Congruence Lattices of Graphs

Klarise Marais, Andrew Craig

SAMS Conference

8 December 2022

Outline of the Talk

- Lattices
- 2 Graph Congruences
- 3 Modularity and Distributivity of Congruence Lattices
- **4** Structure of Graph Congruence Lattices
- References

Lattices

Definition 1 (cf. Burris and Sankappanavar, 2012: 6)

A *lattice* is a partially ordered set (a set along with a reflexive, transitive, and antisymmetric binary relation) $\langle X, \leq \rangle$ where each pair of elements has a least upper bound, and a greatest lower bound.

Lattices

Definition 1 (cf. Burris and Sankappanavar, 2012: 6)

A *lattice* is a partially ordered set (a set along with a reflexive, transitive, and antisymmetric binary relation) $\langle X, \leq \rangle$ where each pair of elements has a least upper bound, and a greatest lower bound.

Example 2

The names of the following lattices (left to right) are: The 3-element chain, M_3 , and N_5 .

Distributivity and modularity

Definition 3 (cf. Burris and Sankappanavar, 2012)

A distributive lattice is a lattice which satisfies the following laws:

Distributivity and modularity

Definition 3 (cf. Burris and Sankappanavar, 2012)

A distributive lattice is a lattice which satisfies the following laws:

Definition 4 (cf. Burris and Sankappanavar, 2012)

A modular lattice is a lattice that satisfies the modular law:

$$x \le y \implies x \lor (y \land z) = y \land (x \lor z)$$

Distributivity and modularity

Definition 3 (cf. Burris and Sankappanavar, 2012)

A distributive lattice is a lattice which satisfies the following laws:

Definition 4 (cf. Burris and Sankappanavar, 2012)

A modular lattice is a lattice that satisfies the modular law:

$$x \le y \implies x \lor (y \land z) = y \land (x \lor z)$$

 M_3 : $A \longrightarrow A \longrightarrow C$ $A \longrightarrow C$ $A \longrightarrow C$

The M_3 - N_5 theorem

Theorem 5 (cf. Davey and Priestley, 2002)

A lattice is non-distributive if and only if it has a sublattice isomorphic to M_3 or N_5 .

The M_3 - N_5 theorem

Theorem 5 (cf. Davey and Priestley, 2002)

A lattice is non-distributive if and only if it has a sublattice isomorphic to M_3 or N_5 .

Theorem 6 (cf. Davey and Priestley, 2002)

A lattice is non-modular if and only if it has a sublattice isomorphic to N_5 .

5/21

Graph congruences

Definition 7 (Broere, Heidema and Veldsman, 2020)

Let $G = (V_G, E_G)$ be a graph with vertex set V_G and edge set E_G . A congruence of G is a pair $\theta = (\sim, \varepsilon)$ satisfying the following:

- (i) \sim is an equivalence relation on V_G
- (ii) ε , called a congruence edge-set, is a set of unordered pairs of elements from V_G statisfying:

$$E_G \subseteq \varepsilon \subseteq \{ab|a, b \in V_G\}$$

(iii) ε statisfies the following substitution property with respect to \sim : For all $x, y \in V_G$, $xy \in \varepsilon$, $x \sim a$ and $y \sim b$ implies $ab \in \varepsilon$

Graph congruences

Definition 7 (Broere, Heidema and Veldsman, 2020)

Let $G = (V_G, E_G)$ be a graph with vertex set V_G and edge set E_G . A congruence of G is a pair $\theta = (\sim, \varepsilon)$ satisfying the following:

- (i) \sim is an equivalence relation on V_G
- (ii) ε , called a congruence edge-set, is a set of unordered pairs of elements from V_G statisfying:

$$E_G \subseteq \varepsilon \subseteq \{ab|a, b \in V_G\}$$

(iii) ε statisfies the following substitution property with respect to \sim : For all $x, y \in V_G$, $xy \in \varepsilon$, $x \sim a$ and $y \sim b$ implies $ab \in \varepsilon$

Definition 8 (Broere, Heidema and Veldsman, 2020)

A congruence, $\theta = (\sim, \varepsilon)$, is *strong* if it satisfies the following: $\varepsilon = \{xy \mid x, y \in V_G \text{ and } \exists x'y' \in E_G \text{ with } x \sim x' \text{ and } y \sim y'\}$

◆ロト ◆問 ▶ ◆ 意 ト ・ 意 ・ 夕 Q (~)

Graph congruence lattices

These congruences form a lattice defined as follows:

Proposition 9 (Broere, Heidema and Veldsman, 2020)

Let $G=(V_G,E_G)$ be a graph with vertex set V_G and edge set E_G , and let $\mathsf{Con}(G)$ denote the set of all the congruences of G. Let, for $\theta_1=(\sim_1,\varepsilon_1)$, $\theta_2=(\sim_2,\varepsilon_2)\in\mathsf{Con}(G)$, the ordering is defined by:

$$\theta_1 \leq \theta_2$$
 if and only if $\sim_1 \subseteq \sim_2$ and $\varepsilon_1 \subseteq \varepsilon_2$

Then $\langle Con(G), \leq \rangle$ forms a lattice.

Consider the following graph:

 $\sim_1 = \{\langle a, a \rangle, \langle b, b \rangle\}$ and $\sim_2 = \{\langle a, a \rangle, \langle b, b \rangle, \langle a, b \rangle, \langle b, a \rangle\}$ Substitution property: If $xy \in \varepsilon$, $x \sim a$ and $y \sim b$, then $ab \in \varepsilon$

The congruence edge sets corresponding to \sim_1 are:

 $\varepsilon_{11}=\{aa\},\ \varepsilon_{12}=\{aa,bb\},\ \varepsilon_{13}=\{aa,ab\},\ and\ \varepsilon_{14}=\{aa,bb,ab\}$ The congruence edge set corresponding to \sim_2 is $\varepsilon_{21}=\{aa,ab,bb\}$ The congruence lattice for this graph is then:

$$\sim_1 = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle\}, \sim_2 = \sim_1 \cup \{\langle a, b \rangle, \langle b, a \rangle\}, \\ \sim_3 = \sim_1 \cup \{\langle a, c \rangle, \langle c, a \rangle\}, \sim_4 = \sim_1 \cup \{\langle b, c \rangle, \langle c, b \rangle\}, \text{ and } \\ \sim_5 = \sim_1 \cup \{\langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle b, c \rangle, \langle c, b \rangle\}$$

Consider the following graph:

$$\sim_1 = \{\langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle\}, \sim_2 = \sim_1 \cup \{\langle a, b \rangle, \langle b, a \rangle\}, \\ \sim_3 = \sim_1 \cup \{\langle a, c \rangle, \langle c, a \rangle\}, \sim_4 = \sim_1 \cup \{\langle b, c \rangle, \langle c, b \rangle\}, \text{ and } \\ \sim_5 = \sim_1 \cup \{\langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle b, c \rangle, \langle c, b \rangle\}$$

The congruence edge-sets corresponding to \sim_1 are:

$$\varepsilon_{11} = \{aa, bb, cc, ab\}, \ \varepsilon_{12} = \{aa, bb, cc, ab, ac\}, \\
\varepsilon_{13} = \{aa, bb, cc, ab, bc\}, \ and \ \varepsilon_{14} = \{aa, bb, cc, ab, ac, bc\}$$

The congruence edge-sets corresponding to \sim_2 are:

$$\varepsilon_{21} = \{aa, bb, cc, ab\}, \text{ and } \varepsilon_{22} = \{aa, bb, cc, ab, ac, bc\}$$

Graph congruence example 2 continued

The congruence edge-set corresponding to \sim_3 is:

$$\varepsilon_{31} = \{aa, bb, cc, ab, ac, cb\}$$

The congruence edge-sets corresponding to \sim_4 and \sim_5 , ε_{41} and ε_{51} , respectively, are the same as ε_{31}

Graph congruence example 2 continued

The congruence edge-set corresponding to \sim_3 is:

$$\varepsilon_{31} = \{aa, bb, cc, ab, ac, cb\}$$

The congruence edge-sets corresponding to \sim_4 and \sim_5 , ε_{41} and ε_{51} , respectively, are the same as ε_{31}

The congruence lattice for this graph is then:

Graph congruence example 2 continued

The congruence edge-set corresponding to \sim_3 is:

$$\varepsilon_{31} = \{aa, bb, cc, ab, ac, cb\}$$

The congruence edge-sets corresponding to \sim_4 and \sim_5 , ε_{41} and ε_{51} , respectively, are the same as ε_{31}

The congruence lattice for this graph is then:

Partition lattices

Definition 10 (cf. Grätzer, 2011: Section 4.1)

If A is a non-empty set, then the partition lattice (or the equivalence lattice) of A is the lattice whose elements are the equivalence relations of A, ordered by set inclusion.

Partition lattices

Definition 10 (cf. Grätzer, 2011: Section 4.1)

If A is a non-empty set, then the partition lattice (or the equivalence lattice) of A is the lattice whose elements are the equivalence relations of A, ordered by set inclusion.

Partition lattices and graph congruence lattices

Lemma 11

Let P be a sublattice of P_n , the partition lattice for n elements, and let G be a graph with n vertices. Then there is an isomorphism from P to a sublattice of Con(G).

Partition lattices and graph congruence lattices

Lemma 11

Let P be a sublattice of P_n , the partition lattice for n elements, and let G be a graph with n vertices. Then there is an isomorphism from P to a sublattice of Con(G).

- Let $S \subseteq \text{Con}(G)$ contain all equivalence relations in P, paired with the congruence-edge set containing all possible edges, ε_1 .
- Show S is a sublattice of Con(G).

Partition lattices and graph congruence lattices

Lemma 11

Let P be a sublattice of P_n , the partition lattice for n elements, and let G be a graph with n vertices. Then there is an isomorphism from P to a sublattice of Con(G).

- Let $S \subseteq \text{Con}(G)$ contain all equivalence relations in P, paired with the congruence-edge set containing all possible edges, ε_1 .
- Show S is a sublattice of Con(G).
- The map $\sigma: P \to S$, as $\sim_a \mapsto (\sim_a, \varepsilon_1)$ is a lattice isomorphism.

When are graph congruence lattices distributive?

The partition lattice for a three element set $\{a, b, c\}$ is:

When are graph congruence lattices distributive?

The partition lattice for a three element set $\{a, b, c\}$ is:

Proposition 12

For any natural number n, the partition lattice of n elements, P_n , is isomorphic to a sublattice of the partition lattice of n+1 elements, P_{n+1} .

When are graph congruence lattices distributive?

The partition lattice for a three element set $\{a, b, c\}$ is:

Proposition 12

For any natural number n, the partition lattice of n elements, P_n , is isomorphic to a sublattice of the partition lattice of n+1 elements, P_{n+1} .

Theorem 13

The congruence lattice of any graph with three or more vertices is non-distributive.

When are graph congruence lattices modular?

The partition lattice for a 4 element set $\{1, 2, 3, 4\}$ is:

When are graph congruence lattices modular?

The partition lattice for a 4 element set $\{1, 2, 3, 4\}$ is:

When are graph congruence lattices modular?

The partition lattice for a 4 element set $\{1, 2, 3, 4\}$ is:

Theorem 14

The congruence lattice of any graph with four or more vertices is non-modular.

Identites of congruence lattices

Theorem 15 (Pudlák and Tůma, 1980)

Every finite lattice, L, can be embedded in a finite partition lattice, P_n .

Lemma 16 (cf. Grätzer, 2011: Lemma 59)

Identities are preserved under the formation of sublattices.

Theorem 17

There is no non-trivial lattice identity that all graph congruence lattices satisfy.

Theorem 18

Let G be a graph with n vertices, and let \sim_m be an equivalence relation on V_G . The then set of congruences on G with equivalence relation \sim_m forms a boolean sublattice of $\operatorname{Con}(G)$.

Theorem 18

Let G be a graph with n vertices, and let \sim_m be an equivalence relation on V_G . The then set of congruences on G with equivalence relation \sim_m forms a boolean sublattice of $\operatorname{Con}(G)$.

Proof outline:

• Let $\{\theta_{m1}, \theta_{m2}, ... \theta_{mk}\}$ be the set of congruences with equivalence relation \sim_m . We first establish that this is a sublattice of Con(G).

Theorem 18

Let G be a graph with n vertices, and let \sim_m be an equivalence relation on V_G . The then set of congruences on G with equivalence relation \sim_m forms a boolean sublattice of $\operatorname{Con}(G)$.

- Let $\{\theta_{m1}, \theta_{m2}, ... \theta_{mk}\}$ be the set of congruences with equivalence relation \sim_m . We first establish that this is a sublattice of Con(G).
- Show that $E_G \cup E_{G'} \varepsilon_{ms}$, is seperated into equivalence classes $C_1,...,C_p$ by \sim_m , where, if one member of the equivalence class is in ε_{mx} , then all members of that equivalence class are in ε_{mx} .

Theorem 18

Let G be a graph with n vertices, and let \sim_m be an equivalence relation on V_G . The then set of congruences on G with equivalence relation \sim_m forms a boolean sublattice of $\operatorname{Con}(G)$.

- Let $\{\theta_{m1}, \theta_{m2}, ... \theta_{mk}\}$ be the set of congruences with equivalence relation \sim_m . We first establish that this is a sublattice of Con(G).
- Show that $E_G \cup E_{G'} \varepsilon_{ms}$, is seperated into equivalence classes $C_1,...,C_p$ by \sim_m , where, if one member of the equivalence class is in ε_{mx} , then all members of that equivalence class are in ε_{mx} .
- Show that $\{\varepsilon_{\textit{m1}}, \varepsilon_{\textit{m2}}, ..., \varepsilon_{\textit{mk}}\} = \{\varepsilon_{\textit{ms}} \cup (\cup_{i \in S} C_i) | S \in \mathcal{P}(\{1, ..., p\})\}.$

Theorem 18

Let G be a graph with n vertices, and let \sim_m be an equivalence relation on V_G . The then set of congruences on G with equivalence relation \sim_m forms a boolean sublattice of $\operatorname{Con}(G)$.

- Let $\{\theta_{m1}, \theta_{m2}, ... \theta_{mk}\}$ be the set of congruences with equivalence relation \sim_m . We first establish that this is a sublattice of Con(G).
- Show that $E_G \cup E_{G'} \varepsilon_{ms}$, is seperated into equivalence classes $C_1,...,C_p$ by \sim_m , where, if one member of the equivalence class is in ε_{mx} , then all members of that equivalence class are in ε_{mx} .
- Show that $\{\varepsilon_{m1}, \varepsilon_{m2}, ..., \varepsilon_{mk}\} = \{\varepsilon_{ms} \cup (\cup_{i \in S} C_i) | S \in \mathcal{P}(\{1, ..., p\})\}.$
- The map $\varepsilon_{mx} \mapsto (\sim_m, \varepsilon_{mx})$ is then an isomorphism from a boolean lattice to the congruences with equivalence relation \sim_m .

Conclusion

What we have achieved:

- Provided necessary conditions for modularity and distributivity for congruence lattices
- Shown that there are no non-trivial lattice identities statisfied by all congruence lattices
- Explained the basic structure of congruence lattices

Conclusion

What we have achieved:

- Provided necessary conditions for modularity and distributivity for congruence lattices
- Shown that there are no non-trivial lattice identities statisfied by all congruence lattices
- Explained the basic structure of congruence lattices

What can be done from here:

- Investigate the addition of edges
- Investigate what characteristics lead to non-modularity for 3 element graphs
- Invesigate non-identities (such as semi-modularity and semi-distributivity)
- Investigate the properties of the congruence algebras of graphs without loops

References

- Broere, I., Heidema, J., and Veldsman, S. (2020). Congruences and Hoehnke Radicals on Graphs. *Discuss. Math. Graph Theory*, 40:1067–1084.
- Burris, S. and Sankappanavar, H.P. (2012). A Course in Universal Algebra. The Millennium Edition.
- Davey, B.A. and Priestley, H.A. (2002). *Introduction to Lattices and Order*, Second Edition. Cambridge: Cambridge University Press.
- Grätzer, G. (2011). *Lattice Theory: Foundation*. doi: 10.1007/978-3-0348-0018-1
- Pudlák, P. and Tůma, J. (1980). Every finite lattice can be embedded in a finite partition lattice. *Algebra Universalis*, 10.