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Background

The effect of wind and earthquake induced oscillations on
high-rise structures is of considerable interest.
Not just be able to withstand oscillations.
Non-structural components: affect the functionality, large
economic consequences, safety and egress concerns.

Cheng [CH15]: “many aspects of building motions can be
understood in the context of a simple cantilevered beam”.
Picardo [PTL19]: “The reduction of complex structural systems to
equivalent beam models remains an open challenge, of great
interest especially in the dynamic field as for the response
statistics to wind loads”.
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Background - beam models

Simplified beam models have been used to simulate buildings in a
number of recent publications: Twin-beam model (e.g. [MT05] and
[HH19]), shear model, flexural model, shear-flexural model and
Timoshenko model (e.g. [CH15], [TGA17] and [PTL19]).
[CH15]: Timoshenko beam model which takes soil-structure
interaction into account.
[TGA17]: concern for using simplified models, suggest using
either a coupled beam or Timoshenko.
An extensive analysis done in Picardo [PTL19] to determine under
which conditions a simplified model such as the shear beam,
bending beam or Timoshenko beam will render accurate results.
Reliable data!
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Introduction

Introduction

Focus: earthquake induced oscillations of high-rise buildings, modelled
by an adapted Timoshenko beam model. (Also relevant for wind
induced oscillations - equivalent problem with distributed load.)

Important: boundary conditions - one boundary condition cannot
explain all phenomenons (Taciroglu [TGA17]).

Foundation:
Rigid body attached to the bottom of the building, moments and
shear forces transmitted between the building and foundation.
Depth below the surface taken into account, NOT regarded as a
single point.
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Introduction

Introduction

Motion:
Ground level motion can be modelled in more than one way. For
instance, it can be modelled as a moving foundation or it can be
modelled as a force acting on the foundation.
Our model: Take the earthquake force exerted on the building into
account. Huergo [HH20]: moving soil creates a force which acts
on the foundation.
NB: Take into account that the soil in which the foundation is laid is
not rigid.
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Introduction

Beam model for a building

Beam model for a building
Dimensionless:

Well known advantages - e.g. less parameters, scaled.
Additionally: building is not a homogeneous beam, but modelled
that way. Floors, supports, different types of material (metal, wood
etc.), and the cross-sectional areas might also differ.
Therefore, attaching meaning to the normal parameters for beams
ρ, A, I, E and G is not helpful. Rather combinations of them.

Assumption:
Vertical (or axial) vibration in the building can be neglected. In the
literature considered, only transverse vibrations were taken into
account.
Huergo [HH20]: “literature usually neglects the axial vibration when
only the lateral response of buildings is studied”. ([CH15] and
[TGA17]).

Labuschagne (University of Pretoria) SAMS 2022 7 / 29



Introduction

Beam model for a building

Beam model for a building
Dimensionless:

Well known advantages - e.g. less parameters, scaled.
Additionally: building is not a homogeneous beam, but modelled
that way. Floors, supports, different types of material (metal, wood
etc.), and the cross-sectional areas might also differ.
Therefore, attaching meaning to the normal parameters for beams
ρ, A, I, E and G is not helpful. Rather combinations of them.

Assumption:
Vertical (or axial) vibration in the building can be neglected. In the
literature considered, only transverse vibrations were taken into
account.
Huergo [HH20]: “literature usually neglects the axial vibration when
only the lateral response of buildings is studied”. ([CH15] and
[TGA17]).

Labuschagne (University of Pretoria) SAMS 2022 7 / 29



Introduction

Soil-structure interaction

Soil-structure interaction

We use the model for soil structure interaction (SSI) as in Cheng
[CH15] and Taciroglu. [TGA17].
[TGA17]: “Soil-structure interaction can significantly affect the
natural frequencies of a building.”
SSI is not “passive” - explains the mechanism of the earth moving
the building (dynamic forcing).
The mass of the foundation is also taken into account.
Two springs are incorporated: The elastic effect of the
soil-structure interaction is modelled by a “translational spring
with stiffness KT ” at the base of the building; The angle of rotation
is modelled by a “rotational spring with stiffness KR” at the base
of the building.
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Introduction

Soil-structure interaction

Variables:
w displacement (transverse)
φ rotation of cross-section
V shear force
M moment
N axial force (due to gravity)

Boundary conditions: At the top of the building (x = 1)

V (1, t) = M(1, t) = N(1) = 0.

At the base (x = 0)

M(0, t) = γ∗φ(0, t)
0 = −kw(0, t) + V (0, t),

where γ∗ =
KR

`AGκ2 and k =
KT `

AGκ2 are dimensionless parameters.
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Proposed model

Model problem

∂2
t w = ∂xV + Q + ∂x (N∂xw). (1)

1
α
∂2

t φ = V + ∂xM, (2)

M =
1
β
∂xφ, (3)

V = ∂xw − φ (4)
N(x) = −µ(1− x) (5)

Boundary conditions
Top (x = 1): V (1, t) = M(1, t) = N(1) = 0.
Base: M(0, t) = γ∗φ(0, t) and 0 = −kw(0, t) + V (0, t).
Interface condition
m∂2

t w(0, t) = −k(w(0, t)− E(t)) + V (0, t) + N(0)∂xw(0, t).
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Variational form

Variational form∫ 1

0
∂2

t w(·, t) z =

∫ 1

0
∂xV (·, t) z +

∫ 1

0
∂x (N∂xw(·, t)) z

= −
∫ 1

0
V (·, t) z ′ −

∫ 1

0
N∂xw(·, t) z ′

− (V (0, t) + N(0)∂xw(0, t)) z(0) (6)

and∫ 1

0

1
α
∂2

t φ(·, t)ψ =

∫ 1

0
V (·, t)ψ +

∫ 1

0
∂xM(·, t)ψ

=

∫ 1

0
V (·, t)ψ −

∫ 1

0
M(·, t)ψ′ −M(0, t)ψ(0), (7)

with

m∂2
t w(0, t) = −k(w(0, t)− E(t)) + V (0, t) + N(0)∂xw(0, t). (8)
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Simulation of motion - FEM

Simulation of motion

The motion of the building can be simulated using the partial sums of
the modes of vibration or the finite element method can be applied
directly the problem.

Galerkin approximation
Divide the interval [0,1] into n elements of equal length.
In the numerical experiments Hermite piecewise cubic basis functions
δ1, δ2, . . . , δ2n+2 are used.
These basis functions span the finite dimensional subspace Sh.
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Simulation of motion - FEM

Galerkin approximation
Consider approximations wh and φh.

wh =
2n+2∑
j=1

wj(t)δj(x) and φh =
2n+2∑
j=1

φj(t)δj(x).

Notation: (u, v) =
∫ 1

0 uv dx and dots used for time derivatives.
Find wh, φh in Sh such that

2n+2∑
j=1

ẅj(δj , δi) = −
2n+2∑
j=1

(
wj(δ

′
j , δ
′
i )− φj(δj , δ

′
i )
)
−

2n+2∑
j=1

wj

(
−µ(1− xi)δ

′
j , δ
′
i

)

− k
2n+2∑
j=1

wjδj(0)δi(0) + kE(t)δi(0)−m
2n+2∑
j=1

ẅjδj(0)δi(0),

for i = 1, . . . ,2n + 2. Note δi(0) = 0 unless i = 1.
Labuschagne (University of Pretoria) SAMS 2022 13 / 29



Simulation of motion - FEM

Matrix notation
Define the following FEM matrices: for i , j = 1, . . . ,2n + 2,

Kij = (δ′j , δ
′
i ), Mij = (δj , δi), Lij = (δj , δ

′
i ).

First equation of motion in matrix notation:

M ¨̄w = −
(
K w̄ − Lφ̄

)
− Ñw̄ − kRw̄ + kE(t)R1

col −mR ¨̄w ,

where Rij = 1 for i = j = 1 and 0 otherwise.

Similarly, for the second equation of motion

1
α

M ¨̄φ = LT w̄ −Mφ̄− 1
β

K φ̄− γ∗Rφ̄. (9)
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Simulation of motion - FEM

Let ū =

[
w̄
φ̄

]
.

[
M + mR 0

0 1
αM

]
¨̄u =

[
−K − Ñ − kR L

LT −M − 1
βK − γ∗R

]
ū + kE(t)

[
R1

col
0

]
.

This is of the form A¨̄u = Bū + F̄ (t), finite difference scheme can
be applied. We used central difference, average acceleration.
Programmed in Matlab, convergence experiments done.
A way to check if correct - compare to ”exact” solution obtained
using partial sums.
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Natural frequencies and modes of vibration

Eigenvalue problem
Consider pair w(x , t) = T (t)u(x) and φ(x , t) = T (t)ψ(x) as a possible
solution. Leads to the eigenvalue problem

(1 + N)u′′ − ψ′ + N ′u′ = −λu,

αu′ − αψ +
α

β
ψ′′ = −λψ,

with boundary conditions

u′(1)− ψ(1) = ψ′(1) = 0,
1
β
ψ′(0) = γ∗ψ(0),

−mλu(0) = −ku(0) + u′(0)− ψ(0) + N(0)u′(0).

Can be solved analytically or with finite element method.
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Natural frequencies and modes of vibration

Find u and ψ such that∫ 1

0
u′v ′ + ku(0)v(0)−

∫ 1

0
ψv ′ = λ

(∫ 1

0
uv + mu(0)v(0)

)
,∫ 1

0

1
β
ψ′z ′ +

∫ 1

0
ψz + γ∗ψ(0)z(0)−

∫ 1

0
u′z = λ

∫ 1

0

1
α
ψz

for all v and z in C1
+[0,1].

A solution of the variational eigenvalue problem above is a pair of
functions 〈u, ψ〉 6= 0 with a corresponding real number λ.
The function T satisfies T ′′ = −λT .

Labuschagne (University of Pretoria) SAMS 2022 17 / 29



Natural frequencies and modes of vibration

Eigenvalue problem in matrix form
Galerkin approximation in matrix form:

K ū + kRū − Lψ̄ = λ(Mū + mRū),

1
β

K ψ̄ + Mψ̄ + γ∗Rψ̄ − LT ū = λ

(
1
α

Mψ̄

)
.

Now consider the following notation:

ē =

[
ū
ψ̄

]
, K =

[
K + kR −L
−LT 1

βK + M + γ∗R

]
andM =

[
M + mR 0

0 1
αM

]
.

The eigenvalue problem is to find a eigenvalue λ and associated
eigenvector ē such that

K ē = λM ē.

We find a sequence of eigenvalues {λj} and eigenvectors ēj . The
eigenvector functions are normalised and participation factors
calculated.
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Numerical results

Numerical results

In the experiments we chose E(t) = P sin(p t), where P and p are
constants and are the amplitude and frequency of the ground
motion respectively.

Note that displacement and time are in dimensionless units.
Convergence experiments done. Enough elements were used to
guarantee the results for at least 3 significant digits.
Compare solution obtained using the partial sums of the modes of
vibration with the finite element approximation. The two methods
produced the same results.
Investigate transient response.
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Numerical results

Natural frequencies

Natural frequencies

α = 4800, γ = 0.25, m= 0.01 m=0.05 m= 0.1
γ∗ = 0.95, k=0.01

f1 =
√
λ1 0.0751 0.0747 0.0742

f2 =
√
λ2 0.2080 0.2003 0.1919

f3 =
√
λ2 0.8620 0.8315 0.8023

f4 =
√
λ4 2.0612 1.9973 1.9425

f5 =
√
λ5 3.7184 3.6125 3.5299

Table: Natural frequencies
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Comparison of FEM and partial sums

Figure: Comparison of two methods



Transient response



Transient response: close to natural freq



Transient response: comparison



Numerical results

Motion

Some notes

Transient response of the structure is illustrated for a full period of
the ground motion (denoted by τg).
Note “whiplash” effect at the top of the structure at certain times.
NB: Scaling!
Other experiments.
Future work...
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Transient response: p=0.2
1
8 τg

2
8 τg

3
8 τg

4
8 τg

5
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6
8 τg

7
8 τg τg

Figure: Transient response for the structure where P = 0.1, p = 0.2,
α = 4800, m = 0.1, k = 0.01 and γ∗ = 0.95.



Transient response: p=0.07 (close to natural freq)
1
8 τg

2
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6
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7
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Figure: Transient response for the structure where P = 0.1, p = 0.2,
α = 4800, m = 0.1, k = 0.01 and γ∗ = 0.95.



Transient response: comparison
1
8 τg

2
8 τg

3
8 τg

4
8 τg

5
8 τg

6
8 τg

7
8 τg τg

Figure: Transient response for the structure where P = 0.1, p = 0.2(blue)
and p = 0.7(blackdots), α = 4800, m = 0.1, k = 0.01 and γ∗ = 0.95.
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