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The origin of colorings – The Four-Color Theorem

It all started with the coloring of maps.  Maps are examples of 
planar graphs. While trying to color a map of the counties of 
England, Francis Guthrie formulated the four color 
conjecture, noting that four colors were sufficient to color a 
map so that no regions sharing a common border received the 
same color.  





Guthrie’s brother Frederik passed the question on to his 
mathematics professor Augustus de Morgan at University 
College, who mentioned it in a letter to William Hamilton in 
1852.  
 

Arthur Cayley raised the problem at a meeting of the London 
Mathematical Society in 1879.  

 
The same year, Alfred Kempe published a paper that claimed 
to establish the result, and for a decade the four color 
problem was considered solved.  



For his accomplishment Kempe was elected a Fellow of 
the Royal Society and later President of the London 
Mathematical Society.  

 

In 1890, Heawood wrote in a paper that Kempe’s argument was 
wrong. In that paper he proved the five color theorem, saying 
that every planar map can be colored with at most five colors, 
using ideas of Kempe.  

 

In the following century, a vast amount of work and theories 
were developed to reduce the number of colors to four. 



The four color theorem was finally proved in 1976 by Kenneth 
Appel and Wolfgang Haken. The proof went back to the ideas 
of Heawood and Kempe. 
 

The four color theorem is also noteworthy for being the first 
major computer-aided proof.  
 

Graph coloring is used in various research areas of computer 
science such data mining, image segmentation, clustering, 
image capturing, networking etc. 
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The packing chromatic number of a graph

Packing coloring originated from planning done in the 
broadcast industry to avoid interference of frequencies 
of different wireless radio stations. 
 
The United States Federal Communications 
Commission formulated regulations with regards to 
the assignment of broadcast frequencies to radio 
stations.  Two radio stations which have received the 
same broadcast frequency, must be located 
sufficiently far apart so that the broadcast 
frequencies do not interfere with each other.
 

 Goddard et al introduced the concept as the 
broadcast coloring in 2008. 



 
Complexity of PCN of a graph 
Theorem (Goddard, Hedetniemi, Hedetniemi, Harris, Rall 
’08) 
Let G be a graph. 
 To decide if χ ρ(G) ≤ k is NP-complete (k on input). 
 To decide if χ ρ(G) ≤ 3 is in P. 
 To decide if χ ρ(G) ≤4 is NP-complete. 
 
Theorem (Fiala, Golovach ’09) 
Decide if χ ρ(G) ≤ k for trees is NP-complete (k on input).  



Definition d-packing

Graph G = (V, E ), Pd  V is ⊆ d-packing 

if

 ∀ u, v  Pd : dist(u, v ) > d.∈

1-packing is an independent set

 



Definition PCN of a graph

The packing chromatic number is the minimum k such 
that V = C1 ∪ C2 ∪ ... ∪ Ck, 
denoted by χρ(G).

If c1 ≥ c2 ≥ ... ≥ ck, then the coloring is monotone. 

 



About χρ(G) 

Example of PCN of infinite path P∞ 

χρ(P∞) ≤ 3 

 

 

 



d –packing ρd is density of 
d -packing

1 1/2

2 1/3  …  1/4

3 1/4

Note that 
1/2 + 1/4 = 3/4 

and 
1/2 + 1/3 = 5/6 

and 
1/4 + 1/3 = 7/12 

χρ(P∞) ≥ 3

P∞ is not 2 packing colorable.



  
  
  
  

 
Theorem  
 
For any graph  G  and any m , where m ≤ χρ(G )/2 , 
there  ex ists a χρ(G )-color ing c: V  (G ) →  {1, …  , k} 
such  that cm  ≥ cn for a ll n  ≥  2m . 
 
 



On uniquely packable trees

A. Alochukwu∗†,⋆, M. Dorfling‡, and E. Jonck†
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G has a 2-vertex adjacent to a 3-vertex.

 Observation 
 Let v be a 1-vertex in a k-χρ-packing of G , then deg(v ) ≤ k − 1.

1

Lemma
If G uniquely 3-χρ-packable, then 

F1,                          F2,                
        F3 
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Theorem 
T uniquely 3-χρ-packable iff T obtained from F1, F2 or F3 
by Oi (repeatedly)



On uniquely 4- packable trees

A. Alochukwu, M. Dorfling, E  Jonck, S. Mukwembi
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(1,1,2,3)-Colorings of Subcubic Graphs
 
P. Dankelmann, E. Jonck, R.J. Maartens, O. Nkuna

Gastineau and Togni showed that every subcubic graph is (1,1,2,2,2)-
colorable. They

asked if any subcubic graph, except the Petersen graph, is (1,1,2,3)-
colorable.

The S-packing number is a generalization of the packing chromatic 
number. 



The 
relationship 
between 
the PCNs of 
the grid and 
the torus
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We study the PCN of the grid and the 
torus

      Pr□Pk                           Cr□Ck    



Square 
Lattice

 

Square lattice / grid 
 
Theorem (Goddard et al. 2008) 
For infinite planar square lattice P r□Pk: 
9  ≤ χρ( P r□Pk) ≤ 23 , r and k tend  to ± infin ity . 
 

Theorem (Communication Goddard, Schwenk 2008) 
χρ( P r□Pk) ≤ 22 , r and k tend  to  ± inf in ity. 
 
Theorem (Fiala, Klavžar, Ludicky, 2009) 
10 ≤ χρ( P r□Pk), r and k tend to ± inf in ity  
fin ity. 
 
Theorem (Holub, Soukal, 2009) 
χρ( P r□Pk) ≤ 17, r and k tend to ± infin ity.  
SAT-solver  



 
 
Theorem (Ekstein, Holub, Fiala, Ludicky, 2010) 
12 ≤ χρ( P r□Pk), r and  k tend  to ± infin ity.   

 
 
Theorem (Martin, Raimonde, Chen, Martin, 2016) 
 χρ( P r□Pk) ) ≤ 16, r and k tend to  ± inf inity. 
(Jonck, D orfling  too) 
 
 
Theorem (Martin, Raimonde, Chen, Martin, 2017) 
 13 ≤ χρ( P r□Pk) ) ≤ 15, r and k tend to  ± infin ity. 
 

Theorem (Heule, Subercaseaux, 2022)
 χρ  (Pr □ Pk  ) ≥ 14, r and k tend to ± infinity.



                           The torus
 
Jacobs, Jonck, and Joubert (2013) studied the packing chromatic number 
of the Cartesian product of cycles of specific length. 
 
More precisely, we proved that 
 
Case 1: if x ≥ 3, then 9 ≤ χρ(C4 □C4x) ≤ 11 .
 
Moreover, 
 
Case 2: if in addition x is divisible by 4, then χρ(C4□Cxt) = 9 



  
  

Theorem Upperbound 

Suppose G is a graph C4□Cq where q = 4n, 
n ≥ 3. Then 
 
χρ(G) ≤ 9 if n = 4x; x ≥ 3 
 
χρ(G) ≤ 11 if n = 4x + 1, x ≥ 1 or n=4x + 2; x ≥ 1 or n=4x + 3; x ≥ 0 
  

                 
 
    2     1     3     1 
    1            1 
    3      1    2     1 
    1            1     
 
        Basic block   



  
  

Case 1  
                              
2    1    3    1 
1    5    1    6 
3    1    2    1    
1    4    1    7 
   Block 1 
 
2    1    3    1    
1    5    1    8    
3    1    2    1  
1    4    1    9 
   Block 2 
 
2    1    3    1    
1    5    1    9  
3    1    2    1 
1    4   1     8 
   Block2a 
   
Sequence 1, 2, 1, 2a a total x times to create the pattern 
1, 2, 1, 2a, 1, 2, 1, 2a,. . . 1, 2, 1, 2a. 

 
Define q = 4n, where n is the number of 4 × 4 blocks. 
 



  
  

T he ore m   
S u p p o s e  G  =  C 4   C q,  w h e r e  q  =  4 x  a n d  in te g e r  
x , w h e r e  x  ≥  3 . T h e n  χ ρ(G )  ≥  9 . 

         Theoretical proof using 



A com parison between the pack ing  
chrom atic num bers of the grid  and 

the torus 
 

Conjecture 1 

The packing chromatic number of 
the infinite square lattice  is 15 . 



Also 
 
Since Cr □ Ck   contains  Pr □ Pk  where r and k tend to 

 ± infinity, 

χρ (Cr □ Ck) ≥    χρ  (Pr □ Pk  )                                

by monotonicity of graphs w.r.t. coloring. 

 

Conjecture 1 implies 

 χρ (Cr □ Ck) ≥   15  

 



A 15-packing colored 72 x 72 tile was used to 
periodically color the infinite grid.  

 

The same tile can be used to color the torus Cr □ Ck   

where r and k tend to ± infinity. 

 

Hence we have  

χρ (Cr □ Ck) ≤   15. 

 

Conjecture 2 

The packing chromatic number of the torus Cr □ Ck   

where r and k tend to ± infinity, is 15 



Application 
 

An integer linear programm ing m odel and  a 
satisfiab ility  test  m odel for the  packing 
coloring prob lem  of graphs  are  developed . 
The proposed  models outperform  other 
exact m ethods such as a back-tracking and 
dynam ic algorithm . In particular, the packing 
chrom atic numbers and  im proved  bounds 
have been found  for the Cartes ian products 
of paths and  cycles . 

 
 



Satisfiability and SAT solver

Satisfiability problem

The Satisfiability problem is to decide, 
given a SAT formula,
whether it is satisfiable (or consistent) or not. 

Sometimes, if the SAT formula is satisfiable/consistent, 
we would also like to compute  a satisfying assignment (or model).
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