Jacobian norm regularisation and conditioning in neural ordinary differential equations

Shane Josias^{1,2} Willie Brink¹

 $^1\mbox{Applied}$ Mathematics, Mathematical Sciences, Stellenbosch University $^2\mbox{School}$ for Data Science and Computational Thinking, Stellenbosch University

06 December 2022

What to expect

Overview of neural ordinary differential equations (ODEs)

- learnable input-output mapping defined as the solution to an ODE

What to expect

Overview of neural ordinary differential equations (ODEs)

- learnable input-output mapping defined as the solution to an ODE

Neural ODE challenges and Jacobian regularisation

What to expect

Overview of neural ordinary differential equations (ODEs)

- learnable input-output mapping defined as the solution to an ODE

Neural ODE challenges and Jacobian regularisation

Review selected results

1. Choose a function class

$$f(x) = wx + b$$

1. Choose a function class

$$f(x) = wx + b$$

2. Determine parameters w and b via gradient based optimisation.

1. Choose a function class

$$f(x) = wx + b$$

- 2. Determine parameters w and b via gradient based optimisation.
- 3. Done by defining an objective function (error).

1. Choose a function class

$$f(x) = wx + b$$

- 2. Determine parameters w and b via gradient based optimisation.
- 3. Done by defining an objective function (error).

Regularisation adds a penalty to the objective.

- faster convergence, better generalisation

1. Choose a function class

$$f(x) = f^n \circ f^{n-1} \circ \dots \circ f^1(x)$$

1. Choose a function class

1. Choose a function class

$$f(x) = f^n \circ f^{n-1} \circ \cdots \circ f^1(x)$$

$$x \qquad f^1(x) \qquad f^2 \circ f^1(x) \qquad f(x)$$

2. Determine parameters via gradient-based optimisation.

1. Choose a function class

$$f(x) = f^{n} \circ f^{n-1} \circ \cdots \circ f^{1}(x)$$

$$x \qquad f^{1}(x) \qquad f^{2} \circ f^{1}(x) \qquad f(x)$$

2. Determine parameters via gradient-based optimisation.

Regularisation adds a penalty to the objective.

- faster convergence, better generalisation

A vector $\boldsymbol{h}(t)$ follows the dynamics f:

$$\frac{d\boldsymbol{h}(t)}{dt} = f(\boldsymbol{h}(t), t)$$

A vector h(t) follows the dynamics f:

$$\frac{d\boldsymbol{h}(t)}{dt} = f(\boldsymbol{h}(t), t)$$

For an input $h(t_0)$ determine output as

A vector h(t) follows the dynamics f:

$$\frac{d\boldsymbol{h}(t)}{dt} = f(\boldsymbol{h}(t), t)$$

For an input $\boldsymbol{h}(t_0)$ determine output as

$$m{h}(t_1) = m{h}(t_0) + \int_{t_0}^{t_1} f(m{h}(t), t) \ dt$$

A vector h(t) follows the dynamics f:

$$\frac{d\boldsymbol{h}(t)}{dt} = f(\boldsymbol{h}(t), t)$$

For an input $h(t_0)$ determine output as

$$h(t_1) = h(t_0) + \int_{t_0}^{t_1} f(h(t), t) dt$$

use a neural network as the function

More generally useful for

More generally useful for

1. Modelling data from continuous-time systems

dynamical systems, time-series

More generally useful for

- 1. Modelling data from continuous-time systems
- 2. Continuous normalising flows for density estimation

dynamical systems, time-series

We care about

We care about

1. Generalisation and robustness to input perturbations

in high dimensions

We care about

- 1. Generalisation and robustness to input perturbations
- 2. Computational efficiency

in high dimensions

We care about

- $1. \ \ Generalisation \ and \ robustness \ to \ input \ perturbations$
- 2. Computational efficiency

in high dimensions

$$m{h}(t_1) = m{h}(t_0) + \int_{t_0}^{t_1} f(m{h}(t), t) \ dt$$

$$h(t_1) = h(t_0) + \int_{t_0}^{t_1} f(h(t), t) dt$$

$$h(t_1) = h(t_0) + \int_{t_0}^{t_1} f(h(t), t) dt$$

higher accuracy requires higher NFE

$$h(t_1) = h(t_0) + \int_{t_0}^{t_1} f(h(t), t) dt$$

higher accuracy requires higher NFE

NFE rises during training

Comments on conditioning

"poorly conditioned dynamics will lead to difficulties during numerical integration"

Finlay et al. How to train your neural ODE: the world of Jacobian and kinetic regularization, 2020.

Comments on conditioning

"poorly conditioned dynamics will lead to difficulties during numerical integration"

Finlay et al. How to train your neural ODE: the world of Jacobian and kinetic regularization, 2020.

"flows that need to stretch and squeeze the input space in such a way are likely to lead to ill-posed ODE problems that are numerically expensive to solve"

Dupont et al. Augmented Neural ODEs, 2019.

Jacobian norm regularisation

If
$$\boldsymbol{h}(t) = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}$$
, and $f(\boldsymbol{h}(t),t) = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$, then $\boldsymbol{J} = \begin{bmatrix} \frac{\partial f_1}{\partial h_1} & \frac{\partial f_1}{\partial h_2} \\ \frac{\partial f_2}{\partial h_1} & \frac{\partial f_2}{\partial h_2} \end{bmatrix}$

Jacobian norm regularisation

If
$$\boldsymbol{h}(t) = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}$$
, and $f(\boldsymbol{h}(t),t) = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$, then $\boldsymbol{J} = \begin{bmatrix} \frac{\partial f_1}{\partial h_1} & \frac{\partial f_1}{\partial h_2} \\ \frac{\partial f_2}{\partial h_1} & \frac{\partial f_2}{\partial h_2} \end{bmatrix}$

In general:
$$oldsymbol{J} =
abla_{oldsymbol{h}(t_0)} f(oldsymbol{h}(t),t)$$

$$\text{If } \pmb{h}(t) = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} \text{, and } f(\pmb{h}(t),t) = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} \text{, then } \pmb{J} = \begin{bmatrix} \frac{\partial f_1}{\partial h_1} & \frac{\partial f_1}{\partial h_2} \\ \frac{\partial f_2}{\partial h_1} & \frac{\partial f_2}{\partial h_2} \end{bmatrix}$$

In general: $oldsymbol{J} =
abla_{oldsymbol{h}(t_0)} f(oldsymbol{h}(t),t)$

$$\left\| oldsymbol{J}
ight\|_F = \sqrt{\sum_{i=1}^d \sum_{j=1}^d \left| oldsymbol{J}_{i,j}
ight|^2} \hspace{0.1cm} \downarrow$$

Frobenius: neural ODE

$$\text{If } \pmb{h}(t) = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} \text{, and } f(\pmb{h}(t),t) = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} \text{, then } \pmb{J} = \begin{bmatrix} \frac{\partial f_1}{\partial h_1} & \frac{\partial f_1}{\partial h_2} \\ \frac{\partial f_2}{\partial h_1} & \frac{\partial f_2}{\partial h_2} \end{bmatrix}$$

In general: $oldsymbol{J} =
abla_{oldsymbol{h}(t_0)} f(oldsymbol{h}(t),t)$

$$\|\boldsymbol{J}\|_F = \sqrt{\sum_{i=1}^d \sum_{j=1}^d |\boldsymbol{J}_{i,j}|^2} \downarrow$$

Frobenius: neural ODE

$$\| \boldsymbol{J} \|_2 = \sigma_{\mathsf{max}}(\boldsymbol{J}) \ \downarrow$$

spectral: neural network

$$\text{If } \pmb{h}(t) = \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} \text{, and } f(\pmb{h}(t),t) = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} \text{, then } \pmb{J} = \begin{bmatrix} \frac{\partial f_1}{\partial h_1} & \frac{\partial f_1}{\partial h_2} \\ \frac{\partial f_2}{\partial h_1} & \frac{\partial f_2}{\partial h_2} \end{bmatrix}$$

In general: $oldsymbol{J} =
abla_{oldsymbol{h}(t_0)} f(oldsymbol{h}(t),t)$

$$\|\boldsymbol{J}\|_F = \sqrt{\sum_{i=1}^d \sum_{j=1}^d |\boldsymbol{J}_{i,j}|^2} \downarrow$$

$$\|\boldsymbol{J}\|_{2} = \sigma_{\mathsf{max}}(\boldsymbol{J}) \downarrow$$

$$\kappa(\boldsymbol{J}) = \frac{\sigma_{\sf max}(\boldsymbol{J})}{\sigma_{\sf min}(\boldsymbol{J})} o 1$$

Frobenius: neural ODE

spectral: neural network

condition number: our work

Binary classification Intertwining moons dataset

$$\|\boldsymbol{J}\|_F = \sqrt{\sum_{i=1}^d \sum_{j=1}^d |\boldsymbol{J}_{i,j}|^2} \downarrow$$

$$\| \boldsymbol{J} \|_2 = \sigma_{\mathsf{max}}(\boldsymbol{J}) \ \downarrow$$

$$\kappa(\boldsymbol{J}) = \frac{\sigma_{\mathsf{max}}(\boldsymbol{J})}{\sigma_{\mathsf{min}}(\boldsymbol{J})} \to 1$$

Frobenius: neural ODE

spectral: neural network

condition number: our work

NFE reduction

Frobenius, spectral, and condition number regularisation reduce NFE.

NFE reduction

Frobenius, spectral, and condition number regularisation reduce NFE.

Solid curves and shaded regions indicate mean and standard deviation over 10 runs.

NFE reduction

Frobenius, spectral, and condition number regularisation reduce NFE.

Solid curves and shaded regions indicate mean and standard deviation over 10 runs.

Good! But at what cost?

Performance and robustness

- a) Jacobian norm regularisation sacrifices performance for NFE reduction.
- b) Robustness to input noise for condition number regularisation.

Performance and robustness

- a) Jacobian norm regularisation sacrifices performance for NFE reduction.
- b) Robustness to input noise for condition number regularisation.

Performance and robustness

- a) Jacobian norm regularisation sacrifices performance for NFE reduction.
- b) Robustness to input noise for condition number regularisation.

Jacobian norm regularisation leads to increased distance to decision boundary.

Effect on conditioning

Condition number an explanation for robustness?

Effect on conditioning

Condition number an explanation for robustness?

Intertwining moons	
Condition number	
5.3 ± 3.5	
27.3 ± 34.1	
45.9 ± 70.6	
6.1 ± 5.2	

Recall that we want generalisation and a reduced NFE.

Recall that we want generalisation and a reduced NFE.

1. Jacobian norm regularisation reduces NFE, potentially at a cost to generalisation and robustness. Condition number regularisation seems to help.

Recall that we want generalisation and a reduced NFE.

- 1. Jacobian norm regularisation reduces NFE, potentially at a cost to generalisation and robustness. Condition number regularisation seems to help.
- 2. Jacobian norm regularisation can lead to an increased distance to the decision decision boundary.

Recall that we want generalisation and a reduced NFE.

- 1. Jacobian norm regularisation reduces NFE, potentially at a cost to generalisation and robustness. Condition number regularisation seems to help.
- 2. Jacobian norm regularisation can lead to an increased distance to the decision decision boundary.

Ongoing work:

Recall that we want generalisation and a reduced NFE.

- 1. Jacobian norm regularisation reduces NFE, potentially at a cost to generalisation and robustness. Condition number regularisation seems to help.
- 2. Jacobian norm regularisation can lead to an increased distance to the decision decision boundary.

Ongoing work:

1. Efficient condition number estimation.

Recall that we want generalisation and a reduced NFE.

- 1. Jacobian norm regularisation reduces NFE, potentially at a cost to generalisation and robustness. Condition number regularisation seems to help.
- 2. Jacobian norm regularisation can lead to an increased distance to the decision decision boundary.

Ongoing work:

- 1. Efficient condition number estimation.
- 2. Characterise conditions for rising NFE (stiffness?).

Recall that we want generalisation and a reduced NFE.

- 1. Jacobian norm regularisation reduces NFE, potentially at a cost to generalisation and robustness. Condition number regularisation seems to help.
- Jacobian norm regularisation can lead to an increased distance to the decision decision boundary.

Ongoing work:

- 1. Efficient condition number estimation.
- 2. Characterise conditions for rising NFE (stiffness?).
- 3. Other ways to parameterise the ODE or solution?