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Introduction

A graph is a pair of G = (V,E), where V is a set whose
elements are called vertices, and E is a set of pairs of elements
of V, whose elements are called edges.
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Binomial random graphs G(n, p)

G(n, p) each pairs of nodes is connected with probability p.

Figure : n = 20, p = 0.09
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Directed graphs(digraphs)

A directed graph G = (V, E) consists of a nonempty set of
nodes V and a set of directed edges E. Each edge e of E is
specified by an ordered pair of vertices u, v ∈ V . A directed
graph is simple if it has no loops and no multiple edges.

x

y

z u

v

The right is forbidden, and the left is allowed.
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Random digraph model

Model D(n, p): Each of the n(n− 1) possible edges occurs
independently with probability p ∈ [0, 1].

Figure : n = 15, p = 0.09
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Directed Acyclic Graphs(DAGs)

A directed acyclic graph(DAG) is a digraph which has no
directed cycles.

(a) A DAG (b) Not A DAG
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Random directed acyclic graph

The random directed acyclic graph Dac(n, p) is simply D(n, p)
conditioned to be acyclic. we restricted our selves to the spares
case where p = λ

n , for λ > 0 is fixed.

Figure : n = 15, p = 0.09

How many connected components of a given size are there in
Dac(n, p)?
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Continued

Let E = Finite class of DAGs
δ = count the number of occurrences of the elements of E in
Dac(n, p).

For example, if E =

{
1
}

, we are counting connected

components of order 1. We have a theorem for such connected
component.
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Theorem 1 (Naina, (2022))

Let δ(D) denote the number of connected component in an
acyclic digraph D. Define

µ∗(λ) =

{
e−2λ if λ < 1

e
−(λ+1)

λ if λ ≥ 1

and

σ∗(λ)2 =

{
e−2λ(1 + (2λ− 1)e−2λ) if λ < 1

λ−1e−(λ+1)(1 + e−(λ+1)) if λ ≥ 1

Then, for a fixed λ > 0, E(δ(Dac(n, λ/n)))∼ µ∗(λ)n as n→∞.
Moreover, we have

δ(Dac(n, λ/n))− µ∗(λ)n√
σ∗(λ)2n

d−→N (0,1)
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Generating function of DAGs

If we denote by e(D) the number of edges in a digraph D, then
we define

An(y) =
∑
D

ye(D)

where the sum is taken over all acyclic digraphs on
[n] = {1, 2, 3, ..., n}. The corresponding exponential generating
function is

A(x, y) =

∞∑
n=0

An(y)
xn

n!

The coefficients An(y) was studied by Robinson(1973), Kassie,
Gessel, Chrstina, Xuming(2020)
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To include counts on the number of connected components, for
an acyclic digraph D, let δ(D) be the number of connected
components from E . Then consider the polynomial

An(y, u) =
∑
D

ye(D)uδ(D)

The corresponding exponential generating function is given by

A(x, y, u) =

∞∑
n=0

An(y, u)
xn

n!

Theorem 2

We have

∞∑
n=0

An(y, u)
xn

n!
= e(u−1)f(x,y)

∞∑
n=0

An(y)
xn

n!

Where
f(x, y) =

∑
D∈E

ye(D)x
|D|

|D|!
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Proof

Consider the directed acyclic graphs given below

1 2

345

6

(a) set(E)

a

b c d

e

x

y

(b) DAG

EGF for the objects on the left: euf(x,y)

EGF for the objects on the right:

∞∑
n=0

An(y)
xn

n!
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Continued

The Cartesian product of the two objects

C(x, y, u) =

∞∑
n=0

Cn(y, u)
xn

n!

= set(E)×DAG

= euf(x,y)
∞∑
n=0

An(y)
xn

n!

On the other hand

C(x, y, u) =

∞∑
n=0

An(y, 1 + u)
xn

n!

The objects in the cartesian can be regarded DAGs where a
subset of the components that come from E is distinguished..
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Continued

Which implies

∞∑
n=0

An(y, 1 + u)
xn

n!
= euf(x,y)

∞∑
n=0

An(y)
xn

n!

Replacing u by u− 1

∞∑
n=0

An(y, u)
xn

n!
= e(u−1)f(x,y)

∞∑
n=0

An(y)
xn

n!
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Estimate of the average of connected components of
DAGs

The smallest connected component of a DAG is a connected
component of order 1.
The expectation of the number of connected component of
order 1 in Dac(n, p) satisfies the asymptotic estimate
E(I(Dac(n, λn))) ∼ µ∗(λ)n as n→∞ as stated in Theorem 1

Lemma 3 (Naina , 2022)

We have

E
(
uδ(Dac(n,p))

)
=
An

(
p

1−p , u
)

An

(
p

1−p

)
Therefore,

E(δ(Dac(n, p))) =
∂uAn(y, u)|u=1

An(y)
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Continued

Now, we consider a connected components of DAG of order 2.

E=

{ 1

2 1

2 }
Correspondingly the exponential generating function that
represents the elements of E is

f(x, y) = yx2
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Continued

Using Theorem 2

∞∑
n=0

An(y, u)
xn

n!
= e(u−1)yx

2
∞∑
n=0

An(y)
xn

n!

Differentiating with respect to u and substituting u = 1, we get

∞∑
n=0

∂uAn(y, u)
xn

n!
|u=1 = (yx2)

∞∑
n=0

An(y)
xn

n!

=

∞∑
n=0

n(n− 1)An−2(y)y
xn

n!

When we compare the coefficient of xn in the right and left we
get

∂uAn(y, u)|u=1 = yn(n− 1)An−2(y)
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Continued

δ be the random variable that counts the number of occurrences
of the elements of E . Then

E(δ(Dac(n, p))) =
∂uAn(y, u)|u=1

An(y)

= yn(n− 1)
An−2(y)

An(y)

Lemma 4 (Naina, (2022))

An−j(y)

An(y)
= (1 + o(1))µ∗(λ)j ×

e
λj2

n if λ < 1

e
1
2

(λ+1)j2

n if λ ≥ 1

E(δ(Dac(n, p))) = (1 + o(1))µ∗(λ)2 ×

{
e

4λ
n if λ < 1

e
1
2

2(λ+1)
n if λ ≥ 1

∼ λnµ∗(λ)2 as n→∞
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Continued

In general, if δ(D) counts the number of components of order k
in D for which k > 0 is fixed. We obtain the following theorem.

Theorem 5

Let δ(D) denote count the number of components of acyclic
digraph D with order k. Then for a fixed λ > 0,

E(δ(Dac)(n, λ/n)) ∼ kk−22k−1

k!
λk−1µ∗λkn as n→∞.

Moreover, we have

δ(Dac(n, λ/n))− kk−22k−1

k! λk−1µ∗λkn√
σ∗(λ)2n

d−→N (0,1)
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Thank you!
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