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Introduction & Literature

It is without a doubt that an analytical solution for the nonlinear
hyperchaotic finance system is almost unachievable. For this
reason, we shall rely on numerical methods. In the of field
numerical methods for solving differential equations, two main
classes can be distinguished:

Classical methods

Spectral methods
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Introduction & Literature

For more on spectral methods, see Shen et al. (2011);
Fornberg and Driscoll (1999)

Babolian Babolian and Hosseini (2002) introduced a modified
spectral method that is more efficient than the normal
spectral method. Various modified and quadrature rules can
be found in the literature of spectral methods, including
quadrature based on Chebyshev polynomials.

Bhrawy Bhrawy and Alofi (2013) introduces an operational
matrix to the shifted Chebyshev method to generate an even
faster algorithm for fractional integration.
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Driscoll Driscoll (2010) presents a fast algorithm based on
operational matrices in which the matrices have a lower
density.

The Chebfun package of Matlab Trefethen (2000) is used in
the algorithm, as it exploits results from approximation theory,
spectral methods, and object-oriented software design.

Matlab Differentiation Matrix Suite (DMS) package
Weideman and Reddy (2000)

Trif Trif (2011) introduces the chebpack package that is based
on the Chebyshev-Tau method where the focus is more on the
spectral space of coefficients rather than the physical space.
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Chebyshev polynomials

The Chebyshev polynomial Tn(x) of 1st kind is a polynomial in
x ∈ [−1, 1] of degree n > 0 defined by the relation:

Tn(x) = cos nθ, for x = cos θ

ie. Tn(x) = cos(n arccos(x))

From the trigonometric relation.

cos(nθ) + cos(n − 2)θ = 2 cos θ cos(n − 1)θ (1)

we get

T0(x) = 1, (2)

T1(x) = x , (3)

Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3, ... (4)

Claude – Moutsinga Comparative Performance of time Spectral



Introduction & Literature review
Chebyshev polynomials

Applications and numerical results
conclusion
References

Definition & useful properties
Differentiation and integration
The Spectral Method

which in turn can be expressed in a matrix form as:
1

−2x 1
1 −2x 1

. . .
. . .

. . .

1 −2x 1




T0(x)
T1(x)
T2(x)

...
Tn(x)

 =


1
−x
0
...
0

 . (5)
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The zeros of Tn are the points

xk = − cos
(k − 1

2)π

n
, k = 1, 2, . . . , n. (6)

The set {xk}k is termed as collocation points, also called
Chebyshev points of first kind. For any point x , the set
{T0(x),T1(x), . . . } is an orthogonal basis according to the
weighted inner product defined by:

< f , g >=

∫ 1

−1

f (x)g(x)√
1− x2

dx (7)

for any continuous function f , g defined on [−1, 1]. This means
that for any polynomial of degree n > 0, there exists a unique set
of coefficients {c1, c2, ..., cn} such that

pn(x) =
n∑

k=0

ckTk(x). (8)
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Considering that polynomials are dense in C ([−1, 1]),

Theorem

Let f be a Lipschitz continuous function on the interval [-1,1].
Then f admits a unique representation as a series of the form:

u(x) =
c0
2

+
∞∑
k=1

ckTk(x). (9)

where Tk(x) are Chebyshev polynomials,

ck =
2

π

∫ 1

−1

u(x)Tk(x)√
1− x2

dx , k = 0, 1, 2, 3, ... (10)

This series converges uniformly and absolutely.
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A Chebyshev approximation of order n > 0 of a function u
continuous on an interval [−1, 1] is defined by

un(x) =
n∑

k=0

ckTk(x) (11)

= c · T (x) (12)

where c = (c0, c1, . . . , cn) is the coefficient vector associated with
the approximation un. It is usually termed as the spectral
representation of un. The set of Chebyshev coefficient vectors {c}
of continuous functions on [−1, 1] is referred to as the frequency
space.
This means u can be represented by a vector
v = (u(x0), u(x1), ..., u(xn)). We shall call v the physical
representation of u.
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On the collocation point, one writes

v(x) = T (x).c , (13)

(v(x0), ..., v(xn)) =

(
n∑

k=0

ckTk(x0), ...,
n∑

k=0

ckTk(xn),

)
(14)

where T is the matrix defined as follows

T =


T0(x0) T1(x0) . . . Tn(x0)
T0(x1) T1(x1) . . . Tn(x1)

...
. . .

...
T0(xn) T1(xn) . . . Tn(xn)

 .

Since v = Tc =⇒ c = T−1v ,

From the nature of T ′
ks, The matrix T is sparse and FFT enables

to get T−1.
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Some useful properties

Consider two functions a and u of a variable x , then the product
a(x) · u(x) admits also a spectral representation, denoted as ϕ
which is defined by

ϕ = a.c (15)

where a is termed as the matrix representation of the function
a(x), see Driscoll (2010) and c is defined as in (12)
An efficient way of getting matrix a is to write the product in its
discrete form.

Since a(x)f (x) =

[
n∑

k=0

akTk(x)

][
n∑

k=0

ckTk(x)

]
,(16)

then
n∑

k=0

ϕkTk(x) =
n∑

k=0

n∑
l=0

αklakclTkTl (17)

for some coefficients αkl , 0 ≤ k , l ≤ n.
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In addition, given the following relation

Tk(x)Tl(x) =
1

2

[
Tk+l(x) + T|k−l |(x)

]
, for all k , l = 0, 1, ...n

(18)
and in rearranging terms properly, it brings to existence a matrix a
such that

n∑
k=0

ϕkTk(x) =
n∑

k=0

[
n∑

l=0

aklcl

]
Tk(x).

In the frequency space, this will written in the form

ϕ = ac. (19)
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Differentiation and integration

In view of equation (11) and by differentiation, u′(x) is given by

u′(x) =
n∑

k=0

ckT
′
k(x). (20)

The differentiation of relation (4) and (3) implies

T0 = T ′
1, T1 =

T ′
2

2
, (21)

Tn+1(x) = nT ′
n−1(x)− 2(1− x2)T ′

n(x) (22)

ie. Tn =
T ′
n+1

2(n + 1)
−

T ′
n−1

2(n − 1)
, n = 2, 3, .... (23)

Inserting this back into (20) shows the existence of a matrix
D = (dkl)0<k,l<n such that

n∑
k=0

c ′kTk(x) =
n∑

k=0

n∑
l=0

dklclTk(x) (24)
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ie. c ′ = Dc (25)

where c ′ is the spectral representation of the derivative function u′

and moreover D is a sparse upper triangular matrix, with the
following properties

dkl = 0, for k ≤ l ,
dkl = 0, if l − k is even,
dkl = 2k , if l − k is odd.

(26)

Applying the above result recursively, we get the spectral
representation c(p) of the derivative with order p of u stated by

c(p) = Dpc . (27)
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For the case of integration, we recall again the relation

Tn+1(x) = nTn−1(x)− 2(1− x2)Tn(x) (28)∫
Tn(x)dx =

1

2

[Tn+1(x)

n + 1
− Tn−1(x)

n − 1

]
, n = 2, 3, (29)∫

T1(x)dx =
1

4
T2(x), (30)∫

T0(x)dx =
1

2
T1(x). (31)

As a linear operator, the integral of u will also be a continuous
function in, which will have a unique expansion series of the form∫

u(x)dx =
n∑

k=0

IkTk(x), x ∈ [a, b],

where Ik ’s are coefficients of the integral of u, and similarly as with
differentiation there exists a n × n-matrix J such that
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Ik =
n∑

l=0

Jklcl , i.e. I = J · c, (32)

where I is the spectral representation of the integral of u. In fact,∫
u(x)dx =

∫ N−1∑
k=0

ckTk(x)

i .e
N−1∑
k=0

IkTk(x) =

∫ N−1∑
k=0

ckTk(x) dx

=
N−1∑
k=0

ck

∫
Tk(x) dx

N−1∑
k=0

N−1∑
j=2

JkjcjTk(x) =
n∑

k=2

ck
1

2

[Tk+1

k + 1
− Tk−1

k − 1

]
.
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Performing a smart multiplication and rearranging terms we get
the coefficients of J recursively as follows:

Jkk = 0, J01 =
1

2
, Jk,k−1 = −Jkk+1 =

1

k
.

So then, the spectral representation of the integral of u is the
vector d = J.c , and for any continuous function a(x),∫

a(x)u(x)dx → J a c . (33)

∫
a1(x)u

′(x)dx → (I − JD)a1 c∫ ∫
a2(x)u

′′(x)dx → (I − JD)2a2 c .

...
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∫
...

∫
am(x)

dmu

dxm
(x)dx ...dx → (I − JD)mam c (34)

where I stands for the identity matrix. Thus, for a general linear
differential operator L

L u(x) =
m∑
i=0

ai (x)
d iu

dx i
(x) (35)

we have

∫
...

∫
L u(x)dxm →

m∑
i=0

Jm−i (I − JD)iai c . (36)

The matrix

A =
m∑
i=0

Jm−i (I − JD)iai (37)

is the spectral representation of the integral operator of L.
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If we consider a general differential equation Au = f of order m for
which the differential operator can be written as A = L+ N where
L and N are respectively the linear part and the nonlinear part, then
the differential equation writes as

Lu(t) + Nu(t) = f (t) (38)

Lu(t) = −Nu(t) + f (t) (39)∫
...

∫
Lu(t) → Ac = −n+ Jmf (40)

Ac = f (41)

implying c = A−1f (42)

where n is the spectral representation of the integral of Nu at order
m, and f = −n+ Jmf is the spectral representation of −Nu+ f (t).
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The Robust Spectral Integral Method

For this section we consider Ih to be a mesh on the interval [0,T ]
and N be the number of subintervals and

Ih := {tn : 0 = t0 < t1 < · · · < tN = T} .
We denote by Λn = [tn−1, tn], hn = tn − tn−1 and un(t) the
solution of (??) on the n-th element, namely

un(t) = u(t), ∀t ∈ Λn, 1 ≤ n ≤ N.

Let Mn > 0 be an integer and consider PMn to be the space of
polynomials of order at most Mn built on Λn. We apply the
spectral method as described previously to obtain a numerical
solution UMn ∈ PMn on Λn. The Robust Spectral Integral Method
on the interval [0,T ] consists of a successive application of the
spectral method on each Λn to obtain a global numerical solution
UM(t) of (??) defined in such way that

UM(t) = UMn(t), t ∈ Λn, 1 ≤ n ≤ N.

where M is taken to be the smallest of the Mns. That is,

M = inf
0<n≤N

Mn

,
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For each subinterval [ti , ti+1], equation (41) is applied.

A(i)c(i) = f(i), i = 0, ...,m − 1. (43)

The overall matrix A of the entire problem is then a diagonal of
the block of matrices A(i).

A(1) 0

0 A(2) 0
. . .

. . .

0 A(m)



c(1)

c(2)

...

c(m)

 =


f(1)

f(2)

...

f(m)

 . (44)

By inversion of the matrix A(i) on each domain Λi , we obtain c(i)

and therefore uMi
which is UM on Λi .

Claude – Moutsinga Comparative Performance of time Spectral



Introduction & Literature review
Chebyshev polynomials

Applications and numerical results
conclusion
References

Definition & useful properties
Differentiation and integration
The Spectral Method

In this case a global error can arise. However the following theorem
guarantees an exponential convergence even after discretization.

Theorem

Assume that u belongs to the broken Sobolev space: u ∈ H1(0,T )
and u|Λn

∈ H rn(Λn), 1 ≤ n ≤ N with integers 2 ≤ rn ≤ Mn + 1,
and there exists a constant L ≥ 0 such that for any z1 and z2,

|f (z1, t)− f (z2, t)| ≤ L|z1 − z2|. (45)

Then for
2
√
2πhmaxL ≤ β < 1, (46)

we have

∥u − UM∥2H1(0,T ) ≤ cβT exp(cβT )
N∑
i=1

h2ri−2
i M2−2ri

i |u|2Hri (Λ), (47)

where cβ is a positive constant depending only on β.

Where Λn = [tn−1, tn], hn = tn − tn−1 and the constant Mn is of
the order of the Chebyshev polynomial of approximation un defined
on Λn. The proof can be found in Wang and Mu (2016).
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Applications and numerical results

In this section, we apply our method to different problems found in
financial economics and test the convergence, and efficiency of the
proposed method against the existing Chebfun method. In addition
we provide an application of our method for synchronization. Since
the exact solution is not available we choose the ODE15s with
relative and absolute tolerance 10−14 to serve as the benchmark
solution. The error E is the maximal error given by:

||E || = ||SolBenchmark − SolNumerical ||∞. (48)
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hyperchaotic problem

It has been shown (see Zhao et al. (2011)) that four sub-blocks
actually drive the dynamics of the finance model: production,
money, stocks and labor force. Their interaction is reported by
three nonlinear differential equations defining what is termed as
the chaotic finance system. Technically and more explicitly, the
finance system describes the time variation of three main state
variable: the interest rate x , the investment demand y and the
price index of stock z . The interest rate is an amount expressed as
the percentage of the principal by lender to a borrower for an
asset. The investment demand can be defined as the desired
capital and inventories by firms.
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hyperchotic model

The hyperchaotics finance system is expressed as follows:
ẋ = z + (y − a)x + w ,
ẏ = 1− by − x2,
ż = −x − cz ,
ẇ = −d xy − ew .

(49)

where the parameters a, b, c are respectively the saving, the
per-investment cost and the elasticity of the demand Kocamaz
et al. (2015). These parameters are all considered to be
non-negative and constant.
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hyperchotic form

In order to apply our numerical methods based on spectral
Chebyshev methods, we first write the system in the framework of
Equation (39)). That is,

ẋ + ax − z − w = xy ,
ẏ + by = 1− x2,
ż + x + cz = 0,
ẇ + ew = −d xy ,

(50)
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hyperchaotic spectral

which can also be written as:

a u′(t) + B u(t) = f (t), t ∈ [0,T ] (51)

where a = (1, 1, 1, 1), u(t) = [x(t), y(t), z(t),w(t)] , B =
a 0 −1 −1
0 b 0 0
1 0 c 0
0 0 0 e


and f (t) = [x(t)y(t), 1− x2(t), 0,−d x(t)y(t)].
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hyperchaotic spectral differential

The spectral representation of the Equation (51) is
D + aI 0 −I −I

0 D + bI 0 0
Id 0 D + cI 0
0 0 0 D + eI



x
y
z
w

 =


f1

f2

f3

f4

 (52)

where x, y, z, w are the spectral representation of the unknown
functions [x(t), y(t), z(t),w(t)] respectively, and similarly
[f1, f2, f3, f4] which represent the coefficient vectors of the nonlinear
part [xy , 1− x2, 0, dxy ] respectively.
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hyperchaotis spectral integral

On the other hand we can approach the hyperchaotic problem by
integration first then apply Chebychev approximation to the
resulting integral problem.

I + aJ 0 −J −J
0 I + bJ 0 0
J 0 I + cJ 0
0 0 0 I + eJ



x
y
z
w

 =


f1

f2

f3

f4

 (53)

where x, y, z, w are defined as above, and similarly [f1, f2, f3, f4]
which represent the coefficient vectors of the integral of the
nonlinear part [xy , 1− x2, 0, dxy ] respectively.
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hyperchaotic spec fix point

The two approaches generates nonlinear problem, we will apply an
iterative method to equations (53) and (52). The aim is to get the
coefficient vector c of u(t) = [x(t), y(t), z(t)].
Lets then consider the fix point problem

Ac = f. (54)

We shall start with an initial guess coming out of the initial
condition then get the new c by c = A−1f where the old c is used
to compute f in the iterations. Keeping in mind that the chaotic
finance (49) is also highly nonlinear on some interval, and in order
to speed up convergence we suggest the use of a splitting method
on the interval [0,T ] into N-domains 0 = t0 < t1 < ... < tN = T
and apply the spectral methods.
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phase portraits plots

The results are implemented for
a = 0.9, b = 0.2, c = 1.2, d = 0.2, e = 0.17. Figure 1 shows the
phase portraits between variables for a long time T = 200. They
both exhibit chaos as expected.
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variables plots
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Figure: plot of x , y , z ,w variables using 3 domains and 16 collocation pts
and T = 5
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error discussion plots

We go on into investigating the effect of n and N on the decay
error. Figure 3a shows that employing more collocation points on a
domain enhances the precision of the numerical solution both from
integration as well as differentiation method. It is also remarkable
to see that while it takes close 80 points for Chebfun to reach an
accuracy of 10−4, the integral and differentiation spectral methods
only require 20 points to achieve same accuracy. However the later
methods tend to slightly lose this quality as the number of points
gets larger (here n = 120) as compare to Chebfun. This makes us
consider a domain decomposition of the interval [0,T ]. Introducing
decompositions (2 and 4 sub-intervals) the spectral decay is
recovered, see Figure 3b and 3c and better accuracy is obtained.
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error discussion on n
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T = 2 N = 4
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Figure: Convergence and efficiency of the three methods a we vary the
number of collocation points
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efficiency
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Figure: Efficiency and convergence of integral and differentiation method
as we vary the number of domains
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matrix plot
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Figure: Plots of the underlying matrix A of all three methods.
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Cryptocurrency

From an asset flow perspective, Caginalp (2018) proposed a model
which discribes the interaction between the market price of
cryptocurrency P(t), the liquidity price L(t) at time t and the
trend-based component of investor preference at time t denoted as
ζ1(t). This interaction is described by the following system:

τ0
dP
dt = (1 + 2ζ1)L− P

c0
dL
dt = 1− L+ q(1 + 2ζ1)L− qP

c1
dζ1
dt = q1(1 + 2ζ1)

L
P − q1 − ζ1

(55)

The system admits only one equilibrium point obtained for L = P
and ζ1 = 0.
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Differentiation

The differentiation approach applied in problem (55) produces the
following discrete system:

τ0D + I I 0
qI c0D + (1− q)I 0
0 0 c1D + I

PL
Z

 =

f1f2
f3

 . (56)

where P, L, Z are the coefficient vectors the variables P, L, ζ1;
similarly [f1, f2, f3] represent the coefficient vectors of the nonlinear
part [2ζ1L, 1 + 2ζ1L, q1(1 + 2ζ1)

L
P ] respectively.
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Integration

As for the integral approach, we get the following system:

Ac = f. (57)

where

A =

 τ0I + J −J 0
qJ c0I + (1− q)J 0
0 0 c1I + J


and f is the coefficient vector of the integral of the nonlinear part
N,

N =

 2Jζ1L
J(1 + 2qζ1L)

J
(
q1(1 + 2ζ1)

L
P − q1

)
 .
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In this article, a Chebyshev spectral method has been applied on
time multiple domain using differentiation matrix and also using
integration approach. The methods prove to be robust with the
integral approach showing to be more efficient for hyperchaotic
finance problem and cryptocurrency pricing problem, than the
method from differentiation approach. The results are also
compared with solutions obtained from other numerical methods in
the literature to confirm reliability of the solutions. The spectral
methods presented here are simple, fast and accurate for handling
even more complicated ODEs. For future investigation we intend
to extend the spectral method designed though to the fractional
case of hyperchaotic systems.
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End

Thank You!
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