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Indefinite inner product space

e Function [.,.] from C" x C"™ to C is called an indefinite inner
product in C" if:

— Linear in the first argument
— Antisymmetric

— nondegenerate, i.e., if [z,y] = 0Vy € C" then x =0
e Only exception from the standard inner product is that [z, x]
may be nonpositive for n #= 0.

e For every n x n Hermitian matrix H, i.e., H = H*

[z,y] = (Hz,y), «z,yeC"

determines an inner product on C™.

e Converse also holds.




Jordan form

A matrix A in (real or complex) Jordan form is expressed as the
sum of Jordan segments, that is,

A=JN)®...8J(Np) of A=J(y1)B...D J(p).

Each Jordan segment consists of blocks of the form

N 1 0 ... v In 0 ...
0 >‘i 1 0 0 Yi IQ O
In(A;) = and Jn(v;) =
.. 1 IQ
] Ai | ] Vi |
where v = [Z _a for a complex eigenvalue A = a =+ ib.




Different classes for the matrix pair (A, H)

Let A be an n x n matrix, and let H = H* and invertible of size
nXn. Then A is called:

H — expansive when A*HA — H > O;
H — contractive when A*HA — H < 0O;
H — unitary when A*HA — H = 0.

For the last class canonical forms exist.
For the first two classes, only simple forms exist.

Goal: Interested in eigenvalues of small rank perturbations within
these classes.




Canonical forms and Simple forms for (A, H)

Let A be in Jordan canonical form, i.e., A = J,(1) ® J,(1), when
A only has eigenvalue 1 with n even. Then the canonical form
for the corresponding matrix H when A is H-unitary is:

"0 0 0  Qu]
0o 0 -Qf o
O -Q, 0 0]

Qf 0o 0 o

where Qn is a 5 X 5 matrix with know entries.

H =

If A is H-expansive only a simple form for matrix H exists. Here
H is for example

o ... O 1

0] -
D

H = c . (_1)7
=D
(—1)
*
0] *
- 1 —




Low rank perturbation

Consider the example where

0 1 O] 0 1 O]
A= |0 0 1 and B= |0 0 1].
0 0 O] e 0 O]

The eigenvalue of A is A = 0 with multiplicity 3.

However, the characteristic polynomial of B is given by pg(\) =
A3 —¢, so the distinct eigenvalues of B are given by £1/3 exp2kmi/3
for k=0, 1, 2. Conclusions:

e Rank of a matrix is a discontinuous function of its entries;

e Eigenvalues can completely change with small rank pertur-
bations;

e Matlab is very sensitive when it comes to computations.




First observation

Proposition Let A be H-unitary. Then a perturbation B = A +
UV*A= {I+UV*)A, with U and V both of size n x k and rank k
is also H-unitary if and only if V = HUFE where E is an invertible
k X k matrix satisfying

U*HU = —«(E~ '+ (B H=-E"Y(E+EEHT Q)
Proof.

B*HB = A"HA+ A*(VU*H + HUV*+ VU HUV*)A
This is equal to H if and only if
V(U'H+ U*HUV*) = —HUV™.

Both sides have rank k£ implies there is an invertible k£ x kK matrix
E such that V = HUEFE.

HUEU*H 4+~ HUE*U*H 4+ HUEU*HUE*U*H = 0.
Now, H is invertible, and LU = I, thus

E+ E*+ E(U*HU)E* = 0.




Second observation

Proposition Let A and H be real nxn matrices, such that H = H
is invertible and A is H-orthogonal, and let U be an n X k real
matrix and E be a kx k real matrix such that (1) holds. Let G be
a skew-symmetric real k x k matrix such that E = —2(UTHU —
2G)~1. Consider the matrix B = (I — 2U(U*HU 4+ 2GQ)~1U*H)A.
T hen

det B = (—1)" det A.

For odd k the H-orthogonal matrix B is not in the same con-
nected component as the matrix A, while for even k the matrix
B is in the same connected component as the matrix A.




Rank k perturbation vs k consecutive rank 1 perturbations

Proposition Let A be H-expansive, U1 an n x k matrix, and Uy an
nxl matrix. Let G1 and G, be skew-Hermitian such that UHU;+
2G; is invertible for i = 1,2. Form the rank k perturbation

By = (I — 2U1(UfHU 4 2G1) " 'UTH) A,
and consider the rank | perturbation of B1 given by

By = (I — 2Ux(USHU, 4+ 2G5) " 1USH) B;.

Then B> can be viewed as a rank k + 1 perturbation of A, given
by

~1
_ Us 2G,  UzHU; U3
B, = (1 —2[U> Ui ([Uﬂ H[Uz Ui]+ [—U;HUQ 2 D [Uﬂ H) A.




Small rank perturbations of H-expansive matrices

Proposition Let A be H-expansive, and let B(t) = (I+tUE*U*H)A,
where E satisfies (1). Then B(t) is also H-expansive in one of
the following two cases:

a. U*HU is positive semidefinite and either t <0 ort > 1,

b. U*HU is negative semidefinite and 0 <t < 1.




Proof. Computing B(¢t)*HB(t), we get

B(t)*HB(t) = (A* + tA*HUEU*)H(A + tUE*U*HA)
= A*HA+ (t — t°)(A*HU(E 4+ E*)U*HA. (2)

Hence
B*(t)HB(t) — H = A*HA — H+ (t — t2)A*HU(E + E¥*)U*HA
In particular, since A is H-expansive
B(#)*HB(t) — H > (t —t2)A*HU(E + E*)U*HA. (3)
Recall, (1) the signatures of U*HU and —FE — E* coincide. O




Proposition Let the n xn matrix A be H-expansive, and let U be
an n x k matrix such that U*HU is positive definite or negative
definite. Let E be a k x k invertible matrix such that (1) is
satisfied, and let B(t) = (I +tUE*U*H)A. Then the following
hold:

a. In case U*HU is positive definite then B(t) can only have an
eigenvalue in T\ c(A) when 0 <t <1

b. In case U*HU is negative definite then B(t) can only have an
eigenvalue in T\ c(A) when eithert <0 ort> 1.




H-unitary case

Next, we specialize to the case where A is H-unitary. The in-
equality becomes an equality:

B(t)*HB(t) — H = (t — t2)A*HU(E + E*)U*HA.

We can sharpen an earlier proposition to the following:
Proposition Let A be H-unitary, and let B(t) = (I+tUE*U*H)A,
where E satisfies (1). Then B(t) is H-expansive if and only if:

U*HU is positive semidefinite and either t <0 ort > 1,
U*HU is negative semidefinite and 0 <t < 1.

Also, B(t) is H-contractive if and only if:

U*HU is positive semidefinite and 0 <t <1,

U*HU is negative semidefinite and eithert <0 ort > 1.
In all other cases B(t)*HB(t) — H is indéefinite.




Proposition Let matrix A be H-unitary, and let U be an n X k
matrix such that U*HU is positive definite or negative definite.
Let E be a k x k invertible matrix chosen as before, and let
B(t) = (I4+tUE*U*H)A. Then B(t) can only have an eigenvalue
in T\ oc(A) whent=1.




Eigenvalues cross the unit circle as t increases through ¢t =1

Proposition Let A be H-unitary, and let B(t) = (I+tUE*U*H)A,
where E is chosen as before. Suppose that for t = 1, B(t) has
an eigenvalue A on the unit circle which is not an eigenvalue
of A. Viewing X\ as a function of t, we have the following two
possibilities

1. \ crosses the unit circle from outside to inside if either E +
E*>0 and (Hx,z) >0 or E+ E* <0 and (Hz,x) < 0,

2. )\ crosses the unit circle from inside to outside if either E +
E*>0 and (Hx,z) <0 or E+ E* <0 and (Hz,x) > 0.




Examples

Example 1: Let A= J>(1) ® Jo(1) d Jo(1) d J»(1) and
0

H =

0 O
O O
0O —1
1 O

0 1]
~1 0
0 O
0 O]

S

1
O
1

A is H-expansive, i.e., A¥HA— H > O;

First two Jordan blocks are " coupled”;
LLast two blocks are not coupled.

For a real v randomly generated in Matlab (u=randn(8,1)), we

see that:

Generically B will have 3 blocks of size 2 at eigenvalues 1,
Two real eigenvalues not equal to one.
Conclusion: the rank one perturbation has a preference to de-

stroy the uncoupled block.

1
O
—1
o)

0 1]
~1 0
0 O
0 O]




Example 2: Let A= J>(1)® Jo(1) & J»(1) ® J»(1) and

o 0o 0 11 [0 1 0 1
“lo o 10| |1 0o —10
H=19 "1 0 0o/®lo -1 0 o
1 0 0 o |1 0 0 o

If we would take very specific vectors u, namely those with the
last four entries zero, then something else happen:

There are two Jordan blocks with size 2 at eigenvalue 1

One Jordan block of size 3 at eigenvalue 1, and also an eigenvalue
at -1.

Conclusion: this is because then we only make the perturbation
to the coupled blocks.
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Let A= J>(1) ® J>(1) & J»(1) and

0 0 0 1
~lo o -10] Jo1
H="149 1 o O@L o]'
1 0 0

A is H-expansive

For generic u there are 4 eigenvalues at 1, and two real eigen-
values, since the uncoupled block is destroyed and replaced by
two real eigenvalues.

Product of these real eigenvalues is —1.

For non generic case where ug = 0, the perturbed matrix B =
(I — H —~—uul H)~1A has five eigenvalues 1 and one eigenvalue
equal to —1.

Compare the case where A is H-orthogonal.




