Dr Cristina Draper ², Thomas Meyer* ¹, Dr Juana Sanchez-Ortega ¹

¹University of Cape Town

 2 Universidad de Malaga

8 December 2022

- Lie Gradings
- 2 Graded Contractions of $\Gamma_{\mathfrak{g}_2}$
- Combinatorial Problem
- Future Ideas

- Lie Gradings
- 2 Graded Contractions of $\Gamma_{\mathfrak{g}_2}$
- Combinatorial Problem

Lie Algebras

Definition

A **Lie algebra** is a vector space L with a bilinear map

$$[-,-]: L \times L \to L$$

called the **Lie bracket**, satisfying:

- (L1) [x,x] = 0 (Alternativity)
- (L2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi Identity)

General Linear Algebra

 $\mathfrak{gl}(V)$ the set of all linear maps $V \to V$ is a Lie algebra with the commutator

$$[x,y] = x \circ y - y \circ x.$$

Lie Gradings

Definition

A grading Γ of L

$$\Gamma: L = \bigoplus_{i \in I} L_i$$

is a vector space decomposition where

$$[L_i, L_j] \subseteq L_k$$

 L_i is the **homogenous component of degree** i.

$\mathbb{F}[x_1,\ldots,x_n]$

Denote by \mathbb{F}_i the subspace of homogenous polynomials of degree i.

$$\Gamma \colon \mathbb{F}[x_1,\ldots,x_n] = \bigoplus_{i\in\mathbb{N}} \mathbb{F}_i.$$

Group Gradings

Definition

$$\Gamma: L = \bigoplus_{g \in G} L_g$$

is a group grading if

- **1** Γ is indexed by a (semi-)group (G, \cdot) ,
- **2** the **support** of Γ , $\{g \in G \mid L_g \neq 0\}$, generates G,
- $[L_{g}, L_{h}] \subseteq L_{g \cdot h}$.

Group-gradings of L are isomorphic

$$L = \bigoplus_{g \in G} X_g = \bigoplus_{g' \in G'} Y_{g'},$$

if $\tau \colon G \cong G'$ and $f \in \operatorname{Aut}(L)$ such that $f(X_g) = Y_{\tau(g)}$.

Our Grading

Theorem

A simple \mathbb{C} -Lie algebra, S, of rank I admits a \mathbb{Z}_2^{l+1} -grading,

Applying this to $\mathfrak{g}_2 := \mathsf{Der}(\mathbb{O})$ we find a \mathbb{Z}_2^3 -grading $\Gamma_{\mathfrak{g}_2}$ with the following properties:

- $[(\mathfrak{g}_2)_i, (\mathfrak{g}_2)_i] = 0,$

- 2 Graded Contractions of $\Gamma_{\mathfrak{g}_2}$
- Combinatorial Problem
- 4 Future Ideas

Graded Contractions

Definition

 $\Gamma \colon L = \bigoplus_{g \in G} L_g$, a G-grading with G abelian. $\varepsilon \colon G \times G \to \mathbb{R}$ is a **graded contraction** if $(L,[,]^{\varepsilon})$ is a Lie algebra with

$$[x,y]^{\varepsilon} = \varepsilon(g,h)[x,y] \ (x \in L_g, y \in L_h).$$

Examples

- $\mathfrak{D}(g,h)=0,\ \forall g,h\in G:L^{\varepsilon}$ is abelian.

Equivalences

Definition

Graded contractions ε and ε' are **Equivalent** ($\varepsilon \sim \varepsilon'$) if L^{ε} and $L^{\varepsilon'}$ are graded isomorphic.

Lemma

arepsilon a graded contraction $\implies \sim$ admissible graded contraction:

$$\varepsilon(g,g)=\varepsilon(e,g)=0.$$

$\Gamma_{\mathfrak{g}_2}$ Case

• Anti-commutativity:

$$\varepsilon(g,h) = \varepsilon(h,g),$$

2 Jacobi identity:

$$\langle g, h, k \rangle = \mathbb{Z}_2^3 \implies \varepsilon(g, h+k)\varepsilon(h, k) = \varepsilon(k, g+h)\varepsilon(g, h).$$

Combinatorial Problem •000000

- Lie Gradings
- 2 Graded Contractions of $\Gamma_{\mathfrak{g}_2}$
- Combinatorial Problem

$$g_0 := (0,0,0), \quad g_1 := (1,0,0), \quad g_2 := (0,1,0), \quad g_3 := (0,0,1), \\ g_4 := (1,1,1), \quad g_5 := (1,1,0), \quad g_6 := (1,0,1), \quad g_7 := (0,1,1).$$
 $I_0 := \{0,1,2,\ldots,7\}, \quad X := \{\{i,j\} \mid i,j \in I, \quad i \neq j\}$

Definition

Pairwise distinct $i, j, k \in I$ are **generative** \iff $i * j \neq k$ \iff $\langle g_i, g_i, g_k \rangle = \mathbb{Z}_2^3$.

Set $\eta_{ijk} := n_{i,j*k} \eta_{j,k}$ for generative i, j, k.

Lemma

There is a bijection between the set of admissible graded contractions of $\Gamma_{\mathfrak{q}_2}$ and the set of maps

$$\mathcal{A} := \{ \eta \colon X \to \mathbb{R} \mid \eta_{iik} = \eta_{iki}, i, j, k \text{ generative} \}.$$

Definition

- **1** $i, j, k \in I$ generative, then $P_{ijk} := \{\{i, j\}, \{i, k\}, \{i, j * k\}, \{j, k\}, \{j, i * k\}, \{k, i * j\}\}.$
- 2 $T \subseteq X$ is nice if $\{i,j\}, \{i*j,k\} \in T \implies P_{ijk} \subseteq T$.

Proposition

- \bullet $\varepsilon \in \mathcal{A} \implies T^{\varepsilon}$ is nice.
- ② If T is nice, then $\varepsilon^T \in \mathcal{A}$ and $T = T^{\varepsilon^T}$,

$$\varepsilon^T(t) := \begin{cases} 1, & \text{if } t \in T, \\ 0, & \text{if } t \notin T. \end{cases}$$

Lemma

T a nice set, $\sigma \in S_*(I) := \{ \sigma \in S(I) \mid \sigma(i * j) = \sigma(i) * \sigma(j) \}, \\ \varepsilon \in \mathcal{A}.$

- **1** $\sigma(T)$ is nice.
- $\mathbf{e}_{\sigma} \in \mathcal{A}.$
- \bullet $\varepsilon_{\sigma} \sim \varepsilon$.
- $T^{\varepsilon_{\sigma}} = \sigma(T^{\varepsilon}).$

Nice Sets: Up to Collineations

Nice Sets: Up to Collineations

- 1 Lie Gradings
- 2 Graded Contractions of Γ_{g_2}
- 3 Combinatorial Problem
- 4 Future Ideas

 $\mathfrak{b}_4,\ \mathfrak{d}_4,\ \mathfrak{f}_4,\ \mathfrak{e}_6,\ \mathfrak{e}_7,\ \mathfrak{e}_8$

