is a J-space if and only if DX is a J-frameson

EXAMPLES

- A) $\mathfrak{O}\mathbb{R}$ is not a J-frame
- B) $\mathfrak{O}\mathbb{R}^+$ is a *J*-frame.

J-lattices

- 1. A complete lattice L is called a J-lattice if whenever $a \lor b = 1$ in L and $a \land b$ is F-compact, then a or b is F-compact.
- 2. CL(X) is a *J*-lattice if and only if X is a *J*-space

J-frames

1. We say that a frame L is a J-frame if whenever a Λ b=0 in L a 0 in L the frame $c(a \lor b)$ is compact, then c(a) or c(b) is compact.

A Hausdorff space X is a J-space if and only if $\mathfrak{O}X$ is a J-fix

EXAMPLES

A) $\mathfrak{O}\mathbb{R}$ is not a J-frame. B) $\mathfrak{O}\mathbb{R}^+$ is a J-frame.

J-lattices

- 1. A complete lattice L is called a J-lattice if whenever $a \lor b = 1$ in L and $a \land b$ is F-compact, then a or b is F-compact.
- 2. CL(X) is a *J*-lattice if and only if X is a *J*-space.

J-frames

the frame $c(a \lor b)$ is compact, then c(a) or c(b) is compact $c(a) \lor c(b)$ is compact $c(a) \lor c(b)$.

EXAMPLES

A) $\mathfrak{O}\mathbb{R}$ is not a J-frame B) $\mathfrak{O}\mathbb{R}^+$ is a J-frame.

J-lattices

- 1. A complete lattice L is called a J-lattice if whenever a ∨ b = 1 in L and a ∧ b is F-compact, then a or b is F-compact.
- 2. CL(X) is a *J*-lattice if and only if X is a *J*-space.

J-frames

- 1. We say that a frame L is a J-frame if whenever $a \wedge b = 0$ in L and the frame $\mathfrak{c}(a \vee b)$ is compact, then $\mathfrak{c}(a)$ or $\mathfrak{c}(b)$ is compact.
- 2. A Hausdorff space X is a J-space if and only if $\mathfrak{O}X$ is a J-frame

EXAMPLES

- A) $\mathfrak{O}\mathbb{R}$ is not a *J*-frame.
- B) $\mathfrak{O}\mathbb{R}^+$ is a *J*-frame.

J-lattices

- 1. A complete lattice L is called a J-lattice if whenever $a \lor b = 1$ in L and $a \land b$ is F-compact, then a or b is F-compact.
- 2. CL(X) is a *J*-lattice if and only if *X* is a *J*-space.

J-frames

- 1. We say that a frame L is a J-frame if whenever $a \wedge b = 0$ in L and the frame $\mathfrak{c}(a \vee b)$ is compact, then $\mathfrak{c}(a)$ or $\mathfrak{c}(b)$ is compact.
- 2. A Hausdorff space X is a J-space if and only if $\mathfrak{D}X$ is a J-frame.

EXAMPLES

A) $\mathfrak{O}\mathbb{R}$ is not a J-frame B) $\mathfrak{O}\mathbb{R}^+$ is a J-frame.

J-lattices

- 1. A complete lattice L is called a J-lattice if whenever a ∨ b = 1 in L and a ∧ b is F-compact, then a or b is F-compact.
- 2. CL(X) is a *J*-lattice if and only if X is a *J*-space.

J-frames

- 1. We say that a frame L is a J-frame if whenever $a \wedge b = 0$ in L and the frame $\mathfrak{c}(a \vee b)$ is compact, then $\mathfrak{c}(a)$ or $\mathfrak{c}(b)$ is compact.
- 2. A Hausdorff space X is a J-space if and only if $\mathfrak{O}X$ is a J-frame.

EXAMPLES

A) $\mathfrak{O}\mathbb{R}$ is not a J-frame. B) $\mathfrak{O}\mathbb{R}^+$ is a J-frame.

J-lattices

- 1. A complete lattice L is called a J-lattice if whenever $a \lor b = 1$ in L and $a \land b$ is F-compact, then a or b is F-compact.
- 2. CL(X) is a *J*-lattice if and only if X is a *J*-space.

J-frames

- 1. We say that a frame L is a J-frame if whenever $a \wedge b = 0$ in L and the frame $\mathfrak{c}(a \vee b)$ is compact, then $\mathfrak{c}(a)$ or $\mathfrak{c}(b)$ is compact.
- 2. A Hausdorff space X is a J-space if and only if $\mathfrak{O}X$ is a J-frame.

EXAMPLES

- A) $\mathfrak{O}\mathbb{R}$ is not a *J*-frame.
- B) $\mathfrak{O}\mathbb{R}^+$ is a *J*-frame.

J-frames with no points

Theorem

A frame with no points is a J-frame if and only if it is connected.

Example

Let L be a Boolean frame which has no points. Such an L is disconnected non-spatial frame which is not J-frame.

J-frames with no points

Theorem

A frame with no points is a J-frame if and only if it is connected.

Example

Let L be a Boolean frame which has no points. Such an L is disconnected non-spatial frame which is not J-frame.

Theorem

The following conditions are equivalent for a frame L:

- 1. L is a 1-frame.
- 2. Whenever $a \in L$, and $\mathfrak{c}(a \vee a^*)$ compact, then either $\mathfrak{c}(a)$ or $\mathfrak{c}(a^*)$ is compact.

Proof.

9 / 11

Theorem

The following conditions are equivalent for a frame L:

- 1. L is a J-frame.
- 2. Whenever $a \in L$, and $\mathfrak{c}(a \vee a^*)$ compact, then either $\mathfrak{c}(a)$ or $\mathfrak{c}(a^*)$ is compact.

- $(1) \Longrightarrow (2)$ This is clear from the definition of *J*-frame.
- (2) \Longrightarrow (1) Suppose $\mathfrak{c}(a \lor b)$ is compact, with $a \land b = 0$ in L. We need to show that $\mathfrak{c}(a)$ or $\mathfrak{c}(b)$ is compact. Now, $b \le a^*$ implies that
- compact, by hypothesis.If c(a) is compact then we are done.If $c(a^*)$ is
- compact, then $\mathfrak{c}(a^*) \vee \mathfrak{c}(a \vee b)$ is compact. But
- $\mathfrak{c}(a^*) \vee \mathfrak{c}(a \vee b) = \mathfrak{c}(a^* \wedge (a \vee b)) = \mathfrak{c}(a^* \wedge b)$. So $\mathfrak{c}(a^* \wedge b)$ is compact, and hence $\mathfrak{c}(b)$ is compact.

Theorem

The following conditions are equivalent for a frame L:

- 1. L is a J-frame.
- 2. Whenever $a \in L$, and $\mathfrak{c}(a \vee a^*)$ compact, then either $\mathfrak{c}(a)$ or $\mathfrak{c}(a^*)$ is compact.

- $(1) \Longrightarrow (2)$ This is clear from the definition of *J*-frame.
- (2) \Longrightarrow (1) Suppose $\mathfrak{c}(a \lor b)$ is compact, with $a \land b = 0$ in L. We need to show that $\mathfrak{c}(a)$ or $\mathfrak{c}(b)$ is compact. Now, $b \le a^*$ implies that
- $(a \lor b) \le (a \lor a^*)$, therefore $\mathfrak{c}(a \lor a^*)$ is compact. Thus, $\mathfrak{c}(a)$ or $\mathfrak{c}(a^*)$ is compact, by hypothesis. If $\mathfrak{c}(a)$ is compact then we are done. If $\mathfrak{c}(a^*)$ is compact, then $\mathfrak{c}(a^*) \lor \mathfrak{c}(a \lor b)$ is compact. But
- $\mathfrak{c}(a^*) \vee \mathfrak{c}(a \vee b) = \mathfrak{c}(a^* \wedge (a \vee b)) = \mathfrak{c}(a^* \wedge b)$. So $\mathfrak{c}(a^* \wedge b)$ is compact, and hence $\mathfrak{c}(b)$ is compact.

Theorem

The following conditions are equivalent for a frame L:

- 1. L is a 1-frame.
- 2. Whenever $a \in L$, and $\mathfrak{c}(a \vee a^*)$ compact, then either $\mathfrak{c}(a)$ or $\mathfrak{c}(a^*)$ is compact.

- $(1) \Longrightarrow (2)$ This is clear from the definition of *J*-frame.
- (2) \Longrightarrow (1) Suppose $\mathfrak{c}(a \vee b)$ is compact, with $a \wedge b = 0$ in L. We need to show that c(a) or c(b) is compact. Now, $b \leq a^*$ implies that

Theorem

The following conditions are equivalent for a frame L:

- 1. L is a J-frame.
- 2. Whenever $a \in L$, and $\mathfrak{c}(a \vee a^*)$ compact, then either $\mathfrak{c}(a)$ or $\mathfrak{c}(a^*)$ is compact.

- $(1) \Longrightarrow (2)$ This is clear from the definition of *J*-frame.
- (2) \Longrightarrow (1) Suppose $\mathfrak{c}(a \lor b)$ is compact, with $a \land b = 0$ in L. We need to show that $\mathfrak{c}(a)$ or $\mathfrak{c}(b)$ is compact. Now, $b \le a^*$ implies that $(a \lor b) \le (a \lor a^*)$, therefore $\mathfrak{c}(a \lor a^*)$ is compact. Thus, $\mathfrak{c}(a)$ or $\mathfrak{c}(a^*)$ is
- compact, by hypothesis. If c(a) is compact then we are done. If $c(a^*)$ is
- compact, then $\mathfrak{c}(a^*) \vee \mathfrak{c}(a \vee b)$ is compact. But
- $\mathfrak{c}(a^*) \vee \mathfrak{c}(a \vee b) = \mathfrak{c}(a^* \wedge (a \vee b)) = \mathfrak{c}(a^* \wedge b)$. So $\mathfrak{c}(a^* \wedge b)$ is compact, and hence $\mathfrak{c}(b)$ is compact.

Theorem

The following conditions are equivalent for a frame L:

- 1. L is a J-frame.
- 2. Whenever $a \in L$, and $\mathfrak{c}(a \vee a^*)$ compact, then either $\mathfrak{c}(a)$ or $\mathfrak{c}(a^*)$ is compact.

Proof.

- $(1) \Longrightarrow (2)$ This is clear from the definition of *J*-frame.
- $(2) \Longrightarrow (1)$ Suppose $\mathfrak{c}(a \lor b)$ is compact, with $a \land b = 0$ in L. We need to show that $\mathfrak{c}(a)$ or $\mathfrak{c}(b)$ is compact. Now, $b \le a^*$ implies that $(a \lor b) \le (a \lor a^*)$, therefore $\mathfrak{c}(a \lor a^*)$ is compact. Thus, $\mathfrak{c}(a)$ or $\mathfrak{c}(a^*)$ is compact, by hypothesis. If $\mathfrak{c}(a)$ is compact, then $\mathfrak{c}(a^*) \lor \mathfrak{c}(a \lor b)$ is compact. But

 $\mathfrak{c}(a^*) \vee \mathfrak{c}(a \vee b) = \mathfrak{c}(a^* \wedge (a \vee b)) = \mathfrak{c}(a^* \wedge b)$. So $\mathfrak{c}(a^* \wedge b)$ is compact, and hence $\mathfrak{c}(b)$ is compact.

Theorem

The following conditions are equivalent for a frame L:

- 1. L is a J-frame.
- 2. Whenever $a \in L$, and $\mathfrak{c}(a \vee a^*)$ compact, then either $\mathfrak{c}(a)$ or $\mathfrak{c}(a^*)$ is compact.

Proof.

- $(1) \Longrightarrow (2)$ This is clear from the definition of *J*-frame.
- (2) \Longrightarrow (1) Suppose $\mathfrak{c}(a \vee b)$ is compact, with $a \wedge b = 0$ in L. We need to show that $\mathfrak{c}(a)$ or $\mathfrak{c}(b)$ is compact. Now, $b \leq a^*$ implies that $(a \vee b) \leq (a \vee a^*)$, therefore $\mathfrak{c}(a \vee a^*)$ is compact. Thus, $\mathfrak{c}(a)$ or $\mathfrak{c}(a^*)$ is compact, by hypothesis. If $\mathfrak{c}(a)$ is compact then we are done.

compact, by hypothesis.If c(a) is compact then we are done.If $c(a^*)$ is compact, then $c(a^*) \vee c(a \vee b)$ is compact. But

 $\mathfrak{c}(a^*)\vee\mathfrak{c}(a\vee b)=\mathfrak{c}(a^*\wedge(a\vee b))=\mathfrak{c}(a^*\wedge b).$ So $\mathfrak{c}(a^*\wedge b)$ is compact, and hence $\mathfrak{c}(b)$ is compact.

Theorem

The following conditions are equivalent for a frame L:

- 1. L is a J-frame.
- 2. Whenever $a \in L$, and $\mathfrak{c}(a \vee a^*)$ compact, then either $\mathfrak{c}(a)$ or $\mathfrak{c}(a^*)$ is compact.

- $(1) \Longrightarrow (2)$ This is clear from the definition of J-frame.
- (2) \Longrightarrow (1) Suppose $\mathfrak{c}(a \vee b)$ is compact, with $a \wedge b = 0$ in L. We need to show that c(a) or c(b) is compact. Now, $b \leq a^*$ implies that $(a \lor b) \le (a \lor a^*)$, therefore $\mathfrak{c}(a \lor a^*)$ is compact. Thus, $\mathfrak{c}(a)$ or $\mathfrak{c}(a^*)$ is compact, by hypothesis. If c(a) is compact then we are done. If $c(a^*)$ is compact, then $\mathfrak{c}(a^*) \vee \mathfrak{c}(a \vee b)$ is compact. But

Theorem

The following conditions are equivalent for a frame L:

- 1. L is a J-frame.
- 2. Whenever $a \in L$, and $\mathfrak{c}(a \vee a^*)$ compact, then either $\mathfrak{c}(a)$ or $\mathfrak{c}(a^*)$ is compact.

Proof.

- $(1) \Longrightarrow (2)$ This is clear from the definition of *J*-frame.
- (2) \Longrightarrow (1) Suppose $\mathfrak{c}(a \vee b)$ is compact, with $a \wedge b = 0$ in L. We need to show that $\mathfrak{c}(a)$ or $\mathfrak{c}(b)$ is compact. Now, $b \leq a^*$ implies that $(a \vee b) \leq (a \vee a^*)$, therefore $\mathfrak{c}(a \vee a^*)$ is compact. Thus, $\mathfrak{c}(a)$ or $\mathfrak{c}(a^*)$ is compact, by hypothesis. If $\mathfrak{c}(a)$ is compact then we are done. If $\mathfrak{c}(a^*)$ is compact, then $\mathfrak{c}(a^*) \vee \mathfrak{c}(a \vee b)$ is compact. But

 $\mathfrak{c}(a^*)\vee\mathfrak{c}(a\vee b)=\mathfrak{c}(a^*\wedge(a\vee b))=\mathfrak{c}(a^*\wedge b).$ So $\mathfrak{c}(a^*\wedge b)$ is compact, and

Theorem

The following conditions are equivalent for a frame L:

- 1. L is a J-frame.
- 2. Whenever $a \in L$, and $\mathfrak{c}(a \vee a^*)$ compact, then either $\mathfrak{c}(a)$ or $\mathfrak{c}(a^*)$ is compact.

- $(1) \Longrightarrow (2)$ This is clear from the definition of *J*-frame.
- (2) \Longrightarrow (1) Suppose $\mathfrak{c}(a \vee b)$ is compact, with $a \wedge b = 0$ in L. We need to show that $\mathfrak{c}(a)$ or $\mathfrak{c}(b)$ is compact. Now, $b \leq a^*$ implies that $(a \vee b) \leq (a \vee a^*)$, therefore $\mathfrak{c}(a \vee a^*)$ is compact. Thus, $\mathfrak{c}(a)$ or $\mathfrak{c}(a^*)$ is compact, by hypothesis. If $\mathfrak{c}(a)$ is compact then we are done. If $\mathfrak{c}(a^*)$ is compact, then $\mathfrak{c}(a^*) \vee \mathfrak{c}(a \vee b)$ is compact. But $\mathfrak{c}(a^*) \vee \mathfrak{c}(a \vee b) = \mathfrak{c}(a^* \wedge (a \vee b)) = \mathfrak{c}(a^* \wedge b)$. So $\mathfrak{c}(a^* \wedge b)$ is compact, and hence $\mathfrak{c}(b)$ is compact.

DEFINITION:

A sublocale S of a frame L is relatively connected in L if whenever $S\subseteq U$, where U is an open sublocale of L with $U=U_1\vee U_2$ for some open sublocales $U_1,\,U_2$ of L such that $U_1\cap U_2=\mathbb{O}$, then $S\cap U_1=\mathbb{O}$ or $S\cap U_2=\mathbb{O}$.

Theorem

DEFINITION:

A sublocale S of a frame L is *relatively connected* in L if whenever $S\subseteq U$, where U is an open sublocale of L with $U=U_1\vee U_2$ for some open sublocales $U_1,\,U_2$ of L such that $U_1\cap U_2=\mathbb{O}$, then $S\cap U_1=\mathbb{O}$ or $S\cap U_2=\mathbb{O}$.

Theorem

DEFINITION:

A sublocale S of a frame L is *relatively connected* in L if whenever $S\subseteq U$, where U is an open sublocale of L with $U=U_1\vee U_2$ for some open sublocales $U_1,\,U_2$ of L such that $U_1\cap U_2=\mathbb{O}$, then $S\cap U_1=\mathbb{O}$ or $S\cap U_2=\mathbb{O}$.

Theorem

- 1. L is a J-frame.
- 2. M \ L is relatively connected in M, for any compactification M of L.
- 3. $\beta L \setminus L$ is relatively connected in βL
- 4. If $\beta L = \mathfrak{c}(I) \vee \mathfrak{c}(J)$ for some $I, J \in \beta L$ and $\mathfrak{c}(I) \cap \mathfrak{c}(J) \subseteq L$, then $\mathfrak{c}(I) \subseteq L$ or $\mathfrak{c}(J) \subseteq L$.

DEFINITION:

A sublocale S of a frame L is *relatively connected* in L if whenever $S\subseteq U$, where U is an open sublocale of L with $U=U_1\vee U_2$ for some open sublocales $U_1,\,U_2$ of L such that $U_1\cap U_2=\mathbb{O}$, then $S\cap U_1=\mathbb{O}$ or $S\cap U_2=\mathbb{O}$.

Theorem

- 1. L is a J-frame.
- 2. M \ L is relatively connected in M, for any compactification M of L.
- 3. β L \setminus L is relatively connected in β L.
- 4. If $\beta L = \mathfrak{c}(I) \vee \mathfrak{c}(J)$ for some $I, J \in \beta L$ and $\mathfrak{c}(I) \cap \mathfrak{c}(J) \subseteq L$, then $\mathfrak{c}(I) \subseteq L$ or $\mathfrak{c}(J) \subseteq L$.

DEFINITION:

A sublocale S of a frame L is *relatively connected* in L if whenever $S\subseteq U$, where U is an open sublocale of L with $U=U_1\vee U_2$ for some open sublocales $U_1,\,U_2$ of L such that $U_1\cap U_2=\mathbb{O}$, then $S\cap U_1=\mathbb{O}$ or $S\cap U_2=\mathbb{O}$.

Theorem

The following conditions are equivalent for a non-compact completely regular frame L:

- 1. L is a J-frame.
- 2. M \ L is relatively connected in M, for any compactification M of L.
- 3. $\beta L \setminus L$ is relatively connected in βL .

• 4. If $\beta L = \mathfrak{c}(I) \vee \mathfrak{c}(J)$ for some $I, J \in \beta L$ and $\mathfrak{c}(I) \cap \mathfrak{c}(J) \subseteq L$, then $\mathfrak{c}(I) \subseteq L$ or $\mathfrak{c}(J) \subseteq L$.

DEFINITION:

A sublocale S of a frame L is *relatively connected* in L if whenever $S\subseteq U$, where U is an open sublocale of L with $U=U_1\vee U_2$ for some open sublocales $U_1,\,U_2$ of L such that $U_1\cap U_2=\mathbb{O}$, then $S\cap U_1=\mathbb{O}$ or $S\cap U_2=\mathbb{O}$.

Theorem

- 1. L is a J-frame.
- 2. M \ L is relatively connected in M, for any compactification M of L.
- 3. $\beta L \setminus L$ is relatively connected in βL .
- 4. If $\beta L = \mathfrak{c}(I) \vee \mathfrak{c}(J)$ for some $I, J \in \beta L$ and $\mathfrak{c}(I) \cap \mathfrak{c}(J) \subseteq L$, then $\mathfrak{c}(I) \subset L$ or $\mathfrak{c}(J) \subset L$.

REFERENCE:

1. Michael, E., *J-spaces*, Top. Appl. 102 (2000), 315-339.