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Preamble

(1) We perform the Lie symmetry analysis of the
generalized Lane-Emden-Klein-Gordon-Fock system of the form

utt − urr −
n
r

ur +
Φ(v)

rn = 0, vtt − vrr −
n
r

vr +
Ψ(u)

rn = 0, (1)

(2) Eight cases arise for possible extension of the principal Lie
algebra, which in this case is one dimensional.

(3) Moreover, symmetry reduction is carried out.
(4) Concluding remarks
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Introduction

In [1], the authors, studied the coupled hyperbolic Lane-Emden system

utt − urr −
n
r

ur + vq = 0, vtt − vrr −
n
r

vr + up = 0, (2)

with n 6= 0. The authors in [1] investigated both Lie and Noether point

symmetries classification of (2) with the arbitrary constants

p,q /∈ {0,1} so as to bring truly nonlinearity to the system.

Motivated by the work in [1], we study the generalized Lane-Emden-

Klein-Fock system of the form

utt − urr −
n
r

ur +
Φ(v)

rn = 0, vtt − vrr −
n
r

vr +
Ψ(u)

rn = 0, (3)

where Φ(v), Ψ(u) are non-zero arbitrary functions

of v and u respectively.
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The parameter n is assumed that it is different from 0. In fact, if we

take n = 0, system (3) can be obtained from [2],

under the complex transformation (x , y ,u, v) 7−→ (t , ir ,u, v)

into the original variables of the aforementioned reference.

Systems (2) and (3) can also be considered as

natural two-component extension of the nonlinear wave equation:

utt − urr −
n
r

ur − up = 0, (4)

where u = u(t , r) is a real-valued function, p symbolizes the

interaction power and (t , r) denote time and radial coordinates

respectively in n 6= 0 dimensions. Systems (2) and (3)

are commonly encountered in many physical phenomena,

see for example [1, 3, 4, 5, 7, 8] and reference therein.
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In this talk we perform the Lie symmetry analysis of

the generalized Lane-Emden-Klein-Gordon-Fock system, namely

utt − urr −
n
r

ur +
Φ(v)

rn = 0,

vtt − vrr −
n
r

vr +
Ψ(u)

rn = 0,

where Φ(v) and Ψ(u) are arbitrary functions of v and u respectively.
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Equivalence transformations

In this section we determine the equivalence transformations [6]

of system (2)-(3). The generator

Y = ξ1(t , r ,u, v)
∂

∂t
+ ξ2(t , r ,u, v)

∂

∂x
+ η1(t , r ,u, v)

∂

∂u

+η2(t , r ,u, v)
∂

∂v
+ µ1(t , r ,u, v ,Φ,Ψ)

∂

∂Φ

+µ2(t , r ,u, v ,Φ,Ψ)
∂

∂Ψ
(5)

is said to be the generator of the equivalence group of (3) provided

it is admitted by the extended system [9, 10]

utt − urr −
n
r

ur +
Φ(v)

rn = 0, vtt − vrr −
n
r

vr +
Ψ(u)

rn = 0, (6)

Φt = Φr = Φu = 0, Ψt = Ψr = Ψv = 0. (7)
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The prolongation of the generator (5) for the extended

system (6)-(7) is

Ỹ = Y [2] + ω1
t
∂

∂φt
+ ω1

r
∂

∂φr
+ ω1

u
∂

∂φu
+ ω2

t
∂

∂ψt
+ ω2

r
∂

∂ψr
+ ω2

v
∂

∂ψv
,

(8)

where Y [2] is the second-prolongation of (5) given by

Y [2] = Y + ζ1
t
∂

∂ut
+ ζ1

r
∂

∂ur
+ ζ2

t
∂

∂vt
+ ζ2

r
∂

∂vr
+ ζ1

tt
∂

∂utt

+ζ1
rr

∂

∂urr
+ ζ2

tt
∂

∂vtt
+ ζ2

rr
∂

∂vrr
+ · · · .

Here the variables ζ ’s and ω’s are defined by the prologation formlae

ζ1
t = Dt (η

1)− utDt (ξ
1)− ur Dt (ξ

2),

ζ1
r = Dr (η1)− utDr (ξ1)− ur Dr (ξ2),

ζ2
t = Dt (η

2)− vtDt (ξ
1)− vr Dt (ξ

2),
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ζ2
r = Dr (η2)− vtDr (ξ1)− vr Dr (ξ2),

ζ1
tt = Dt (ζ

1
t )− uttDt (ξ

1)− utr Dt (ξ
2),

ζ1
rr = Dr (ζ1

r )− utr Dr (ξ1)− urr Dr (ξ2),

ζ2
tt = Dt (ζ

2
t )− vttDt (ξ

1)− vtr Dt (ξ
2),

ζ2
rr = Dr (ζ2

r )− vtr Dr (ξ1)− vrr Dr (ξ2)

and

ω1
t = D̃t (µ

1)− φt D̃t (ξ
1)− φr D̃t (ξ

2)− φuD̃t (η
1),

ω1
r = D̃r (µ1)− φt D̃r (ξ1)− φr D̃r (ξ2)− φuD̃r (η1),

ω1
u = D̃u(µ1)− φt D̃u(ξ1)− φr D̃u(ξ2)− φuD̃u(η1),

ω2
t = D̃t (µ

2)− ψt D̃t (ξ
1)− ψr D̃t (ξ

2)− ψv D̃t (η
2),

ω2
r = D̃r (µ2)− ψt D̃r (ξ1)− ψr D̃r (ξ2)− ψv D̃r (η2),

ω2
v = D̃v (µ2)− ψt D̃v (ξ1)− ψr D̃v (ξ2)− ψv D̃v (η2),

respectively, where
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Dt =
∂

∂t
+ ut

∂

∂u
+ vt

∂

∂v
+ · · · ,

Dr =
∂

∂r
+ ur

∂

∂u
+ vr

∂

∂v
+ · · · ,

are the usual total differentiation operators and

D̃t =
∂

∂t
+ φt

∂

∂φ
+ ψt

∂

∂ψ
+ · · · ,

D̃r =
∂

∂r
+ φr

∂

∂φ
+ ψr

∂

∂ψ
+ · · · ,

D̃u =
∂

∂u
+ φu

∂

∂φ
+ ψu

∂

∂ψ
+ · · · ,

D̃v =
∂

∂v
+ φv

∂

∂φ
+ ψv

∂

∂ψ
+ · · · ,

are the new total differentiation operators for the extended system.
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The invocation of the generator (8) and the invariance

conditions of system (6)-(7) yields the following equivalence

generators:

X1 =
∂

∂t
, X2 =

∂

∂u
, X3 =

∂

∂v
,

X4 = u
∂

∂u
+ Φ

∂

∂Φ
, X5 = v

∂

∂v
+ Ψ

∂

∂Ψ
,

X6 = t
∂

∂t
+ r

∂

∂r
+ (n − 2)Φ

∂

∂Φ
+ (n − 2)Ψ

∂

∂Ψ
,

X7 =
∂

∂r
+

n
r

Φ
∂

∂Φ
+

n
r

Ψ
∂

∂Ψ
.
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Consequently, the one-parameter group of equivalence

transformations corresponding to each operator is

X1 : t̄ = a1 + t , r̄ = r , ū = u, v̄ = v , Φ̄ = Φ, Ψ̄ = Ψ,

X2 : t̄ = t , r̄ = r , ū = u + a2, v̄ = v , Φ̄ = Φ, Ψ̄ = Ψ,

X3 : t̄ = t , r̄ = r , ū = u, v̄ = v + a3, Φ̄ = Φ, Ψ̄ = Ψ,

X4 : t̄ = t , r̄ = r , ū = uea4 , v̄ = v , Φ̄ = Φea4 , Ψ̄ = Ψ,

X5 : t̄ = t , r̄ = r , ū = u, v̄ = vea5 , Φ̄ = Φ, Ψ̄ = Ψea5 ,

X6 : t̄ = tea6 , r̄ = rea6 , ū = u, v̄ = v , Φ̄ = Φe(n−2)a6 , Ψ̄ = Ψe(n−2)a6 ,

X7 : t̄ = t , r̄ = r + a7, ū = u, v̄ = v , Φ̄ = (r + a7)n Φ

rn ,

Ψ̄ = (r + a7)n Ψ

rn .
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The composition of these transformations gives

t̄ = ea6(t + a1),

r̄ = ea6(r + a7),

ū = ea4(u + a2),

v̄ = ea5(v + a3),

Φ̄ = ea4+(n−2)a6
[
(r + a7)nr−nΦ

]
,

Ψ̄ = ea5+(n−2)a6
[
(r + a7)nr−nΨ

]
. (9)
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Principal Lie Algebra and Group classification

Following the classical approach of group classification [10],

system (3) is invariant under the group with the generator

X = ξ1(t , r ,u, v)
∂

∂t
+ ξ2(t , r ,u, v)

∂

∂x
+ η1(t , r ,u, v)

∂

∂u

+η2(t , r ,u, v)
∂

∂v
, (10)

if and only if

X [2]
(

utt − urr −
n
r

ur +
Φ(v)

rn = 0
)∣∣∣∣

(3)
= 0,

X [2]
(

vtt − vrr −
n
r

vr +
Ψ(u)

rn = 0
)∣∣∣∣

(3)
= 0. (11)
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The expansion of (11) and separate the monomials give rise

to linear overdetermined system of partial differential equations:

ξ1
u = 0, ξ1

v = 0, ξ2
u = 0, ξ2

v = 0, η1
uu = 0, η1

uv = 0,
η1

vv = 0, η1
vt = 0, η1

vr = 0, ξ2
r − ξ1

t = 0, ξ1
r − ξ2

t = 0,

ξ1
rr − ξ1

tt +
n
r
ξ1

r + 2η1
tu = 0, ξ2

rr − ξ2
tt −

n
r
ξ2

r +
n
r2 ξ

2 − 2η1
ru = 0,

η1
tt − η1

rr −
n
r
η1

r −
f
rn η

1
u −

g
rn η

1
v +

2f
rn ξ

1
t +

f ′(v)

rn η2 − n
r
η1

r −
nf

r (n+1) ξ
1 = 0,

η2
uu = 0, η2

uv = 0, η2
vv = 0, η2

ut = 0, η2
ur = 0, ξ1

rr − ξ1
tt +

n
r
ξ1

r + 2η2
vt = 0,

ξ2
rr − ξ2

tt − 2
n
r
ξ1

t +
n
r2 ξ

2 +
n
r
ξ2

r − 2η2
vr = 0,

η2
tt − η2

rr −
f
rn η

2
u −

g
rn η

2
v +

2g
rn ξ

1
t −

ng
r (n+1) ξ

2 +
g′(u)

rn η1 = 0. (12)
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Solving the above system of partial differential equations for

arbitrary Φ(v) and Ψ(u), we conclude that the system (3)

admits the one-dimensional principal Lie algebra spanned by

X1 =
∂

∂t
,

and the classify relations are given by

(δu + θ)Ψ′(u) + βΨ(u) + α = 0, (13)

(λv + γ)Φ′(v) + τΦ(v) + ω = 0, (14)

where α, β, γ, δ, θ, τ, λ and ω are constants. The aforementioned

classifying relations are invariant under the equivalence

transformations (9) if

δ̄ = δ, β̄ = β, λ̄ = λ, θ̄ = δa2 + θe−a4 , τ̄ = τ, γ̄ = λa3 + γe−a5 ,

ω̄ = e(n−2)a6−a4

(
rn

(r + a7)n

)
, ᾱ = e(n−2)a6−a5

(
rn

(r + a7)n

)
.
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The invocation of the classifying relations(13) prompted the

following cases for the functional forms of the arbitrary elements

Φ(v),Ψ(u) and n together with the their associated

extra generators. We present these results in Table 1.

Table: Classification results: a,b,d , k ,m,n, λ,p,q are constants with p,q 6= 0,
arb=arbitrary

Φ(v) arbitrary, Ψ(u) arbitrary n arb X1 = ∂t

Φ(v) arbitrary, Ψ(u) arbitrary n = 2 X1 = ∂t

X2 = t
∂

∂t
+ r

∂

∂r

Φ(v) = avp, Ψ(u) = buq, n arb a,b,p,q 6= 0
This case reduces to the system in [1].
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Φ(v) = av−1,Ψ(u) arbitrary n arb a 6= 0
X1 = ∂t ,

X2 = v(n − 2)
∂

∂v
− t

∂

∂t
− r

∂

∂r

Φ(v) arbitrary, Ψ(u) = bu−1 n arb b 6= 0
X1 = ∂t ,

X2 = u(n − 2)
∂

∂u
− t

∂

∂t
− r

∂

∂r
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Φ(v) = av ,Ψ(u) = bu, n arb a,b 6= 0
X1 = ∂t ,

X2 =
∂

∂u
,

X3 = u
∂

∂u
+ v

∂

∂v
,

X4 = av
∂

∂u
+ bu

∂

∂v
,

X5 = aH
∂

∂u
+
[
nrn−1Hr + rnHrr − rnHtt

] ∂
∂v

where H(t , r) is any solution of partial differential equation
br3(c1 + aH) +

[
4r2nn2 − 2r2nn3 − 2r2nn

]
Hr − r2n+3Hrrrr

+
[
3r2n+1n − 5r2n+1n2]Hrr − 4r2n+2nHrrr − r2n+3Htttt

+
[
2r2n+1n2 − r2n+1n

]
Htt + 4r2n+2nHttr + 2r2n+3Httrr = 0

and c1 is an arbitrary constant.
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Φ(v) = av ,Ψ(u) = bu, n = 2 a,b 6= 0
X1 = ∂t ,

X2 =
∂

∂u
,

X3 = u
∂

∂u
+ v

∂

∂v
,

X4 = av
∂

∂u
+ bu

∂

∂v
,

X5 = t
∂

∂t
+ r

∂

∂r
,

X6 = 2tu
∂

∂u
+ 2tv

∂

∂v
− (t2 + r2)

∂

∂t
− 2tr

∂

∂r
X7 = aH

∂

∂u
+
[
2rHr + r2Hrr − r2Htt

] ∂
∂v
,

where H(t , r) satisfies the partial differential equation
b(c2 + aH)− 4rHr − 14r2Hrr − 8r3Hrrr − r4Hrrrr + 6r2Htt + 8r3Httr
−r4Htttt + 2r4Httrr = 0
and c2 is an arbitrary constant.
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Φ(v) = de−λv , Ψ(u) = ke−au n arb a,d , k , λ 6= 0
X1 = ∂t ,

X2 = λ(n − 2)
∂

∂u
+ a(n − 2)

∂

∂v
− λat

∂

∂t
− λar

∂

∂r
.

Φ(v) = mvp, Ψ(u) = ke−au n arb a,p, k ,m 6= 0
X1 = ∂t ,

X2 = va(n − 2)
∂

∂v
− (p + 1)(n − 2)

∂

∂u
+ pat

∂

∂t
+ par

∂

∂r
.

Φ(v) = de−λv , Ψ(u) = kuq n arb λ,d , k 6= 0
X1 = ∂t ,

X2 = uλ(n − 2)
∂

∂u
− (q + 1)(n − 2)

∂

∂v
+ λqt

∂

∂t
+ λqr

∂

∂r
.
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Symmetry reduction of system (3)

This section aims to transform system (3) into a system of

ordinary differential equations through the invariant surface

condition[11], page 169 by making use of some of the

generators obtained in Table 1. First we begin with the generator

X = ∂t with arbitrary Φ(v)and Ψ(u) and we get the two

general group invariant solutions of system (3) as

u(t , r) = φ(r), v(t , r) = ψ(r), (15)

where φ(r) and ψ(r) satisfy the ordinary differential system

φ′′ +
n
r
φ′ − Ψ

rn = 0, ψ′′ +
n
r
ψ′ − Φ

rn = 0. (16)
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Other general group invariant solution of system (3) will

be obtained from the generator X2 = v(n − 2)
∂

∂v
− t

∂

∂t
− r

∂

∂r
with

Φ(v) = av−1 and Ψ(u) arbitrary. Here we obtain these invariants

u(t , r) = φ(z), v(t , r) = r−(n−2)ψ(z), (17)

with the similarity variable z = t
r . Substituting the values of u and v

into system (3) we get
(z2 − 1)φ′′ − (n − 2)zφ′ − a

ψ = 0,

(z2 − 1)ψ′′ + (n − 2)zψ′ − (n − 2)ψ + φ = 0.
(18)

Thus, we conclude that

u(t , r) = φ(z), v(t , r) = r−(n−2)ψ(z), (19)

is a general group invariant solution of system (3) where

φ and ψ are any solutions of (18).
Oscar Mbusi, Ben Muatjetjeja & Abdullahi Adem (NWU)Symmetry analysis of a coupled system of differential equations06-08 December 2022 23 / 28



We now work with the generator

X2 = λ(n − 2)
∂

∂u
+ a(n − 2)

∂

∂v
− λat

∂

∂t
− λar

∂

∂r

with Φ(v) = de−λv , Ψ(u) = ke−au and we

obtain the three invariants

z =
t
r
, u(t , r) = φ(z) +

n ln(r)

a
− 2 ln(r)

a
, (20)

v(t , r) = ψ(z) +
n ln(r)

λ
− 2 ln(r)

λ
(21)

Invoking these invariants, system (3) transforms to
(z2 − 1)φ′′ − (n − 2)zφ′ − de−λφ − (n−2)(n−1)

a = 0,

(z2 − 1)ψ′′ − (n − 2)zψ′ − ke−aψ − (n−2)(n−1)
λ = .

(22)
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Consequently, the general group invariant solution of system (3) is

u(t , r) = φ(z) + n ln(r)
a − 2 ln(r)

a ,

v(t , r) = ψ(z) + n ln(r)
λ − 2 ln(r)

λ , (23)

where φ and ψ are any solutions of the ordinary differential system
(22). The other general group invariants of system (3) can also be
deduced in a similar manner.
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Concluding remarks

We have carried out Lie group classification of the generalized

Lane-Emden-Klein-Gordon-Fock system with central symmetry (3),

from the point of view of classical Lie symmetry analysis.

We found the non-equivalent forms of the functions Φ(v) and Ψ(u) for

which the one dimensional principal Lie algebra extends.

Some general group invariant solutions for the underlying system were

constructed. It is anticipated that the results obtained in this work

could be of great help in finding the solution of system (3)

explicitly.
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