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1. Introduction

Some categories:

JSL join-semilattices with 0 and 0 -_-preserving maps.

CZJSL compact 0-dimensional topological JSLs and continuous JSL-maps

LCZJSL locally compact 0-dimensional topological JSLs and continuous JSL-maps

The duality theorem for join-semilattices traces back to

§ C W Austin, Trans. Am. Math. Soc. 109(1963), 245-256).

It was studied in detail by

§ K H Hoffman, M Mislove & A Stralka (Springer LNM 396 (1974)).

Theorem (AHMS Duality) The following hom-functors, suitably enriched,*

JSLp , 2q : JSL Ñ CZJSL and CZJSLp , 2q : CZJSL Ñ JSL

provide a dual equivalence of categories.

* JSLpL, 2q inherits a CZJSL structure from 2L, and CZJSLpZ , 2q inherits a JSL

structure from 2Z . The enriched structures will be denoted pL and pZ ,
respectively.
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2. Introduction (continued)

To prove AHMS duality, we must show:

§ if L is discrete (resp., compact-zero-dimensional), then pL is
compact-zero-dimensional (resp., discrete), and

§ in both cases, L is naturally isomorphic with
p

pL.

The most difficult step lies in proving:

There are enough CZJSL characters, i.e., the CZJSL-characters of any
CZJSL-object separate its elements.

Hoffman-Mislove-Stralka obtained this as a corollary of Numakura’s Theorem
(1957) that every CZJSL-object is a projective limit of finite semilattices. The
idea of using projective limits to establish dualities is elaborated in Johnstone
Stone Spaces, Chapter VI, where a proof of AHMS-duality using this strategy
may be found.

No simple direct proof seems to exist in any published source. The proof we
will give is based on a suggestion by Jimmie Lawson (August 2022).
Remarkably, it works for all locally-compact join semilattices, but whether or
not this supports a generalization of AHMS-duality is open.
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3. Locally Compact 0-Dimensional Join-Semilattices

Definition. Suppose L is a LCZJSL-object.

§ A continuous 0 -_-morphism α : LÑ 2 is called a character of L.

§ The set of all characters of L, endowed with the compact-open topology,*
is denoted by pL.

We shall use Greek letters α, β, . . . to denote characters of L.

Important Fact. A function φ : LÑ 2 is a character if and only if: φ´1
p0q

is a clopen ideal of L. (An ideal is a _-closed downset.)

Fact. pL has a natural JSL-structure.

Proof. The constant function 0 is a character, and if α, β are characters, so is
α_ β:

§ pα_ βqpa_ bq “ pα_ βqpaq _ pα_ βqpbq (uses commutativity of _);

§ pα_ βq´1
p0q “ t a P L | αpaq “ 0 and βpaq “ 0 u “ α´1

p0q X β´1
p0q is

clopen.

* This is the right topology for JSL-CZJSL duality, but it is not known if it is the right choice for a

generalization encompassing all locally compact join-semilattices.
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4. Essential Facts about Topological Semilattices (Top-Facts)

Suppose Z is a topological semilattice.

For fixed a P Z , let a_ denote the function: a_ : Z Ñ Z ; z ÞÑ a _ z. If Z is a topological

semilattice, a_ is continuous. Hence for any open U Ď Z , pa_q´1U “ t z P Z | a _ z P U u is

open.

Top-Facts:*

(i) If U Ď Z is open, then ÓU is open.

Proof. ÓU “ t z P Z | for some u P U, u _ z P U u is open, since it is the union of the

open sets pu_q´1U, (u P U).

(ii) If Z is T1 and a P Z , then Óa is closed.

Proof. Óa “ t z P Z | a _ z “ a u is the inverse image under a_ of the closed set tau.

(iii) If Z is Hausdorff and a P Z , then Òa is closed.

Proof. a_ is a continuous retraction onto Òa “ a _ Z , and the image of a continuous

retraction of a Hausdorff space is closed.

* Cf. Proposition VI.1.13 of Continuous Lattices and Domains. (See bibliography)
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5. Lawson’s Lemma

Lawson’s Lemma. Suppose L is an LCZJSL-object and W Ď L is an open
downset. Then for each w PW there is a zw PW such that z ď zw and Ózw is
clopen.

Proof. By local-compactness and 0-dimensionality, find a compact clopen V
such that w P V ĎW .

§ Let w ă x ă y ă ¨ ¨ ¨ be a maximal (i.e., not extendable) ascending chain
in V starting at w . By Top-Fact (iii), the sets Òw Ą Òx Ą Òy Ą . . . form
a nested family of closed sets, each having non-empty intersection with V .
By compactness of V , there is at least one point of V in all these upsets.
By maximality of the chain, this point is unique; call it zw .

§ By continuity of the meet operation, find open V 1 containing zw and
contained in V such that t v1 _ v2 | pv1, v2q P V 1 ˆ V 1 u Ď V . Then zw is
the largest element of V 1, since for any v P V 1, v _ zw P V 1, and by
maximality of the chain, this element cannot be strictly greater than zw .

§ It follows from Top-Facts (i) and (ii) that Ózw “ ÓV
1 is clopen.
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6. Useful Corollaries

Corollary. For any a, b P Z , if a ę b, then there is a clopen principal ideal that
contains b and not a.

Proof. By Top-Fact (iii), the complement of Òa is an open downset. By
hypothesis, it contains b, hence by the theorem, b is contained in a clopen
principal ideal that does not contain a.

Corollary. Every LCZJSL-object L admits a continuous, 0 -_-preserving

embedding in 2L̂.

Proof. Define
a ÞÑ fa : LÑ 2L̂

by fapαq :“ αpaq. As the product of all the characters of L, this is a is a
continuous 0 -_-map. If a, b P L and a ­“ b, then fa ­“ fb, because by Lawson’s
Lemma there is a character α so that fapαq ­“ fbpαq.
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7. Sketch of remaining steps in the proof

We must check that the definition of the topology is correct.

§ Fact. In the compact-open topology, JSLpL, 2q compact and
zero-dimensional.

In fact, JSLpL, 2q is a closed sub-semilattice of 2L. (For suppose f P 2L
zJSLpL, 2q. If

f paq _ f pbq ­“ f pa _ bq for some a, b P L, then the functions that agree with f at a, b and

a _ b form an open neighborhood of f that is disjoint from JSLpL, 2q.) The compact-open

topology on JSLpL, 2q is the same as that it inherits from 2L.

§ Fact. The compact-open topology on CZJSLpL, 2q is discrete.

We must show that a ÞÑ fa is surjective. In fact:

§ Evaluation Lemma. Suppose L is discrete or CptZD. If ψ : pLÑ 2 is a
character, then ψ “ eva for some a P L.
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8. Completing the Proof

If θ : LÑ M, define pθ : pM Ñ pL by pθpβq :“ β ˝ θ.

Proposition As a endofunctor on JSL or on CZJSL

p q ÞÑ p

p

is naturally equivalent to Id.

Proof. In the following diagram, which can be read in either category, the

vertical arrows are isomorphisms, and the diagram commutes, because
p

pθ sends
evaluation at a to evaluation at θpaq:

L M

p

pL
p

pM

a ÞÑfa

θ

a ÞÑfa

p

pθ
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