A Toeplitz-like operator with rational symbol having poles on the unit circle

Jacob Jaftha

University of Cape Town

SAMS 2022, Stellenbosch

Joint work with: Gilbert Groenewald Sanne ter Horst Andre Ran

Let Ω an $m \times m$ rational matrix function with no poles on \mathbb{T} .

The block Toeplitz operator with symbol Ω is defined by

$$T_{\Omega}: H_m^p \to H_m^p, \ T_{\Omega}f = \mathbb{P}(\Omega f)$$

where \mathbb{P} is the Riesz projection of $L_m^p(\mathbb{T})$ onto $H_m^p(\mathbb{T})$.

Let Ω an $m \times m$ rational matrix function with no poles on \mathbb{T} .

The block Toeplitz operator with symbol Ω is defined by

$$T_{\Omega}: H_m^p \to H_m^p, \ T_{\Omega}f = \mathbb{P}(\Omega f)$$

where \mathbb{P} is the Riesz projection of $L_m^p(\mathbb{T})$ onto $H_m^p(\mathbb{T})$.

The properties of interest in this study are

- $ightharpoonup T_{\Omega}$ is bounded,
- ▶ T_{Ω} is Fredholm exactly when det $\Omega(z) \neq 0$ for $z \in \mathbb{T}$,
- ► Wiener-Hopf factorization of Ω provide information on index of $T_Ω$, and on the kernel index of $T_Ω$.

But what can we say when Ω has poles on \mathbb{T} ?

But what can we say when Ω has poles on \mathbb{T} ?

▶ $\Omega \notin L_m^{\infty}$ and so clearly T_{Ω} is not bounded,

But what can we say when Ω has poles on \mathbb{T} ?

- $ightharpoonup \Omega \not\in L_m^{\infty}$ and so clearly T_{Ω} is not bounded,
- ▶ But does it follow that T_{Ω} is Fredholm \iff det $\Omega(z) \neq 0$ for $z \in \mathbb{T}$?

But what can we say when Ω has poles on \mathbb{T} ?

- $ightharpoonup \Omega \not\in L_m^{\infty}$ and so clearly T_{Ω} is not bounded,
- ▶ But does it follow that T_{Ω} is Fredholm \iff det $\Omega(z) \neq 0$ for $z \in \mathbb{T}$?
- And is a Wiener-Hopf factorization of Ω possible that allows one to determine the index?

Notation:

- Let Rat $(Rat^{m \times m})$ be the set of rational functions $(m \times m)$ rational matrix functions, respectively),
- ▶ Rat(\mathbb{T}) rational functions with all its poles on \mathbb{T} and Rat₀(\mathbb{T}) the strictly proper rational functions with all its poles in \mathbb{T} .
- ightharpoonup By ${\mathcal P}$ we shall mean the space of all polynomials,
- \triangleright \mathcal{P}_n polynomials of degree at most n.

Notation:

- Let Rat $(Rat^{m \times m})$ be the set of rational functions $(m \times m)$ rational matrix functions, respectively),
- ▶ Rat(\mathbb{T}) rational functions with all its poles on \mathbb{T} and Rat₀(\mathbb{T}) the strictly proper rational functions with all its poles in \mathbb{T} .
- ightharpoonup By ${\mathcal P}$ we shall mean the space of all polynomials,
- $\triangleright \mathcal{P}_n$ polynomials of degree at most n.

We define $\mathrm{Rat}^{m \times m}(\mathbb{T}), \mathrm{Rat}_0^{m \times m}(\mathbb{T}), \mathcal{P}^{m \times m}$ and $\mathcal{P}_n^{m \times m}$ similarly.

Define the Toeplitz-type operator $T_{\Omega}\left(H_m^p(\mathbb{T}) \to H_m^p(\mathbb{T})\right)$ as:

$$\operatorname{Dom}(T_{\Omega}) = \left\{ \varphi \in H_{m}^{\rho}(\mathbb{T}) : \Omega \varphi = g + \rho, g \in L_{m}^{\rho}(\mathbb{T}), \rho \in \operatorname{Rat}_{0}(\mathbb{T}) \right\}$$
$$T_{\Omega} \varphi = \mathbb{P}g, \qquad \varphi \in \operatorname{Dom}(T_{\Omega})$$

where \mathbb{P} is the Riesz projection of $L_m^p(\mathbb{T})$ onto $H_m^p(\mathbb{T})$.

Define the Toeplitz-type operator $T_{\Omega}\left(H_m^p(\mathbb{T}) \to H_m^p(\mathbb{T})\right)$ as:

$$\operatorname{Dom}(T_{\Omega}) = \left\{ \varphi \in H_{m}^{p}(\mathbb{T}) : \Omega \varphi = g + \rho, g \in L_{m}^{p}(\mathbb{T}), \rho \in \operatorname{Rat}_{0}(\mathbb{T}) \right\}$$
$$T_{\Omega} \varphi = \mathbb{P}g, \qquad \varphi \in \operatorname{Dom}(T_{\Omega})$$

where \mathbb{P} is the Riesz projection of $L_m^p(\mathbb{T})$ onto $H_m^p(\mathbb{T})$.

$$H^2$$
-symbol, $T_\omega^{HW}, \omega \in H^2$ (Hartmann - Wintner, 1950, 1954)
$$\operatorname{Dom}(T_\omega^{HW}) = \{h \in H^2 : \omega h = g_1 + g_2 \in L^1, g_1 \in H^2, g_2 \perp H^2\},$$

$$T_\omega^{HW} h := g_1$$

Define the Toeplitz-type operator $T_{\Omega}\left(H_m^p(\mathbb{T}) \to H_m^p(\mathbb{T})\right)$ as:

$$\operatorname{Dom}(T_{\Omega}) = \left\{ \varphi \in H_{m}^{p}(\mathbb{T}) : \Omega \varphi = g + \rho, g \in L_{m}^{p}(\mathbb{T}), \rho \in \operatorname{Rat}_{0}(\mathbb{T}) \right\}$$
$$T_{\Omega} \varphi = \mathbb{P}g, \qquad \varphi \in \operatorname{Dom}(T_{\Omega})$$

where \mathbb{P} is the Riesz projection of $L_m^p(\mathbb{T})$ onto $H_m^p(\mathbb{T})$.

$$H^2$$
-symbol, $T_\omega^{HW}, \omega \in H^2$ (Hartmann - Wintner, 1950, 1954)
$$\mathsf{Dom}(T_\omega^{HW}) = \{h \in H^2 : \omega h = g_1 + g_2 \in L^1, g_1 \in H^2, g_2 \perp H^2\},$$

$$T_\omega^{HW} h := g_1$$

Bargmann-Segal space B, \widetilde{T}_{ω} , ω entire function (Janas, 1990) $\mathsf{Dom}(\widetilde{T}_{\omega}) = \{ h \in B : \omega h = g + r, g \in B, \int r\overline{p}d\mu = 0, \forall p \in \mathcal{P} \},$

$$\widetilde{T}_{\omega}h := g$$

Rest of the presentation

- Basic properties
- Factorization
- ► Fredholm properties

Let $\Omega \in \mathsf{Rat}^{m \times m}$, possibly with poles on \mathbb{T} . Then T_{Ω} is a well-defined, closed, densely defined linear operator on H_m^p . More specifically, $\mathcal{P}^m \subset \mathrm{Dom}\,(T_{\Omega})$. Moreover,

$$S_{-}T_{\Omega}S_{+}f = T_{\Omega}f$$
 for all $f \in \text{Dom}(T_{\Omega})$,

where $S_+ = T_{zI_m}$ and $S_- = T_{z^{-1}I_m}$ on H_m^p .

Let $\Omega \in \mathsf{Rat}^{m \times m}$, possibly with poles on \mathbb{T} . Then T_{Ω} is a well-defined, closed, densely defined linear operator on H_m^p . More specifically, $\mathcal{P}^m \subset \mathrm{Dom}\,(\mathcal{T}_{\Omega})$. Moreover,

$$S_{-}T_{\Omega}S_{+}f = T_{\Omega}f$$
 for all $f \in \text{Dom}(T_{\Omega})$,

where $S_+ = T_{zI_m}$ and $S_- = T_{z^{-1}I_m}$ on H_m^p .

The fact that the domain contains the polynomials and that T_{Ω} satisfies a Brown-Halmos type identity means that the action of T_{Ω} can be represented by a block Toeplitz matrix.

For $\Omega \in \mathsf{Rat}^{m \times m}$ with poles on the unit circle, \mathbb{T} , the action of T_{Ω} can be given by a block-Toeplitz matrix of the form

$$\begin{pmatrix} A_0 & A_{-1} & A_{-2} & A_{-3} & \cdots \\ A_1 & A_0 & A_{-1} & A_{-2} & \cdots \\ A_2 & A_1 & A_0 & A_{-1} & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix}$$

where $A_n, n \in \mathbb{Z}$ are $m \times m$ matrices.

For $\Omega \in \mathsf{Rat}^{m \times m}$ with poles on the unit circle, \mathbb{T} , the action of T_{Ω} can be given by a block-Toeplitz matrix of the form

$$\begin{pmatrix} A_0 & A_{-1} & A_{-2} & A_{-3} & \cdots \\ A_1 & A_0 & A_{-1} & A_{-2} & \cdots \\ A_2 & A_1 & A_0 & A_{-1} & \cdots \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix}$$

where $A_n, n \in \mathbb{Z}$ are $m \times m$ matrices. Here $A_n, n \in \mathbb{N}$ have the same properties as in the bounded case but there is a polynomial growth bound on $A_{-n}, n \in \mathbb{N}$.

Domain in scalar case.

$$\omega = rac{s}{q} \in \mathsf{Rat}(\mathbb{T}), \Rightarrow \mathrm{Dom}\left(\mathcal{T}_{\omega}
ight) = q \mathcal{H}^p + \mathcal{P}_{\mathrm{degree}\,q-1}$$

How to extend this to matrix case?

Let Ω be given by

$$\Omega = \begin{pmatrix} \omega_{11} & \omega_{12} & \cdots & \omega_{1m} \\ \omega_{21} & \omega_{22} & \cdots & \omega_{2m} \\ \vdots & & \ddots & \\ \omega_{m1} & \omega_{m2} & \cdots & \omega_{mm} \end{pmatrix}$$

with $\omega_{ij} = \frac{s_{ij}}{q_{ij}} \in \text{Rat}(\mathbb{T})$. For $f = (f_1, f_2, \dots f_m)^{\intercal} \in \text{Dom}(T_{\Omega})$ we need $f_j \in \text{Dom}(T_{\omega_{ij}}), i = 1, \dots, m$.

Given this, would

$$\mathrm{Dom}\left(T_{\Omega}\right) = qH_{m}^{p} + \mathcal{P}_{\mathrm{degree}\,q-1}^{m}$$

be the correct choice, where $q = \prod q_j$ for $q_j = LCM_{i=1}^m \{q_{ij}\}$?

Two complications:

For
$$q(z) = z^2 - 1 = (z+1)(z-1)$$
, $qH_2^p + \mathcal{P}_1^2 \neq ((z-1)H^p + \mathbb{C}) \oplus ((z+1)H^p + \mathbb{C})$.

Two complications:

- For $q(z) = z^2 1 = (z+1)(z-1)$, $qH_2^p + \mathcal{P}_1^2 \neq ((z-1)H^p + \mathbb{C}) \oplus ((z+1)H^p + \mathbb{C})$.
- For $\Omega(z) = \begin{pmatrix} 1 + \frac{1}{z-1} & \frac{1}{z-1} \\ \frac{1}{z+1} & 1 + \frac{1}{z+1} \end{pmatrix}$, $\det \Omega(z) = \frac{z^2 + 2z 1}{z^2 1} \not\equiv 0$ and $f = (f_1, -f_1)^T$ is in the domain of T_Ω for each $f_1 \in H^p$. Note that the LCM of the denominator for each of columns is $z^2 1$. But, even for $f_1 \not\in \mathrm{Dom}\left(T_{\frac{1}{z^2 1}}\right)$ we do have

$$\begin{pmatrix} f_1 \\ -f_1 \end{pmatrix} \in \mathrm{Dom}\,(T_\Omega).$$

Let $\Omega \in \mathsf{Rat}_0^{m \times m}$ and write $\Omega = \Omega_1 + \Omega_2$ where $\Omega_1 \in L_{\infty}^{m \times m}$ and $\Omega_2 \in \mathsf{Rat}_0^{m \times m}(\mathbb{T})$. Then $\mathrm{Dom}\,(\mathcal{T}_{\Omega}) = \mathrm{Dom}\,(\mathcal{T}_{\Omega_2})$.

Let $\Omega \in \operatorname{Rat}_0^{m \times m}$ and write $\Omega = \Omega_1 + \Omega_2$ where $\Omega_1 \in L_{\infty}^{m \times m}$ and $\Omega_2 \in \operatorname{Rat}_0^{m \times m}(\mathbb{T})$. Then $\operatorname{Dom}(\mathcal{T}_{\Omega}) = \operatorname{Dom}(\mathcal{T}_{\Omega_2})$.

Suppose $\Omega_2 = \left[\frac{s_{ij}}{q_{ij}}\right]$ with $q_{ij} \in \mathbb{T}$ and let $q = \prod q_j$ where $q_j = LCM_{i=1}^m \{q_{ij}\}$, i.e., the least common multiple of the denominators in the j-th column of Ω_2 .

Let $\Omega \in \mathsf{Rat}_0^{m \times m}$ and write $\Omega = \Omega_1 + \Omega_2$ where $\Omega_1 \in L_{\infty}^{m \times m}$ and $\Omega_2 \in \mathsf{Rat}_0^{m \times m}(\mathbb{T})$. Then $\mathrm{Dom}\,(T_{\Omega}) = \mathrm{Dom}\,(T_{\Omega_2})$.

Suppose $\Omega_2 = \left[\frac{s_{ij}}{q_{ij}}\right]$ with $q_{ij} \in \mathbb{T}$ and let $q = \prod q_j$ where $q_j = LCM_{i=1}^m \{q_{ij}\}$, i.e., the least common multiple of the denominators in the j-th column of Ω_2 . Then

$$qH_m^p + \mathcal{P}_{\text{degree }q-1}^m \subset \oplus_j \left(q_jH^p + \mathcal{P}_{\text{degree }q_j-1}\right) \subset \text{Dom}\left(T_\omega\right)$$

and both inclusions can be strict.

Let $\Omega \in \operatorname{Rat}^{m \times m}$ with poles on $\mathbb T$ and suppose that $A \subset H_m^p$ is the space of analytic functions in H_m^p that has an analytic extension to $\overline{\mathbb D}$, the closed unit disk. Then $A \subset \operatorname{Dom}(T_\Omega)$ and furthermore, A is a core of T_Ω .

Classical Wiener-Hopf factorization

Classical Wiener-Hopf factorization

Let $\Omega \in \mathsf{Rat}^{m \times m}$ with $\det \Omega \not\equiv 0$ and no poles or zeroes on \mathbb{T} . Then

$$\Omega = \Omega_{-}\mathrm{Diag}(z^{\kappa_{j}})\Omega_{+}$$

where Ω_- and $(\Omega_-)^{-1}$ are minus functions, Ω_+ and $(\Omega_+)^{-1}$ are plus functions and $\kappa_1 \leq \kappa_2 \leq \cdots \leq \kappa_m \in \mathbb{Z}$.

Classical Wiener-Hopf factorization

Let $\Omega \in \mathsf{Rat}^{m \times m}$ with $\det \Omega \not\equiv 0$ and no poles or zeroes on \mathbb{T} . Then

$$\Omega = \Omega_{-}\mathrm{Diag}(z^{\kappa_{j}})\Omega_{+}$$

where Ω_- and $(\Omega_-)^{-1}$ are minus functions, Ω_+ and $(\Omega_+)^{-1}$ are plus functions and $\kappa_1 \leq \kappa_2 \leq \cdots \leq \kappa_m \in \mathbb{Z}$.

Wiener-Hopf like factorization of rational matrix functions with poles and/or zeroes on $\ensuremath{\mathbb{T}}$

Classical Wiener-Hopf factorization

Let $\Omega \in \mathsf{Rat}^{m \times m}$ with $\det \Omega \not\equiv 0$ and no poles or zeroes on $\mathbb{T}.$ Then

$$\Omega = \Omega_{-} \mathrm{Diag}(z^{\kappa_{j}}) \Omega_{+}$$

where Ω_- and $(\Omega_-)^{-1}$ are minus functions , Ω_+ and $(\Omega_+)^{-1}$ are plus functions and $\kappa_1 \leq \kappa_2 \leq \cdots \leq \kappa_m \in \mathbb{Z}$.

Wiener-Hopf like factorization of rational matrix functions with poles and/or zeroes on $\ensuremath{\mathbb{T}}$

Let $\Omega \in \mathsf{Rat}^{m \times m}$ with $\det \Omega \not\equiv 0$. Then

$$\Omega = z^{-k}\Omega_-\Omega_0 P_0\Omega_+$$
, for some $k > 0$,

 Ω_- and $(\Omega_-)^{-1}$ are minus functions , Ω_+ and $(\Omega_+)^{-1}$ are plus functions, $\Omega_0 = \operatorname{Diag}_{j=1}^m(\phi_j)$ with ϕ_j a scalar rational function with poles and zeroes only on $\mathbb T$ and P_0 is a lower triangular polynomial matrix with $\det(P_0(z)) = z^N$ for some $N \geq 0$.

Factorization: example

$$\Omega = \begin{pmatrix} 1 & \frac{1}{z-1} \\ 0 & 1 \end{pmatrix}$$

Factorization: example

$$\Omega=egin{pmatrix}1&rac{1}{z-1}\0&1\end{pmatrix}$$
 then $\Omega=z^{-2}\Omega_-(z)\Omega_0(z)P_0(z)\Omega_+(z)$

where

$$\Omega_{-}(z) = \begin{pmatrix} -\frac{1}{z}-1 & -\frac{1}{z^2} \\ 1 & \frac{1}{z}-1 \end{pmatrix}, \Omega_{+}(z) = \begin{pmatrix} -z & -1 \\ 1 & 0 \end{pmatrix},$$

$$\Omega_0(z) = \begin{pmatrix} z-1 & 0 \\ 0 & \frac{1}{z-1} \end{pmatrix} \quad \text{ and } P_0(z) = \begin{pmatrix} 1 & 0 \\ z^3+z^2-z & z^4 \end{pmatrix}.$$

Let $\Omega=z^{-k}\Omega_-\Omega_0P_0\Omega_+$ be the Wiener-Hopf type factorization of Ω as above. Put $\Xi=z^{-k}\Omega_0P_0$ then

$$T_{\Omega} = T_{\Omega_{-}} T_{\Xi} T_{\Omega_{+}},$$

and

$$T_{\Xi} = T_{z^{-k}I_m} T_{\Omega_0} T_{P_0}$$

Fredholm: diagonal case

Suppose that $\Omega(z) \in \mathsf{Rat}^{m \times m}(\mathbb{T} \cup \{0\})$ with

$$\Omega(z) = \left(egin{array}{ccc} \omega_1(z) & & & & & \ & \omega_2(z) & & & & \ & & \ddots & & \ & & & \omega_m(z) \end{array}
ight)$$

and $\omega_j(z) \in \operatorname{Rat}(\mathbb{T} \cup \{0\}), j=1,2,\ldots,m$. Then T_Ω is Fredholm if and only if T_{ω_j} is Fredholm for each $j=1,\ldots m$, i.e., if and only if ω_j has no roots on \mathbb{T} for each $j=1,\ldots,m$. In case T_Ω is Fredholm we have

Index
$$T_{\Omega} = \sum_{j=1}^{m} \operatorname{Index} T_{\omega_j}$$
.

Fredholm: nondiagonal case

Fredholm: nondiagonal case

Let $\Omega(z)=z^{-k}\Omega_-(z)\Omega_0(z)P_0(z)\Omega_+(z)$ be the Wiener-Hopf type factorization of Ω as above. Put $\Xi(z)=z^{-k}\Omega_0(z)P_0(z)$. Then T_Ω is Fredholm if and only if T_Ξ is Fredholm if and only if T_{Ω_0} is Fredholm, which happens exactly when each of the entries ϕ_j of Ω_0 has no zeroes on \mathbb{T} . In case T_Ω is Fredholm,

$$\begin{split} \operatorname{Index} T_{\Omega} &= \operatorname{Index} T_{\Xi} &= mk + \operatorname{Index} T_{\Omega_0} + \operatorname{Index} T_{P_0} \\ &= mk + \sum_{j=1}^m \operatorname{degree} q_j - \sum_{j=1}^m k_j, \end{split}$$

where $\phi_j = \frac{s_j}{q_j}$ and q_j has roots only on \mathbb{T} and k_j are the powers of z on the diagonal of P_0 .

Fredholm: example

For
$$\Omega = \begin{pmatrix} 1 & \frac{1}{z-1} \\ 0 & 1 \end{pmatrix}$$
 then

$$\Omega(z) = z^{-2}\Omega_{-}(z)\begin{pmatrix} z-1 & 0 \\ 0 & \frac{1}{z-1} \end{pmatrix}\begin{pmatrix} 1 & 0 \\ z^3+z^2-z & z^4 \end{pmatrix}\Omega_{+}(z).$$

Since

$$\Omega_0(z) = \begin{pmatrix} z - 1 & 0 \\ 0 & \frac{1}{z - 1} \end{pmatrix}$$

has a zero on $\mathbb T$ we have that T_Ω is not Fredholm even though $\det \Omega = 1$.

Fredholm: indices

Let

$$\Xi(z) = \Omega_0(z) P_0(z) = \begin{pmatrix} \frac{z^{k_1}}{q_1(z)} & 0 & \cdots & 0\\ \frac{p_{2,1}}{q_2(z)} & \frac{z^{k_2}}{q_2(z)} & \ddots & \vdots\\ \vdots & \ddots & \ddots & 0\\ \frac{p_{m,1}}{q_m(z)} & \cdots & \frac{p_{m,m-1}}{q_m(z)} & \frac{z^{k_m}}{q_m(z)} \end{pmatrix}$$

Are the numbers k_1, k_2, \ldots, k_m unique as in the classical (bounded) case, when Ξ results from a Wiener-Hopf factorization? Or, are the partial indices on the main diagonal degree $q_i - k_i$, $j = 1, \ldots, m$ unique?

Fredholm: indices

Suppose

$$\Xi(z) = \Omega_0(z) P_0(z) = \begin{pmatrix} \frac{z^{k_1}}{q_1(z)} & 0 & \cdots & 0 \\ \frac{p_{2,1}}{q_2(z)} & \frac{z^{k_2}}{q_2(z)} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \frac{p_{m,1}}{q_m(z)} & \cdots & \frac{p_{m,m-1}}{q_m(z)} & \frac{z^{k_m}}{q_m(z)} \end{pmatrix}$$

results from a Wiener-Hopf factorization with

$$k_j$$
 - degree $q_i \ge$ degree $p_{i,j}$ - degree q_i , $i = j + 1 \dots m$.

If T_{Ω} is Fredholm then we can read the Fredholm partial indices of T_{Ω} from the main diagonal entries.

Fredholm: indices(example 1)

Let

$$\Xi(z) = \begin{pmatrix} \frac{1}{(z-1)^3} & 0\\ \frac{z^2}{(z-1)^4} & \frac{z^5}{(z-1)^4} \end{pmatrix}$$

Then $\Xi(z)$ is in the required form and so $\operatorname{Index}(T_{\Xi}) = 3 - 1 = 2$. Note, though, that

$$\Xi(z) = \Xi_{-}(z)^{-1} \begin{pmatrix} \frac{z^3}{(z-1)^3} & 0\\ 0 & \frac{z^2}{(z-1)^4} \end{pmatrix} \Xi_{+}(z)^{-1}$$

where

$$\Xi_{-}(z)=\begin{pmatrix} -1 & rac{z-1}{z^2} \\ 0 & 1 \end{pmatrix}, \Xi_{+}(z)=\begin{pmatrix} -z^3 & 1 \\ 1 & 0 \end{pmatrix}.$$

Note that Ξ_- and its inverse are minus functions whereas Ξ_+ and its inverse are plus functions.

Fredholm: indices(example 2)

Let

$$\Xi_1(z) = \begin{pmatrix} \frac{1}{(z-1)^3} & 0\\ \frac{z}{(z-1)^4} & \frac{z^5}{(z-1)^4} \end{pmatrix}$$

Then $\Xi_1(z)$ is in the required form and so again, $\operatorname{Index}(T_{\Xi_1})=3-1=2$. Note now, though, that

$$\Xi(z) = \Xi_{-}(z)^{-1} \begin{pmatrix} \frac{z^4}{(z-1)^3} & 0\\ 0 & \frac{z}{(z-1)^4} \end{pmatrix} \Xi_{+}(z)^{-1}$$

where

$$\Xi_{-}(z) = \begin{pmatrix} -1 & \frac{z-1}{z} \\ 0 & 1 \end{pmatrix}, \Xi_{+}(z) = \begin{pmatrix} -z^4 & 1 \\ 1 & 0 \end{pmatrix}.$$

Again Ξ_- and its inverse are minus functions whereas Ξ_+ and its inverse are plus functions.

The End

Thank you for your attention