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Introduction
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Aim

@ To describe the development of multi-domain multivariate
spectral collocation (SC) method for (2+1) dimensional
nonlinear parabolic PDEs defined on large time domains.

@ To highlight accuracy and efficiency of the multi-domain
multivariate SC method on single Burger’s equation.
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Motivation

Why developing of numerical method? Why Burgers equation?

@ The need to develop sufficiently accurate, convergent and

computationally efficient numerical techniques for solving
nonlinear problems is an ever-recurring theme in numerical
mathematics.

The difficulty in solving DEs rises with the number of variables
the DE has. Thus, solving multi-dimensional PDEs is more
involving.

Burgers equation finds many applications in engineering,
science and industry - turbulence theory [1], modeling traffic flow
[2], cosmology [3], gas dynamics [4], shock wave theory [5], etc

Burgers equation contains a coefficient i, which has a

significant impact on the accuracy of any method. Hence, to
study the effect of Re gives a convincing argument on the
performance of the method.
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Motivation
Advantages - SC methods

@ SC methods have been shown in literature to be more accurate
and efficient than common numerical methods (when solutions
are smooth).

@ SC method algorithm are easy to learn and implement in
scientific computing software.

Limitations - single domain SC methods

@ Accuracy of single-domain SC methods increases with an
increase in grid points but beyond a certain number of grid
points, the accuracy deteriorates rapidly.

@ Accuracy also deteriorate as the computational domain
(particularly time) increases.

This work reports new improvement that incorporates the
non-overlapping multi-domain approach in the time variable
when descretizing the solution domain for Chebyshev SC
method.
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Numerical experimentation

General single nonlinear PDE
We consider a second-order 2D nonlinear PDEs of the form:

ou_ g (u Pu o ou
ot ox2’ 9y2’ 9x’ oy’

u) , (x,y)€lab]x][cd], te]0,T],
(1)

subject to the initial and Dirichlet boundary conditions

U(X,y,O):h(X,y)7 U(aaya t):ga(}/a t)? U(b’ya t):gb(y’ t)7
U(X7 c, t) :gC(Xv t)? U(Xa dv t) :gd(X7 t)v (2)

where G is a nonlinear operator, h(x, y), 9a(y, t), gv(¥, ), gc(x, t) and
g4(x, t) are known functions.




Numerical experimentation
[o] )

Numerical experimentation

Specific example
We consider the two-dimensional nonlinear Burger’s PDE [6, 7, 8, 9, 10] :

ou 1 [&%u . 2%u ou  ou (7)€ a6l x [e.d], t > 0 @)
—=—|—+— | -u——u—, (x, a, b] x [c, d],
dt  Re \ ax2  9y? ax lé) y
where Re is the Reynold number. The equation is solved subject to the initial and boundary conditions
0 ! 0 t ! 2 t !
X = — = —_——— = —_—
u(x, y,0) T RGN E u(0, y,t) T eRer 072 u2,y,t) T ey N/
! 2,t 71 4
u( 2, 1= 11 eRe@tx—0/2" )

u(x,0,t) = W,

The exact solution is given by u(x, y, t) = W-
+e
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Linearisation

Applying quasilinearisation method (QLM) [12] on the general
nonlinear PDE (1) gives the iterative scheme:

Py 0Pyt Ol Ol Ol
x2 @3,k By Tk T Tk By + @0, kUk+1 — =Rk, (6

w4,k

where the variable coefficients are defined as

oG oG oG oG oG
Wak = s WIS s W2k = o Wk = o W0k =
Auxx )k O(uyy )k A(ux)k O(uy)k a(u)k
R kg o ug + Gl + Pug + wo kU — G @
= o, _— o —_— T _— W TO| _ 3
K 4k o Sk )2 2k B 0,kUk — Gk
82y,

K Bzuk Auy Auy .
(uyy)k = —5 (Ux)k = 55 (Uy)k = By k and k + 1 stands for previous and current

with (Uxx )k = 2 5y2

iterations, respectively.
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Domain decomposition
Lett € /, where /| € [0, T] is the time interval. Then, the computational domain / is split into p non-overlapping
®)

subintervals given by

L=t _1,t], t, 4 <t,e=1,23,..,p,wth 0=tg <t <b<..<tp=T,
where each sub-interval is discretized using N; + 1 Chebyshev-Gauss-Lobatto (C-G-L) collocation points.
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Figure: Non-overlapping grid ({— domain )
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Domain transformation

The time domain t € [t,_1, ] in each :th subinterval is transformed
into t € [—1, 1] using the linear mapping:

1

1
E (tL+tL—1)7 te [tL—17tL]7 (9)

tlf 2

(&, —t— 1)1‘/

A Nt
where {t,} = cos ( ) signifies the collocation points in the «th

subinterval in ¢ variable. The spatial domains x € [a,b] and y € [c, d]
are transformed into X € [-1,1] and y € [—1, 1], respectively, by
using the linear mappings:

La—op+t 3(d +)(10)

(b ax + = (b+a) y,:é

2
where {x,}, o = Cos (’”) and {y,}j 0= cos( ) denote the
collocation points which are considered to be symmetrlcally
distributed CGL grid points on the interval [—1,1] [13, 14].
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Continuity conditions

(1) . .
Let u(x,y,t),.=1,2,3,..., p, to denote the solutions at various
time intervals. Making use of the continuity conditions

(1) (t=1)

U(Xay>tL—1): u (X>y7tb—1) (11)
to yield the initial conditions for the subsequent subintervals
(t=2,3,4,...,p) in t, the multi-domain is applied on the QLM
iterative scheme (5). Consequently, we must solve:

(+) () () (+) ()
Bzuk+1+w kazuk+1+w2kauk+1+w kDuk+1+w k(b)k178uk+1 :(ﬁ)k (12)
ax2 3k Tgy2 o ax LK ey o, + ot ’

subject to the boundary conditions

@4k

(¢) (¢)
Ukpi(a y,t) = ga(y, 1), Ukpt(b,y, ) = gp(y, 1), (13)
() ()
V10660 = gelx, 1), Uy (x, d, 1) = gylx, 1), (14)

and initial conditions

(1) (k) (k—1)
Ut t(X,y,0) = h(X,y), Ugpqu(X,y,t,q1) = U ppqu(x,y, 1, 1), fore =2,8,4,...,p.(15)
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Trivariate Interpolation

The approximate solution is obtained by expanding the unknown u(x, y, t) using the triple Lagrange interpolating
polynomial. Thus, the trivariate Lagrange interpolation of u(x, y, t) at each sub-interval /, is given by

Ny Ny Nx

Loy, ~ Dntey 0 =335 u/ﬂL/ Li(y)Li(x)- (16)

1=0 j=0 i=0

The space derivative matrices (first and nm) in x and y and differentiation matrix (first and n”’) in time ¢ at the
collocation points (X, ¥, t) in each sub-interval /,, « = 1,2, ..., p, are approximated as:

(L) Ny Ny Ny ( B”(L) Ny Ny Ny (
2L Gty = S 50 S Wy LoDy, o G g =32 S5 Wy (Lo, ()

7=0 0=0¢=0 X 7=0 0=05=0

(¢) Ny Ny Nx an(b) Ny Ny Nx
gt =3 3 5 Wyl Dyt TGt = 30 30 S Wyt oLy,

7=0 0=0¢=0 Dy 7=0 0=0¢=0

B(f/) Ny Ny Ny ( 6,,() Ny Ny My
x,,y/,t, Z Z Z ”Ij/ DL, y/)L (%), (X,,y],I/ Z Z Z UI/I Lg(}A’j)Lc()?i)a“g)

7=0 0=0¢=0 7=0 0=0¢=0

where D represent the Chebyshev differentiation matrix associated with the Gauss-Lobatto nodes, and

D= % (%) foriys = 0,1,2, ..., Ny, Dpj = ";5 () forj, e = 0,1,2, ..., Ny, and D, = %z (2) for

I, 7 =0,1,2,..., N;, are entries of the standard first order Chebyshev differentiation matrices of sizes

(Nx + 1)(Nx + 1), (Ny + 1)(Ny + 1) and (N; + 1)(N; + 1), respectively.
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Kronecker product

For simplicity and efficiency, the Kronecker product [13, 15] (operation that transforms two matrices into a matrix that
contains all possible products of the entries of the two matrices) is used to represent the approximate solution in
matrix form. Let A and B be matrices of order m x n, respectively, then the Kronecker product between matrices A
and B is the (mn x mn) block matrix

AB  ApB .- AyB
A2iB  ApB .- AyB

A®B= . . i . , Where Amp denotes the (m, n) — th entry of A. (20)
AmB  AmpB - AmB

In MATLAB, the Kronecker product of two matrices A and B is directly calculated with command kron(A, B). The
Kronecker product of three matrices A, B and C, each of orders m x n s the block matrix

Aq1H AoH A H
AotH AxoH AopH
A@B®C=| . S o, (1)
AmH  ApH o AmH
B{1C Bi2C B{,C

ByiC BpC - ByC
where His definedas B ® C = . .

BmC BmC -  BmC
In MATLAB, the Kronecker product of three matrices A, B and C is directly evaluated using the command
superkron(A, B, C), which is a generalization of MATLAB's kron function. Superkron allows computation of

Kronecker product of three matrices in one shot.
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Approximate function & derivative matrices via Kronecker product

It follows that (16) becomes

D11 = (L) ® LG © L)) U, 29)
where

L) = [Lo(@), LB, -y Ly ()] L) = [LoGp)s LG, oo Ly ()]

L(%) = [Lo(%), L1 (%), s Lay (59)] (24)
(ONNO (+) () (+) (+) () (+) (+)

U= [booo» ll/ooNX» l‘/omy 11101ny ll/ONyNXv lllmoy lll1,NyNX,---, bNrNyNX]T(ZS)
L) ® L) ® LX) = [Lo(h) ® Lo(F)) ® LK), -, Lo() © Ly, (7)) ® L(%y),

Ly(B) ® Lo(F) ® LX), - L (B) © Luy, (3) © L(X), -, Liyy (B) ® Ly, () © L(K)]- (26)

The first and n-th derivative of the approximate solution in each sub-interval «-th are approximated at the collocation
points (%, y, t) as follows:

() RO)
au . . . . . ) a"u . ) ()
S0 = (L @ L @) U, — (5520 = (L) © Ly @ B) U,
o) RO

PN 5 oNW 8"y . ) RN
Sy G20 = (L) @ By @ L&) Uy D35y 26) = (L) @0 @ Lix) U,

oyn
(¢)

aou (+)
S50 = (0@ L @ L%) W,

n(t)
My N o
— ) = (0" @ L) @ L) U,

tn

where Dy, Dy, and D; are the differentiation matrices with respect to x, y and t, respectively.
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Spectral collocation

Replacing the continuous derivatives with discrete derivatives at the collocation points, the QLM scheme (5)
becomes a linear system of algebraic equations of size (Nx + 1)(Ny + 1)(N; + 1), and given by

. 2 " 2
[dlaQIW4,k] (IN[H O Iny+1® Q)Z(D(x )) + diag[wwg 4] ('N[M ® QfD(y ) ® INX+1)
+diag[wa k] (Iny11 @ Iy 1 ® Dx) + diagleoy ] (I 1 ® Dy @ Iy 41 + diaglwo 4])

(¢) (v)
- (QrDt @ lIny+1 ® INX+1)] Uks1 = Rio @7

where Iy, 41, /Ny+1 and [y, 1 are identity matrices of sizes (Nx + 1) x (Nx + 1), (Ny + 1) x (Ny + 1) and

(Nt +1) x (Nt +1),Qx = ﬁ, Q= 555, = # are used for scaling the derivative matrices.

From the initial and boundary conditions, numerical values of the unknown U are known at the boundaries. Thus, we
have to solve an Ny(Nx — 1)(Ny — 1) equation in N;(Nx — 1)(N, — 1) unknowns for the interior points as:

[diag[m,k] (l,\,[ ® Iy, 1 ® 2% [D(X2>]2:NX) + diag[@r3 4] (INr ® [D(yz)]z::vy ® |NX71) (28)
+diag(cz k] ('N, @ Iy —1 ® Qx [DX]Z:NX) + diag[&r ] ('N, ®Qy [Dy}z;/vyy ® INX—1> + diag[o ]

) ) . .
- (Qt [Dily.ny @ Iy —1 ® |NX—1)} Ugsq = |:Hk:| - (¢ij/ + ¢iﬂ) - (‘Pijl + @ij/) — Y, (29)
2:Ny,2:Ny TNy
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Spectral collocation

In equation (29),
)
U= U2:NX,2:Ny,1:N,7 wrk(r=1,2,8,4)= [w’vk}ziNx,ziNy,tNr ’
N (+)
Vi = = [Deltvg Nyt © Uzing 2:ny Ny +15
@ ) )
bjji = @4k [D ]Z'N p @ Ui2ny,1:N; + @2,k [Dxlainy 1 ® Ut,2ivy 108

(v) (]

b = w4k [D< )]2Nx Ny ® Unyt1,2:Ny ,1:N; + @2,k [Dxlaing ny 11 @ U120 108, 5
() (v)

Pijl = @3,k [D ] ®UzNX,11N,+W1k[Dy}2Ny1®U2NX,11N,7

X © ©

Piji = ™3,k [ ]2N Nyt @ Uiy, Ny+1,1:N; + 1,k [Dy]z;Ny,Ny+1 ® Uziny,Ny+1,1:Np»

Equation (29) can be expressed compactly as a matrix system of size Ny(Nx — 1)(Ny — 1) x N(Nx — 1)(Ny — 1)

(1)
A0 =R, .=1,2,3,...,p. (30)
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Error analysis

Maximum error norm

The accuracy of the numerical scheme has been determined using the maximum error norm evaluated by

Loo = 16" = t¥lloo = max {|u?(xi, 5, ) — vy, 0], 10 <P < N0 << Ny}, @31)
)

and the L, error norm computed as

Ny Ny ) 1/2
Lo = 107 = &lloo = |32 3 |00, 5,0 — 0,y 0| (@2)
i=0 j=0

where u? and u® are numerical and exact solutions, respectively.

€

Solution error

To determine the convergence of the iterative scheme, we monitor the infinity error norm at various iterations. The
error at each iteration level is evaluated as follows:

1Eks1]loo :n'}a/_x{‘uf+1(x;,}/j,t) - ue(x,,;/j,t)), L0<i<Ng,0<j< Ny}, (33)

where E is called the solution error.

.




Computed results
(o] lelele]

Stability analysis

Condition number

The numerical scheme is assessed for stability by evaluating the
condition number of the coefficient matrix of the resultant linear
system of equations. The definition of a condition number of a square
matrix say A, which is non-singular, is given by

kip(A) = [|Allo- A |p, [|All2 = 1/ p (ATA). (34)

This value depends on the choice of a matrix norm and MATLAB
utilizes the matrix norm of L,. Thus, equation (34) becomes

K(A) = [|All2.[|[A7"|2. (35)

In MATLAB, the condition number of the matrix A is directly evaluated
by using the built-in function cond(A).
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Table: Error norms when Re is varied, Ny = N, = 15, N; = 10 in
different intervals [0, T]

MV-SQLM __ (p=1) MDMV-SQLM _ (p=10)
0. TI\Re | 1 5 10 5 20 7 5 15 20
10,10] 7.9586-06  1.793e-02 > 1552001 8.165e-01 |1.42fe-14  4.319e-14 5995e-14  4.191e-12
[0,12] 1.633e-05 1.710e-02 9.628e-02 1.632e-14 1.321e-14 3.242e-14
[0,14] 4423605  2.542e-02 1.169¢-01 1.954e-14  1.543e-14 1.776e-14
[0,16] 9.8966-05  2.139-02 1.127e-01 2276e-14  1.910e-14 1.887e-14  7.327e-15
[0,18] 1142604 1.920e-02 8.104e-02  2.077e-01 | 1.799e-14  1.754e-14 2243e-14  8.105e-15
[0,20] 1485604 255502 8.269¢-02 1832e-14  1.621e-14 250914
Cond (A) | 1.10606+03_9.2821e+02 e 7.36470+02 1.05546+03_7.03748+02 4.50570+02
CPU Time | 18.971757  19.319832 )16 29.466441 34784713 | 16.054362  16.025947 76.105091  16.595988

Table: Comparison of error norms for various T when Re = 1

| | | Liu et al. [9] | Mohamed et al. [10] | MDMV-SQLM (Nt =10, p = 10) |
\ T \ Ny =N, \ L, error norms L., error norms \ L, error norms L. error norms \ L error norms L., error norms \

0.05|5 4.969¢-08 4.651e-08 4.375e-07 5.855e-07 3.753e-08 4.503e-09

0.05 | 10 6.217e-09 5.907e-09 4.775e-09 4.492e-09 1.984e-14 2.831e-15

0.05 | 15 2.532e-09 2.188e-09 2.407e-10 1.887e-10 3.615e-14 3.497e-15

025 |5 9.98993e-09 9.80769e-09 2.909e-07 4.057e-07 3.632e-08 4.599e-09

0.25 | 10 8.12715e-09 7.04501e-09 2.379e-10 2.160e-10 1.664e-14 1.665e-15

0.25 | 15 7.23104e-09 6.05481e-09 1.207e-11 8.888e-12 5.945e-14 6.661e-15
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Table: Comparison of error norms for various T when Re = 10

[ Mohamed et al. [10] | MDMV-SQLM (N, = 10,p = 15) |
\ T \ Nx =N, L, error norms L. error norms \ Ny =N, Lyerrornorms L error norms
3 |16 3.18e-09 3.52e-09 10 7.252e-09 1.817e-09
5 |16 1.29e-13 1.31e-13 10 5.526e-13 9.137e-14
10| 16 3.08e-13 3.86e-13 10 3.125e-14 3.997e-15
102
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Figure: Convergence graph of when Re=1,N, =N, = N; =10
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Exact vs numerical solutions

Numerical solution Exact solution Numerical against exact solution

* A
0.85;

(a) 3D plotwhen Re =1,y =2  (b) 2D plot when Re = 1,y is varied
att=4

Figure: Numerical vs exact solutions when Ny = N, = N; = 10
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Concluding remarks

o Reducing the size of time computational domain at each sub-interval assures mitigation of numerical
challenges that are linked to large matrices and ill-conditioned nature of the coefficient matrix.

@ Numerical scheme is computationally cheap, convergent and yield extremely accurate and stable results
using minimal number of grid points.

o Proposed method can be efficient and accurate in obtaining better approximate solutions for nonlinear DEs
since it can overcome the challenge of dealing with the multiplication of derivative matrices by very small
parameters.

Future direction

o Modifying the method using overlapping grid idea in space to accommodate problems with large
computational domains.

@ Extending the method for adaptability in (3 + 1) dimensional parabolic PDEs, multi-dimensional hyperbolic
PDEs, time-fractional problems (e.g Burgers’ PDEs) , PDEs with complex geometries and different type of
boundary conditions.

@ Vvarious flow problems such as cavity flow problems can also be solved using the method.

END END — THANK YOU !l!l — END END
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