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Indefinite inner product space

• Function [. , .] from Cn × Cn to C is called an indefinite inner
product in Cn if:

– Linear in the first argument

– Antisymmetric

– nondegenerate, i.e., if [x, y] = 0 ∀y ∈ Cn then x = 0

• Only exception from the standard inner product is that [x, x]
may be nonpositive for n 6= 0.

• For every n× n Hermitian matrix H, i.e., H = H∗

[x, y] = 〈Hx, y〉, x, y ∈ Cn

determines an inner product on Cn.

• Converse also holds.



Jordan form

A matrix A in (real or complex) Jordan form is expressed as the

sum of Jordan segments, that is,

A = J(λ1)⊕ . . .⊕ J(λp) or A = J(γ1)⊕ . . .⊕ J(γp).

Each Jordan segment consists of blocks of the form

Jn(λi) =


λi 1 0 . . .
0 λi 1 0 . . .

. . . . . .
. . . 1

λi

 and Jn(γi) =


γi I2 0 . . .
0 γi I2 0 . . .

. . . . . .
. . . I2

γi

 ,

where γ =

[
a −b
b a

]
for a complex eigenvalue λ = a± ib.



Different classes for the matrix pair (A,H)

Let A be an n× n matrix, and let H = H∗ and invertible of size

n× n. Then A is called:

H − expansive when A∗HA−H ≥ 0;

H − contractive when A∗HA−H ≤ 0;

H − unitary when A∗HA−H = 0.

For the last class canonical forms exist.

For the first two classes, only simple forms exist.

Goal: Interested in eigenvalues of small rank perturbations within

these classes.



Canonical forms and Simple forms for (A,H)

Let A be in Jordan canonical form, i.e., A = Jn(1)⊕Jn(1), when
A only has eigenvalue 1 with n even. Then the canonical form
for the corresponding matrix H when A is H-unitary is:

H =

 0 0 0 Qn

0 0 −QT
n 0

0 −Qn 0 0
QT
n 0 0 0

 ,
where Qn is a n

2 ×
n
2 matrix with know entries.

If A is H-expansive only a simple form for matrix H exists. Here
H is for example

H = c



0 . . . 0 1
0 .. .
...

(−1)
n−4

2 ∗
(−1)

n−2

2

(−1)
n−2

2

... (−1)
n−4

2

∗
0 .. . ∗
1


.



Low rank perturbation

Consider the example where

A =

0 1 0
0 0 1
0 0 0

 and B =

0 1 0
0 0 1
ε 0 0

 .
The eigenvalue of A is λ = 0 with multiplicity 3.
However, the characteristic polynomial of B is given by pB(λ) =
λ3−ε, so the distinct eigenvalues of B are given by ε1/3 exp2kπi/3

for k = 0, 1, 2. Conclusions:

• Rank of a matrix is a discontinuous function of its entries;

• Eigenvalues can completely change with small rank pertur-
bations;

• Matlab is very sensitive when it comes to computations.



First observation

Proposition Let A be H-unitary. Then a perturbation B = A +
UV ∗A = (I+UV ∗)A, with U and V both of size n×k and rank k

is also H-unitary if and only if V = HUE where E is an invertible
k × k matrix satisfying

U∗HU = −(E−1 + (E∗)−1) = −E−1(E + E∗)(E∗)−1. (1)
Proof.

B∗HB = A∗HA+A∗(V U∗H +HUV ∗+ V U∗HUV ∗)A

This is equal to H if and only if

V (U∗H + U∗HUV ∗) = −HUV ∗.
Both sides have rank k implies there is an invertible k× k matrix
E such that V = HUE.

HUEU∗H +HUE∗U∗H +HUEU∗HUE∗U∗H = 0.

Now, H is invertible, and LU = Ik, thus

E + E∗+ E(U∗HU)E∗ = 0.
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Second observation

Proposition Let A and H be real n×n matrices, such that H = HT

is invertible and A is H-orthogonal, and let U be an n × k real

matrix and E be a k×k real matrix such that (1) holds. Let G be

a skew-symmetric real k × k matrix such that E = −2(UTHU −
2G)−1. Consider the matrix B = (I − 2U(U∗HU + 2G)−1U∗H)A.

Then

detB = (−1)k detA.

For odd k the H-orthogonal matrix B is not in the same con-

nected component as the matrix A, while for even k the matrix

B is in the same connected component as the matrix A.



Rank k perturbation vs k consecutive rank 1 perturbations

Proposition Let A be H-expansive, U1 an n×k matrix, and U2 an

n×l matrix. Let G1 and G2 be skew-Hermitian such that U∗i HUi+
2Gi is invertible for i = 1,2. Form the rank k perturbation

B1 = (I − 2U1(U∗1HU1 + 2G1)−1U∗1H)A,

and consider the rank l perturbation of B1 given by

B2 = (I − 2U2(U∗2HU2 + 2G2)−1U∗2H)B1.

Then B2 can be viewed as a rank k + l perturbation of A, given
by

B2 =

(
I − 2

[
U2 U1

]([U∗2
U∗1

]
H
[
U2 U1

]
+

[
2G2 U∗2HU1

−U∗1HU2 2G1

])−1 [
U∗2
U∗1

]
H

)
A.



Small rank perturbations of H-expansive matrices

Proposition Let A be H-expansive, and let B(t) = (I+tUE∗U∗H)A,

where E satisfies (1). Then B(t) is also H-expansive in one of

the following two cases:

a. U∗HU is positive semidefinite and either t ≤ 0 or t ≥ 1,

b. U∗HU is negative semidefinite and 0 ≤ t ≤ 1.



Proof. Computing B(t)∗HB(t), we get

B(t)∗HB(t) = (A∗+ tA∗HUEU∗)H(A+ tUE∗U∗HA)

= A∗HA+ (t− t2)〈A∗HU(E + E∗)U∗HA. (2)

Hence

B∗(t)HB(t)−H = A∗HA−H + (t− t2)A∗HU(E + E∗)U∗HA

In particular, since A is H-expansive

B(t)∗HB(t)−H ≥ (t− t2)A∗HU(E + E∗)U∗HA. (3)

Recall, (1) the signatures of U∗HU and −E − E∗ coincide. 2



Proposition Let the n×n matrix A be H-expansive, and let U be

an n × k matrix such that U∗HU is positive definite or negative

definite. Let E be a k × k invertible matrix such that (1) is

satisfied, and let B(t) = (I + tUE∗U∗H)A. Then the following

hold:

a. In case U∗HU is positive definite then B(t) can only have an

eigenvalue in T \ σ(A) when 0 < t ≤ 1

b. In case U∗HU is negative definite then B(t) can only have an

eigenvalue in T \ σ(A) when either t < 0 or t ≥ 1.



H-unitary case

Next, we specialize to the case where A is H-unitary. The in-

equality becomes an equality:

B(t)∗HB(t)−H = (t− t2)A∗HU(E + E∗)U∗HA.

We can sharpen an earlier proposition to the following:

Proposition Let A be H-unitary, and let B(t) = (I+ tUE∗U∗H)A,

where E satisfies (1). Then B(t) is H-expansive if and only if:

U∗HU is positive semidefinite and either t ≤ 0 or t ≥ 1,

U∗HU is negative semidefinite and 0 ≤ t ≤ 1.

Also, B(t) is H-contractive if and only if:

U∗HU is positive semidefinite and 0 ≤ t ≤ 1,

U∗HU is negative semidefinite and either t ≤ 0 or t ≥ 1.

In all other cases B(t)∗HB(t)−H is indefinite.



Proposition Let matrix A be H-unitary, and let U be an n × k
matrix such that U∗HU is positive definite or negative definite.

Let E be a k × k invertible matrix chosen as before, and let

B(t) = (I+ tUE∗U∗H)A. Then B(t) can only have an eigenvalue

in T \ σ(A) when t = 1.



Eigenvalues cross the unit circle as t increases through t = 1

Proposition Let A be H-unitary, and let B(t) = (I+ tUE∗U∗H)A,

where E is chosen as before. Suppose that for t = 1, B(t) has

an eigenvalue λ on the unit circle which is not an eigenvalue

of A. Viewing λ as a function of t, we have the following two

possibilities

1. λ crosses the unit circle from outside to inside if either E +

E∗ > 0 and 〈Hx, x〉 > 0 or E + E∗ < 0 and 〈Hx, x〉 < 0,

2. λ crosses the unit circle from inside to outside if either E +

E∗ > 0 and 〈Hx, x〉 < 0 or E + E∗ < 0 and 〈Hx, x〉 > 0.



Examples

Example 1: Let A = J2(1)⊕ J2(1)⊕ J2(1)⊕ J2(1) and

H =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⊕


0 1 0 1
1 0 −1 0
0 −1 0 0
1 0 0 0

 .
A is H-expansive, i.e., A∗HA−H ≥ 0;

First two Jordan blocks are ”coupled”;

Last two blocks are not coupled.

For a real u randomly generated in Matlab (u=randn(8,1)), we

see that:

Generically B will have 3 blocks of size 2 at eigenvalues 1,

Two real eigenvalues not equal to one.

Conclusion: the rank one perturbation has a preference to de-

stroy the uncoupled block.



Example 2: Let A = J2(1)⊕ J2(1)⊕ J2(1)⊕ J2(1) and

H =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⊕


0 1 0 1
1 0 −1 0
0 −1 0 0
1 0 0 0

 .
If we would take very specific vectors u, namely those with the

last four entries zero, then something else happen:

There are two Jordan blocks with size 2 at eigenvalue 1

One Jordan block of size 3 at eigenvalue 1, and also an eigenvalue

at -1.

Conclusion: this is because then we only make the perturbation

to the coupled blocks.
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Let A = J2(1)⊕ J2(1)⊕ J2(1) and

H =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⊕
[
0 1
1 0

]
.

A is H-expansive

For generic u there are 4 eigenvalues at 1, and two real eigen-

values, since the uncoupled block is destroyed and replaced by

two real eigenvalues.

Product of these real eigenvalues is −1.

For non-generic case where u6 = 0, the perturbed matrix B =

(I − 2
uTHu

uuTH)−1A has five eigenvalues 1 and one eigenvalue

equal to −1.

Compare the case where A is H-orthogonal.


