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Aim

Aim
To describe the development of multi-domain multivariate
spectral collocation (SC) method for (2+1) dimensional
nonlinear parabolic PDEs defined on large time domains.
To highlight accuracy and efficiency of the multi-domain
multivariate SC method on single Burger’s equation.
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Motivation

Why developing of numerical method? Why Burgers equation?

The need to develop sufficiently accurate, convergent and
computationally efficient numerical techniques for solving
nonlinear problems is an ever-recurring theme in numerical
mathematics.

The difficulty in solving DEs rises with the number of variables
the DE has. Thus, solving multi-dimensional PDEs is more
involving.

Burgers equation finds many applications in engineering,
science and industry - turbulence theory [1], modeling traffic flow
[2], cosmology [3], gas dynamics [4], shock wave theory [5], etc

Burgers equation contains a coefficient 1
Re , which has a

significant impact on the accuracy of any method. Hence, to
study the effect of Re gives a convincing argument on the
performance of the method.
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Motivation

Advantages - SC methods

SC methods have been shown in literature to be more accurate
and efficient than common numerical methods (when solutions
are smooth).

SC method algorithm are easy to learn and implement in
scientific computing software.

Limitations - single domain SC methods

Accuracy of single-domain SC methods increases with an
increase in grid points but beyond a certain number of grid
points, the accuracy deteriorates rapidly.

Accuracy also deteriorate as the computational domain
(particularly time) increases.

This work reports new improvement that incorporates the
non-overlapping multi-domain approach in the time variable
when descretizing the solution domain for Chebyshev SC
method.
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Numerical experimentation

General single nonlinear PDE
We consider a second-order 2D nonlinear PDEs of the form:

∂u
∂t

= G
(
∂2u
∂x2 ,

∂2u
∂y2 ,

∂u
∂x

,
∂u
∂y

,u
)
, (x , y) ∈ [a,b]× [c,d ], t ∈ [0,T ],

(1)
subject to the initial and Dirichlet boundary conditions

u(x , y ,0) = h(x , y), u(a, y , t) = ga(y , t), u(b, y , t) = gb(y , t),
u(x , c, t) = gc(x , t), u(x ,d , t) = gd (x , t), (2)

where G is a nonlinear operator, h(x , y),ga(y , t),gb(y , t),gc(x , t) and
gd (x , t) are known functions.
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Numerical experimentation

Specific example

We consider the two-dimensional nonlinear Burger’s PDE [6, 7, 8, 9, 10] :

∂u

∂t
=

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
− u

∂u

∂x
− u

∂u

∂y
, (x, y) ∈ [a, b] × [c, d ], t > 0 (3)

where Re is the Reynold number. The equation is solved subject to the initial and boundary conditions

u(x, y, 0) =
1

1 + eRe(x+y)/2
, u(0, y, t) =

1

1 + eRe(y−t)/2
, u(2, y, t) =

1

1 + eRe(2+y−t)/2
,

u(x, 0, t) =
1

1 + eRe(x−t)/2
, u(x, 2, t) =

1

1 + eRe(2+x−t)/2
. (4)

The exact solution is given by u(x, y, t) = 1
1+eRe(x+y−t)/2 .
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Linearisation

Applying quasilinearisation method (QLM) [12] on the general
nonlinear PDE (1) gives the iterative scheme:

ϖ4,k
∂2uk+1

∂x2
+ ϖ3,k

∂2uk+1

∂y2
+ ϖ2,k

∂uk+1

∂x
+ ϖ1,k

∂uk+1

∂y
+ ϖ0,k uk+1 −

∂uk+1

∂t
= Rk , , (5)

where the variable coefficients are defined as

ϖ4,k =
∂G

∂(uxx )k
, ϖ3,k =

∂G

∂(uyy )k
, ϖ2,k =

∂G

∂(ux )k
, ϖ1,k =

∂G

∂(uy )k
, ϖ0,k =

∂G

∂(u)k
(6)

Rk = ϖ4,k
∂2uk

∂x2
+ ϖ3,k

∂2uk

∂y2
+ ϖ2,k

∂2uk

∂x
+ ϖ1,k

∂2uk

∂y
+ ϖ0,k uk − Gk , (7)

with (uxx )k =
∂2uk
∂x2 , (uyy )k =

∂2uk
∂y2 , (ux )k =

∂uk
∂x , (uy )k =

∂uk
∂y , k and k + 1 stands for previous and current

iterations, respectively.
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Domain decomposition
Let t ∈ I, where I ∈ [0, T ] is the time interval. Then, the computational domain I is split into p non-overlapping
subintervals given by

Iι = [tι−1, tι], tι−1 < tι, ι = 1, 2, 3, ..., p, with, 0 = t0 < t1 < t2 < ... < tp = T , (8)

where each sub-interval is discretized using Nt + 1 Chebyshev-Gauss-Lobatto (C-G-L) collocation points.

t0 t1 t2 t3 tι−1 tι tp−1 tp

I1 I2 I3 Iι Ip

tι−1 tι

t(ι)0 t(ι)1 t(ι)2 t(ι)3 t(ι)
ε−1 t(ι)ε t(ι)Nt−2 t(ι)Nt−1 t(ι)Nt

Figure: Non-overlapping grid (t− domain )
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Domain transformation

The time domain t ∈ [tι−1, tι] in each ιth subinterval is transformed
into t̂ ∈ [−1,1] using the linear mapping:

t ιl =
1
2
(tι − tι−1) t̂l +

1
2
(tι + tι−1) , t ∈ [tι−1, tι], (9)

where
{

t̂l
}Nt

l=0
= cos

(
πl
Nt

)
signifies the collocation points in the ιth

subinterval in t variable. The spatial domains x ∈ [a,b] and y ∈ [c,d ]
are transformed into x̂ ∈ [−1,1] and ŷ ∈ [−1,1], respectively, by
using the linear mappings:

xi =
1
2
(b − a)x̂ +

1
2
(b + a), yj =

1
2
(d − c)ŷ +

1
2
(d + c),(10)

where {x̂i}
Nx
i=0 = cos

(
πi
Nx

)
and {ŷj}

Ny

j=0 = cos
(

πj
Ny

)
denote the

collocation points which are considered to be symmetrically
distributed CGL grid points on the interval [−1,1] [13, 14].
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Continuity conditions

Let
(ι)
u (x , y , t), ι = 1,2,3, ...,p, to denote the solutions at various

time intervals. Making use of the continuity conditions
(ι)
u (x , y , tι−1) =

(ι−1)
u (x , y , tι−1) (11)

to yield the initial conditions for the subsequent subintervals
(ι = 2,3,4, ...,p ) in t , the multi-domain is applied on the QLM
iterative scheme (5). Consequently, we must solve:

ϖ4,k
∂2(ι)u k+1

∂x2
+ ϖ3,k

∂2(ι)u k+1

∂y2
+ ϖ2,k

∂
(ι)
u k+1

∂x
+ ϖ1,k

∂
(ι)
u k+1

∂y
+ ϖ0,k

(ι)
u k+1 −

∂
(ι)
u k+1

∂t
=

(ι)
R k , (12)

subject to the boundary conditions
(ι)
u k+1(a, y, t) = ga(y, t),

(ι)
u k+1(b, y, t) = gb(y, t), (13)

(ι)
u k+1(x, c, t) = gc (x, t),

(ι)
u k+1(x, d, t) = gd (x, t), (14)

and initial conditions
(1)
u k+1u(x, y, 0) = h(x, y),

(k)
u k+1u(x, y, tι−1) =

(k−1)
u k+1u(x, y, tι−1), for ι = 2, 3, 4, ..., p. (15)
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Trivariate Interpolation
The approximate solution is obtained by expanding the unknown u(x, y, t) using the triple Lagrange interpolating
polynomial. Thus, the trivariate Lagrange interpolation of u(x, y, t) at each sub-interval Iι is given by

(ι)
u (x, y, t) ≈

(ι)
u N (x, y, t) =

Nt∑
l=0

Ny∑
j=0

Nx∑
i=0

(ι)
u lji Ll (t)Lj (y)Li (x). (16)

The space derivative matrices (first and nth) in x and y and differentiation matrix (first and nth) in time t at the
collocation points (x̂, ŷ, t̂) in each sub-interval Iι, ι = 1, 2, ..., p, are approximated as:

∂
(ι)
u

∂x
(x̂i , ŷj , t̂l ) =

Nt∑
τ=0

Ny∑
ϱ=0

Nx∑
ς=0

(ι)
u lji Lτ (̂tl )Lϱ(ŷj )Dς i ,

∂n(ι)u

∂xn
(x̂i , ŷj , t̂l ) =

Nt∑
τ=0

Ny∑
ϱ=0

Nx∑
ς=0

(ι)
u lji Lτ (̂tl )Lϱ(ŷj )D

(n)
ς i , (17)

∂
(ι)
u

∂y
(x̂i , ŷj , t̂l ) =

Nt∑
τ=0

Ny∑
ϱ=0

Nx∑
ς=0

(ι)
u lji Lτ (̂tl )Dϱj Lς (x̂i ),

∂n(ι)u

∂yn
(x̂i , ŷj , t̂l ) =

Nt∑
τ=0

Ny∑
ϱ=0

Nx∑
ς=0

(ι)
u lji Lτ (̂tl )D

(n)
ϱj Lς (x̂i ), (18)

∂
(ι)
u

∂t
(x̂i , ŷj , t̂l ) =

Nt∑
τ=0

Ny∑
ϱ=0

Nx∑
ς=0

(ι)
u lji Dτ l Lϱ(ŷj )Lς (x̂i ),

∂n(ι)u

∂tn
(x̂i , ŷj , t̂l ) =

Nt∑
τ=0

Ny∑
ϱ=0

Nx∑
ς=0

(ι)
u lji D

(n)
τ l Lϱ(ŷj )Lς (x̂i ), (19)

where D represent the Chebyshev differentiation matrix associated with the Gauss-Lobatto nodes, and

Dς i =
dLς
dx̂ (x̂i ) for i, ς = 0, 1, 2, ..., Nx , Dϱj =

dLϱ
dŷ (ŷj ) for j, ϱ = 0, 1, 2, ..., Ny , and Dτk = dLτ

dẑ (ẑl ) for

l, τ = 0, 1, 2, ..., Nt , are entries of the standard first order Chebyshev differentiation matrices of sizes

(Nx + 1)(Nx + 1), (Ny + 1)(Ny + 1) and (Nt + 1)(Nt + 1), respectively.
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Kronecker product
For simplicity and efficiency, the Kronecker product [13, 15] (operation that transforms two matrices into a matrix that
contains all possible products of the entries of the two matrices) is used to represent the approximate solution in
matrix form. Let A and B be matrices of order m × n, respectively, then the Kronecker product between matrices A
and B is the (mn × mn) block matrix

A ⊗ B =


A11B A12B · · · A1nB
A21B A22B · · · A2nB

.

.

.
.
.
.

. . .
.
.
.

Am1B Am2B · · · AmnB

, where Amn denotes the (m, n) − th entry of A. (20)

In MATLAB, the Kronecker product of two matrices A and B is directly calculated with command kron(A, B). The
Kronecker product of three matrices A, B and C, each of orders m × n is the block matrix

A ⊗ B ⊗ C =


A11H A12H · · · A1nH
A21H A22H · · · A2nH

.

.

.
.
.
.

. . .
.
.
.

Am1H Am2H · · · AmnH

, (21)

where H is defined as B ⊗ C =


B11C B12C · · · B1nC
B21C B22C · · · B2nC

.

.

.
.
.
.

. . .
.
.
.

Bm1C Bm2C · · · BmnC

. (22)

In MATLAB, the Kronecker product of three matrices A, B and C is directly evaluated using the command

superkron(A, B, C), which is a generalization of MATLAB’s kron function. Superkron allows computation of

Kronecker product of three matrices in one shot.
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Approximate function & derivative matrices via Kronecker product
It follows that (16) becomes

(ι)
u (x̂i , ŷj , t̂l ) =

(
L(̂tl ) ⊗ L(ŷj ) ⊗ L(x̂i )

) (ι)
U , (23)

where

L(̂tl ) =
[
L0 (̂tl ), L1 (̂tl ), ..., LNt

(̂tl )
]
, L(ŷj ) =

[
L0(ŷj ), L1(ŷj ), ..., LNy (ŷj )

]
,

L(x̂i ) =
[
L0(x̂i ), L1(x̂i ), ..., LNx (x̂i )

]
, (24)

(ι)
U = [

(ι)
u 000, ...,

(ι)
u 00Nx ,

(ι)
u 010, ...,

(ι)
u 01Nx , ...,

(ι)
u 0Ny Nx ,

(ι)
u 100, ...,

(ι)
u 1,Ny Nx , ...,

(ι)
u Nt Ny Nx ]

T (25)

L(̂tl ) ⊗ L(ŷj ) ⊗ L(x̂i ) = [L0 (̂tl ) ⊗ L0(ŷj ) ⊗ L(x̂i ), ..., L0 (̂tl ) ⊗ LNy (ŷj ) ⊗ L(x̂l ),

L1 (̂tl ) ⊗ L0(ŷj ) ⊗ L(x̂i ), ..., L1 (̂tl ) ⊗ LNy (ŷj ) ⊗ L(x̂i ), ..., LNt
(̂tl ) ⊗ LNy (ŷj ) ⊗ L(x̂i )]. (26)

The first and n-th derivative of the approximate solution in each sub-interval ι-th are approximated at the collocation
points (x̂, ŷ, t̂) as follows:

∂
(ι)
u

∂x
(x̂i , ŷj , t̂l ) =

(
L(̂tl ) ⊗ L(ŷj ) ⊗ Dx

) (ι)
U ,

∂n(ι)u

∂xn
(x̂i , ŷj , ẑk ) =

(
L(̂tl ) ⊗ L(ŷj ) ⊗ D(n)

x

) (ι)
U ,

∂
(ι)
u

∂y
(x̂i , ŷj , ẑk ) =

(
L(̂tl ) ⊗ Dy ⊗ L(x̂i )

) (ι)
U ,

∂n(ι)u

∂yn
(x̂i , ŷj , ẑk ) =

(
L(̂tl ) ⊗ D(n)

y ⊗ L(x̂i )
) (ι)

U ,

∂
(ι)
u

∂t
(x̂i , ŷj , t̂l ) =

(
Dt ⊗ L(ŷj ) ⊗ L(x̂i )

) (ι)
U ,

∂n(ι)u

∂tn
(x̂i , ŷj , t̂l ) =

(
D(n)

t ⊗ L(ŷj ) ⊗ L(x̂i )
) (ι)

U ,

where Dx , Dy and Dt are the differentiation matrices with respect to x, y and t, respectively.
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Spectral collocation

Replacing the continuous derivatives with discrete derivatives at the collocation points, the QLM scheme (5)
becomes a linear system of algebraic equations of size (Nx + 1)(Ny + 1)(Nt + 1), and given by

[
diag[ϖ4,k ]

(
INt+1 ⊗ INy +1 ⊗ Ω2

x D(2)
x

)
+ diag[ϖ3,k ]

(
INt+1 ⊗ Ω2

y D(2)
y ⊗ INx +1

)
+diag[ϖ2,k ]

(
INt+1 ⊗ INy +1 ⊗ Ωx Dx

)
+ diag[ϖ1,k ]

(
INt+1 ⊗ Ωy Dy ⊗ INx+1 + diag[ϖ0,k ]

)
−
(
Ωt Dt ⊗ INy +1 ⊗ INx +1

) ](ι)
U k+1 =

(ι)
R k , (27)

where INx +1, INy +1 and INt+1 are identity matrices of sizes (Nx + 1) × (Nx + 1), (Ny + 1) × (Ny + 1) and

(Nt + 1) × (Nt + 1), Ωx = 2
b−a ,Ωy = 2

d−c ,Ωt = 2
tι−tι−1

are used for scaling the derivative matrices.

From the initial and boundary conditions, numerical values of the unknown U are known at the boundaries. Thus, we
have to solve an Nt (Nx − 1)(Ny − 1) equation in Nt (Nx − 1)(Ny − 1) unknowns for the interior points as:

[
diag[ϖ̂4,k ]

(
INt

⊗ INy −1 ⊗ Ω2
x

[
D(2)

x

]
2:Nx

)
+ diag[ϖ̂3,k ]

(
INt

⊗ Ω2
y

[
D(2)

y

]
2:Ny

⊗ INx −1

)
(28)

+diag[ϖ̂2,k ]
(

INt
⊗ INy −1 ⊗ Ωx [Dx ]2:Nx

)
+ diag[ϖ̂1,k ]

(
INt

⊗ Ωy
[
Dy
]

2:Nyy
⊗ INx−1

)
+ diag[ϖ̂0,k ]

−
(
Ωt [Dt ]1:Nt

⊗ INy −1 ⊗ INx−1

) ](ι)
Û k+1 =

[
(ι)
R k

]
2:Nx ,2:Ny ,1:Nt

−
(
ϕijl + ϕ̂ijl

)
−
(
φijl + φ̂ijl

)
− ϑ̂ijl , (29)
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Spectral collocation

In equation (29),
(ι)

Û =
(ι)
U 2:Nx ,2:Ny ,1:Nt

, ϖ̂r,k (r = 1, 2, 3, 4) =
[
ϖr,k

]
2:Nx ,2:Ny ,1:Nt

,

ϑ̂ijl = − [Dt ]1:Nt ,Nt+1 ⊗
(ι)
U 2:Nx ,2:Ny ,Nt+1,

ϕijl = ϖ4,k

[
D(2)

x

]
2:Nx ,1

⊗
(ι)
U 1,2:Ny ,1:Nt

+ ϖ2,k [Dx ]2:Nx ,1 ⊗
(ι)
U 1,2:Ny ,1:Nt

,

ϕ̂ijl = ϖ4,k

[
D(2)

x

]
2:Nx ,Nx +1

⊗
(ι)
U Nx+1,2:Ny ,1:Nt

+ ϖ2,k [Dx ]2:Nx ,Nx+1 ⊗
(ι)
U Nx +1,2:Ny ,1:Nt

,

φijl = ϖ3,k

[
D(2)

y

]
2:Ny ,1

⊗
(ι)
U 2:Nx ,1,1:Nt

+ ϖ1,k
[
Dy
]

2:Ny ,1 ⊗
(ι)
U 2:Nx ,1,1:Nt

,

φ̂ijl = ϖ3,k

[
D(2)

y

]
2:Ny ,Ny +1

⊗
(ι)
U 2:Nx ,Ny +1,1:Nt

+ ϖ1,k
[
Dy
]

2:Ny ,Ny +1 ⊗
(ι)
U 2:Nx ,Ny +1,1:Nt

,

Equation (29) can be expressed compactly as a matrix system of size Nt (Nx − 1)(Ny − 1) × Nt (Nx − 1)(Ny − 1)

A
(ι)

Û =

(ι)

R̂ , ι = 1, 2, 3, ..., p. (30)
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Error analysis

Maximum error norm

The accuracy of the numerical scheme has been determined using the maximum error norm evaluated by

L∞ = ||ua − ue||∞ ≃ max
i,j

{∣∣∣ua(xi , yj , t) − ue(xi , yj , t)
∣∣∣ , : 0 ≤ i ≤ Nx , 0 ≤ j ≤ Ny

}
, (31)

and the L2 error norm computed as

L2 = ||ua − ue||∞ ≃

 Nx∑
i=0

Ny∑
j=0

∣∣∣ua(xi , yj , t) − ue(xi , yj , t)
∣∣∣2
1/2

, (32)

where ua and ue are numerical and exact solutions, respectively.

Solution error

To determine the convergence of the iterative scheme, we monitor the infinity error norm at various iterations. The
error at each iteration level is evaluated as follows:

||Ek+1||∞ = max
i,j

{∣∣∣ua
k+1(xi , yj , t) − ue(xi , yj , t)

∣∣∣ , : 0 ≤ i ≤ Nx , 0 ≤ j ≤ Ny
}
, (33)

where E is called the solution error.
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Stability analysis

Condition number
The numerical scheme is assessed for stability by evaluating the
condition number of the coefficient matrix of the resultant linear
system of equations. The definition of a condition number of a square
matrix say A, which is non-singular, is given by

κp(A) = ||A||p.||A−1||p, ||A||2 =
√
ρ (AT A). (34)

This value depends on the choice of a matrix norm and MATLAB
utilizes the matrix norm of L2. Thus, equation (34) becomes

κ(A) = ||A||2.||A−1||2. (35)

In MATLAB, the condition number of the matrix A is directly evaluated
by using the built-in function cond(A).
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Table: Error norms when Re is varied, Nx = Ny = 15,Nt = 10 in
different intervals [0,T ]

MV-SQLM (p=1) MDMV-SQLM (p=10)
[0,T ]\Re 1 5 10 15 20 1 5 10 15 20

[0,10] 7.958e-06 1.793e-02 8.253e-02 1.552e-01 8.165e-01 1.421e-14 4.319e-14 2.343e-14 5.995e-14 4.191e-12
[0,12] 1.633e-05 1.710e-02 6.038e-02 9.628e-02 2.776e+01 1.632e-14 1.321e-14 2.043e-14 3.242e-14 6.894e-14
[0,14] 4.423e-05 2.542e-02 7.835e-02 1.169e-01 2.405e+00 1.954e-14 1.543e-14 1.976e-14 1.776e-14 7.327e-15
[0,16] 9.896e-05 2.139e-02 7.178e-02 1.127e-01 1.954e+00 2.276e-14 1.910e-14 2.032e-14 1.887e-14 7.327e-15
[0,18] 1.142e-04 1.920e-02 5.357e-02 8.104e-02 2.077e-01 1.799e-14 1.754e-14 2.043e-14 2.243e-14 8.105e-15
[0,20] 1.485e-04 2.555e-02 6.223e-02 8.269e-02 1.219e+01 1.832e-14 1.621e-14 2.243e-14 2.509e-14 7.327e-15

Cond (A) 1.1060e+03 9.2821e+02 8.0314e+02 7.3647e+02 1.2602e+06 1.0554e+03 7.0374e+02 5.3362e+02 4.5957e+02 4.1998e+02
CPU Time 18.971757 19.319832 30.694018 29.466441 34.784713 16.054362 16.025947 16.609866 16.105091 16.595988

Table: Comparison of error norms for various T when Re = 1

Liu et al. [9] Mohamed et al. [10] MDMV-SQLM (Nt = 10,p = 10)
T Nx = Ny L2 error norms L∞ error norms L2 error norms L∞ error norms L2 error norms L∞ error norms

0.05 5 4.969e-08 4.651e-08 4.375e-07 5.855e-07 3.753e-08 4.503e-09
0.05 10 6.217e-09 5.907e-09 4.775e-09 4.492e-09 1.984e-14 2.831e-15
0.05 15 2.532e-09 2.188e-09 2.407e-10 1.887e-10 3.615e-14 3.497e-15
0.25 5 9.98993e-09 9.80769e-09 2.909e-07 4.057e-07 3.632e-08 4.599e-09
0.25 10 8.12715e-09 7.04501e-09 2.379e-10 2.160e-10 1.664e-14 1.665e-15
0.25 15 7.23104e-09 6.05481e-09 1.207e-11 8.888e-12 5.945e-14 6.661e-15
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Table: Comparison of error norms for various T when Re = 10

Mohamed et al. [10] MDMV-SQLM (Nt = 10,p = 15)
T Nx = Ny L2 error norms L∞ error norms Nx = Ny L2 error norms L∞ error norms

3 16 3.18e-09 3.52e-09 10 7.252e-09 1.817e-09
5 16 1.29e-13 1.31e-13 10 5.526e-13 9.137e-14
10 16 3.08e-13 3.86e-13 10 3.125e-14 3.997e-15
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Figure: Convergence graph of when Re = 1,Nx = Ny = Nt = 10
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Exact vs numerical solutions
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(a) 3D plot when Re = 1, y = 2
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Figure: Numerical vs exact solutions when Nx = Ny = Nt = 10
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Concluding remarks

Reducing the size of time computational domain at each sub-interval assures mitigation of numerical
challenges that are linked to large matrices and ill-conditioned nature of the coefficient matrix.

Numerical scheme is computationally cheap, convergent and yield extremely accurate and stable results
using minimal number of grid points.

Proposed method can be efficient and accurate in obtaining better approximate solutions for nonlinear DEs
since it can overcome the challenge of dealing with the multiplication of derivative matrices by very small
parameters.

Future direction

Modifying the method using overlapping grid idea in space to accommodate problems with large
computational domains.

Extending the method for adaptability in (3 + 1) dimensional parabolic PDEs, multi-dimensional hyperbolic
PDEs, time-fractional problems (e.g Burgers’ PDEs) , PDEs with complex geometries and different type of
boundary conditions.

Various flow problems such as cavity flow problems can also be solved using the method.

END END —– THANK YOU !!!! —– END END
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