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Preliminaries

Definition

The function Γ : (0,∞)→ R defined by

Γ(ν) :=

∫ ∞
0

tν−1e−tdt,

is called Euler’s Gamma function.

Definition

The Mittag-Leffler function of order ν is defined by

Eν(t) =
∞∑
j=0

t j

Γ(jν + 1)
,

for all ν ∈ (0, 1).
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Definition

The Riemann-Liouville fractional integral operator of order ν
I ν : L1[a, b]→ R is defined as:

I ν f (t) :=
1

Γ(ν)

∫ b

a
(t−x)ν−1f (x)dx , where t ∈ [a, b], ν ∈ (0, 1),

where L1[a, b] is the set of bounded functions.

Definition

The Caputo fractional differential operator of order ν, C
0 D

ν
t , is

defined by:

C
0 D

ν
t f (t) := I 1−ν df (t)

dt
,

where ν ∈ (0, 1) and df (t)
dt ∈ L1[0, b].
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Definition

Consider a function defined as

ψ(t) = ψ(0)Eν(λtν) = ψ0

∞∑
j=0

λj tνj

Γ(jν + 1)
,

for all ν ∈ (0, 1) and some constant λ, is a solution of the initial
value fractional problem C

0 D
ν
t ψ(t) = λψ(t) with ψ(0) = ψ0.

Theorem

Consider an N-dimensional system of Caputo fractional differential
equations C

0 D
ν
t ψ(t) = Aψ(t) of order ν, where A is an arbitrary

constant N × N matrix. A solution ψ(t) of the system is
asymptotically stable if and only if all distinct eigenvalues λj for
j = 1, 2, . . . ,N of the matrix A satisfy the condition
|arg(λj)| > νπ

2 .
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Dynamics of HIV infection within-host

T1(t)

T2(t)

L1(a, t)

L2(b, t)

I1(t)

I2(t)

V (t)

f1(κ1T1(t)I1(t) + β1T1(t)V (t))

f2(κ2T2(t)I2(t) + β2T2(t)V (t))

(1− f1)(κ1T1(t)I1(t) + β1T1(t)V (t)) (1− f2)(κ2T2(t)I2(t) + β2T2(t)V (t))

µ1T1(t)

µ2T2(t)

Λ1T1(t)

Λ2T2(t)

α1(a)L1(a, t)I1(t)

α2(b)L2(b, t)

d1(a)L1(a, t)

d2(b)L2(b, t)

ρ1(a)L1(a, t)

ρ2(b)L2(b, t)

N1δ1I1(t)

N2δ2I2(t)

(1− N1)δ1I1(t)

(1− N2)δ2I2(t)

µVV (t)

T1(t),T2(t) Type 1 and 2 target cells

L1(a, t), L2(b, t) Type 1 and 2 latently infected cells

I1(t), I2(t) Type 1 and 2 productively infected cells

V (t) Viral load at time t
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Model Formulation

The dynamics of HIV infection within-host by two cell Types and
transmission routes are represented by the Caputo fractional system

C
0 D

ν
t ψ(t) = f (ψ(t)),

where ψ(t) ∈ X = R2
+ × (L+

1 [0,∞))2 × R3
+ is given by

ψ(t) = (T1(t),T2(t), l1(t), l2(t), I1(t), I2(t),V (t))T

and

f (ψ(t)) =


Λ1−µ1T1(t)−(β1V (t)+κ1I1(t))T1(t)
Λ2−µ2T2(t)−(β2V (t)+κ2I2(t))T2(t)

(ρ1(a)−α1(a)−d1(a))L1(a,t)−C
0 ∂

ν
a L1(a,t)

(ρ2(b)−α2(b)−d2(b))L2(b,t)−C
0 ∂

ν
b L2(b,t)

(1−f1)(β1V (t)+κ1I1(t))T1(t)+A1(t)−δ1I1(t)
(1−f2)(β2V (t)+κ2I2(t))T2(t)+A2(t)−δ2I2(t)

N1δ1I1(t)+N2δ2I2(t)−µVV (t)


where Ak(t) =

∫∞
0 αk(s)Lk(s, t)ds and lk(t) =

∫∞
0 Lk(s, t)ds, for

s ∈ {a, b} and k = 1, 2.
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Parameters of the model

Λ1,Λ2 - Recruitment rate for Type 1 and 2 target cells
µ1, µ2 - Death rate of Type 1 and 2 target cells
β1, β2 - Transmission rate per contact with free virons of Type
1 and 2 cells
κ1, κ2 - Transmission rate per contact with productively
infected cells for Type 1 and 2 cells
ρ1(a), ρ2(b) - Proliferation rate of latently infected cells
α1(a), α2(b) - Transition rate of latently infected cells to
productive infection
d1(a), d2(b) - Death rate of latently infected cells
f1, f2 - Fraction of target cells that become latently infected
δ1, δ2 - Death rate of productively infected Type 1 and 2 cells
N1,N2 - Total number of virons a productively infected cell
produces during its entire life cycle
µV - Clearance rate of virons
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Well-posedness of the model

Boundedness - Any solution ψ of the fractional system

C
0 D

ν
t ψ(t) = f (ψ(t)),

satisfies the condition

||ψ||X ≤
Λ1 + Λ2

c3
for all t ≥ 0,

where

c3 = min{µ1, µ2, c1, c2, (1− N1)δ1, (1− N2)δ2, µV },

with
c1 = inf

a∈[0,∞)
{d1(a)} − sup

a∈[0,∞)
{ρ1(a)}

and
c2 = inf

b∈[0,∞)
{d1(b)} − sup

b∈[0,∞)
{ρ2(b)}.
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Well-posedness cont.

Positivity - The function f (ψ(t)) can be decomposed as

f (ψ(t)) = Lψ(t) + M(ψ(t)).

L =


−µ1 0 0 0 0 0 0

0 −µ2 0 0 0 0 0

0 0 −C∂νa +m1(a) 0 0 0 0

0 0 0 −C∂νb +m2(b) 0 0 0
0 0 0 0 −δ1 0 0
0 0 0 0 0 −δ2 0
0 0 0 0 N1δ1 N2δ2 −µV

 ,

M(ψ(t)) =


Λ1−β1T1(t)V (t)−κ1T1(t)I1(t),
Λ2−β2T2(t)V (t)−κ2T2(t)I2(t),

0
0

(1−f1)(β1T1(t)V (t)+κ1T1(t)I1(t))+
∫∞

0 α1(a)L1(a,t)da

(1−f2)(β2T2(t)V (t)+κ2T2(t)I2(t))+
∫∞

0 α2(b)L2(b,t)db
0


where
mk(s) = αk(s) + dk(s)− ρk(s) for all s ∈ {a, b} and k = 1, 2.
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Well-posedness cont.

The matrix M(ψ(t)) is positive whenever the condition

Λk

(Λ1 + Λ2)2
>
βk + κk

c2
3

is satisfied for all k = 1, 2. Therefore the solution space

G =

{
ψ(t) ∈ X :

Λk

(Λ1 + Λ2)2
>
βk + κk

c2
3

for all k = 1, 2

}
is positive invariant.
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Equilibrium states

The equilibrium states of the system satisfy the equation
f (ψ∗(t)) = 0 where ψ∗(t) = (T ∗1 ,T

∗
2 , L

∗
1(a), L∗2(b), I ∗1 , I

∗
2 ,V

∗)T .
Let

RCC
k =

Λk

µk
(1 + ξk fk − fk)

κk
δk
,

be the reproduction number of the virus through the cell to cell
transmission route. The probability distribution of latent Type k
cells is given by

σk(s) =
∞∑
j=0

(
− aνmk(s)

Γ(ν + 1)

)j

and the probability of transition by latent Type k cells is defined as

ξk =

∫ ∞
0

αk(s)σk(s)ds

where s ∈ {a, b} and k = 1, 2.
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Equilibrium states cont.

Disease-Free-Equilibrium (DFE) - The disease is unable to
invade the target populations, hence only the target cells are
present.

E 0 =

(
Λ1

µ1
,

Λ2

µ2
, 0, 0, 0, 0, 0

)T

=

(
T 0

1 ,T
0
2 , 0, 0, 0, 0, 0

)T

.

Type 1-Dominated-Endemic-Equilibrium - The disease invades
only the Type 1 target cells, thus the disease does not spread
through Type 2 cells.

E ∗1 =

((
1− κ1I

∗
1

µ1RCC
1

)
T 0

1 ,
Λ2

µ2
, L∗1(0)σ1(a), 0, I ∗1 , 0,

N1δ1

µV
I ∗1

)T

,

where L∗1(0) = f1(β1T
∗
1 V
∗ + κ1T

∗
1 I
∗
1 ).
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Equilibrium states cont.

Type 2-Dominated-Endemic-Equilibrium - The disease invades
only the Type 2 target cells, thus the disease does not spread
through Type 1 cells.

E ∗2 =

(
Λ1

µ1
,

(
1− κ2I

∗
2

µ2RCC
2

)
T 0

2 , 0, L
∗
2(0)σ2(b), 0, I ∗2 ,

N2δ2

µV
I ∗2

)T

,

where L∗2(0) = f2(β2T
∗
2 V
∗ + κ2T

∗
2 I
∗
2 ).

Disease Endemic Equilibrium - The disease invades the target
populations by spreading through both Type 1 and Type 2
cells.

E ∗3 = E ∗1 + E ∗2 − E0.
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Basic reproduction number

The basic reproduction number through Type k cells is given by

Rk =
Λk

µk
(1+ξk fk−fk)

(
βkNk

µV
+
κk
δk

)
= RCV

k +RCC
k for all k = 1, 2.

Reproduction number of the disease through cell-to-cell
transmission route

RCC
k =

Λk

µk
(1 + ξk fk − fk)

κk
δk

Reproduction number of the disease through cell-to-virus
transmission route

RCV
k =

Λk

µk
(1 + ξk fk − fk)

βkNk

µV
.

The reproduction of HIV within-host through each cell type occurs
due to reproduction of the disease by cell-to-cell and cell-to-virus
transmission.



Fractional age structured population dynamics with application in epidemiology

Stability of the DFE

Let
φ(t) = φ0Eν(λtν) where φ(0) = φ0

be a solution of the system

C
0 D

ν
t ψ(t) = f (ψ(t)), ψ(0) = ψ0.

Then the eigenvalues λ of the linearized fractional system

C
0 D

ν
t φ(t) = λφ(t)

satisfy the characteristic equation

C 0(λ) =
A0(λ)

1− A2(λ)
+ A2(λ) = 1
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Local Asymptotic Stability

where

A0(λ) =
[T 0

1 β1N2δ2][T 0
2 β2N1δ1]ξ̄1,λξ̄2,λ

(λ+ µV )2(λ+ δ1)(λ+ δ2)
,

A1(λ) = ξ̄1,λ

(
β1N1δ1

(λ+ µV )(λ+ δ1)
+

κ1

λ+ δ1

)
T 0

1

and

A2(λ) = ξ̄2,λ

(
β2N2δ2

(λ+ µV )(λ+ δ2)
+

κ2

λ+ δ2

)
T 0

2 ,

with

σk,λ(s) =
∞∑
j=0

(
−sν(mk(s) + λ)

Γ(ν + 1)

)j

, ξk,λ =

∫ ∞
0

αk(s)σk,λ(s)ds and

ξ̄k,λ = 1 + ξk,λfk + fk

where s ∈ {a, b} and k = 1, 2.
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Local Asymptotic Stability cont.

Theorem

The DFE is locally asymptotically stable provided |arg(λ)| > πν
2

for all ν ∈ (0, 1), otherwise the DFE is unstable.

Proof.

Case 1 (λ ∈ R): If R1 < 1 and R2 < 1 then λ < 0.

Case 2 (λ ∈ C): The real part of the eigenvalue λ is strictly
negative, that is <(λ) < 0.

Therefore it follows that |arg(λ)| ∈ (π2 , π], that is |arg(λ)| > πν
2

for all ν ∈ (0, 1).
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