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Motivation

Let Ω an m ×m rational matrix function with no poles on T.

The block Toeplitz operator with symbol Ω is defined by

TΩ : Hp
m → Hp

m, TΩf = P(Ωf )

where P is the Riesz projection of Lpm(T) onto Hp
m(T).

The properties of interest in this study are

▶ TΩ is bounded,

▶ TΩ is Fredholm exactly when detΩ(z) ̸= 0 for z ∈ T,
▶ Wiener-Hopf factorization of Ω provide information on index

of TΩ, and on the kernel index of TΩ.
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Motivation

But what can we say when Ω has poles on T?

▶ Ω ̸∈ L∞m and so clearly TΩ is not bounded,

▶ But does it follow that TΩ is Fredholm ⇐⇒ detΩ(z) ̸= 0 for
z ∈ T?

▶ And is a Wiener-Hopf factorization of Ω possible that allows
one to determine the index?
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Ω has a pole on T

Notation:

▶ Let Rat (Ratm×m) be the set of rational functions (m ×m
rational matrix functions, respectively),

▶ Rat(T) rational functions with all its poles on T and Rat0(T)
the strictly proper rational functions with all its poles in T.

▶ By P we shall mean the space of all polynomials,

▶ Pn polynomials of degree at most n.

We define Ratm×m(T),Ratm×m
0 (T),Pm×m and Pm×m

n similarly.
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Ω has a pole on T
Define the Toeplitz-type operator TΩ

(
Hp
m(T) → Hp

m(T)
)
as:

Dom(TΩ) =
{
φ ∈ Hp

m(T) : Ωφ = g + ρ, g ∈ Lpm(T), ρ ∈ Rat0(T)
}

TΩφ = Pg , φ ∈ Dom(TΩ)

where P is the Riesz projection of Lpm(T) onto Hp
m(T).

H2-symbol, THW
ω , ω ∈ H2 (Hartmann - Wintner, 1950, 1954)

Dom(THW
ω ) = {h ∈ H2 : ωh = g1 + g2 ∈ L1, g1 ∈ H2, g2 ⊥ H2},

THW
ω h := g1

Bargmann-Segal space B, T̃ω, ω entire function (Janas, 1990)
Dom(T̃ω) = {h ∈ B : ωh = g + r , g ∈ B,

∫
rpdµ = 0,∀p ∈ P},

T̃ωh := g
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Rest of the presentation

▶ Basic properties

▶ Factorization

▶ Fredholm properties



Basic Properties

Let Ω ∈ Ratm×m, possibly with poles on T. Then TΩ is a
well-defined, closed, densely defined linear operator on Hp

m. More
specifically, Pm ⊂ Dom (TΩ). Moreover,

S−TΩS+f = TΩf for all f ∈ Dom (TΩ),

where S+ = TzIm and S− = Tz−1Im on Hp
m.

The fact that the domain contains the polynomials and that TΩ

satisfies a Brown-Halmos type identity means that the action of
TΩ can be represented by a block Toeplitz matrix.
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Basic Properties

For Ω ∈ Ratm×m with poles on the unit circle, T, the action of TΩ

can be given by a block-Toeplitz matrix of the form
A0 A−1 A−2 A−3 · · ·
A1 A0 A−1 A−2 · · ·
A2 A1 A0 A−1 · · ·
. . .

. . .
. . .

. . .


where An, n ∈ Z are m ×m matrices.

Here An, n ∈ N have the
same properties as in the bounded case but there is a polynomial
growth bound on A−n, n ∈ N.
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Basic Properties: Domain

Domain in scalar case.

ω =
s

q
∈ Rat(T),⇒ Dom (Tω) = qHp + Pdegree q−1

How to extend this to matrix case?



Basic Properties: Domain

Let Ω be given by

Ω =


ω11 ω12 · · · ω1m

ω21 ω22 · · · ω2m
...

. . .

ωm1 ωm2 · · · ωmm


with ωij =

sij
qij

∈ Rat(T). For f = (f1, f2, . . . fm)
⊺ ∈ Dom (TΩ) we

need fj ∈ Dom (Tωij ), i = 1, . . . ,m.

Given this, would

Dom (TΩ) = qHp
m + Pm

degree q−1

be the correct choice, where q =
∏

qj for qj = LCMm
i=1{qij}?



Basic Properties: Domain

Two complications:

▶ For q(z) = z2 − 1 = (z + 1)(z − 1),
qHp

2 + P2
1 ̸= ((z − 1)Hp + C)⊕ ((z + 1)Hp + C).

▶ For Ω(z) =

(
1 + 1

z−1
1

z−1
1

z+1 1 + 1
z+1

)
, det Ω(z) = z2+2z−1

z2−1
̸≡ 0

and f = (f1,−f1)
T is in the domain of TΩ for each f1 ∈ Hp.

Note that the LCM of the denominator for each of columns is
z2 − 1. But, even for f1 ̸∈ Dom (T 1

z2−1

) we do have(
f1
−f1

)
∈ Dom (TΩ).
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Basic Properties: Domain

Let Ω ∈ Ratm×m and write Ω = Ω1 +Ω2 where Ω1 ∈ Lm×m
∞ and

Ω2 ∈ Ratm×m
0 (T). Then Dom (TΩ) = Dom (TΩ2).

Suppose Ω2 =
[
sij
qij

]
with qij ∈ T and let q =

∏
qj where

qj = LCMm
i=1{qij}, i.e., the least common multiple of the

denominators in the j-th column of Ω2. Then

qHp
m + Pm

degree q−1 ⊂ ⊕j

(
qjH

p + Pdegree qj−1

)
⊂ Dom (Tω)

and both inclusions can be strict.
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Basic Properties: Domain

Let Ω ∈ Ratm×m with poles on T and suppose that A ⊂ Hp
m is the

space of analytic functions in Hp
m that has an analytic extension to

D, the closed unit disk. Then A ⊂ Dom (TΩ) and furthermore, A
is a core of TΩ.



Factorization

Classical Wiener-Hopf factorization

Let Ω ∈ Ratm×m with detΩ ̸≡ 0 and no poles or zeroes on T. Then

Ω = Ω−Diag(zκj )Ω+

where Ω− and (Ω−)
−1 are minus functions , Ω+ and (Ω+)

−1 are
plus functions and κ1 ≤ κ2 ≤ · · · ≤ κm ∈ Z.

Wiener-Hopf like factorization of rational matrix functions
with poles and/or zeroes on T

Let Ω ∈ Ratm×m with detΩ ̸≡ 0. Then

Ω = z−kΩ−Ω0P0Ω+, for some k > 0,

Ω− and (Ω−)
−1 are minus functions , Ω+ and (Ω+)

−1 are plus
functions, Ω0 = Diagmj=1(ϕj) with ϕj a scalar rational function with
poles and zeroes only on T and P0 is a lower triangular polynomial
matrix with det(P0(z)) = zN for some N ≥ 0.
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Factorization: example

Ω =

(
1 1

z−1

0 1

)

then

Ω = z−2Ω−(z)Ω0(z)P0(z)Ω+(z)

where

Ω−(z) =

(
−1

z − 1 − 1
z2

1 1
z − 1

)
,Ω+(z) =

(
−z −1
1 0

)
,

Ω0(z) =

(
z − 1 0
0 1

z−1

)
and P0(z) =

(
1 0

z3 + z2 − z z4

)
.
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Factorization

Let Ω = z−kΩ−Ω0P0Ω+ be the Wiener-Hopf type factorization of
Ω as above. Put Ξ = z−kΩ0P0 then

TΩ = TΩ−TΞTΩ+ ,

and
TΞ = Tz−k ImTΩ0TP0



Fredholm: diagonal case

Suppose that Ω(z) ∈ Ratm×m(T ∪ {0}) with

Ω(z) =


ω1(z)

ω2(z)
. . .

ωm(z)


and ωj(z) ∈ Rat(T ∪ {0}), j = 1, 2, . . . ,m. Then TΩ is Fredholm if
and only if Tωj is Fredholm for each j = 1, . . .m, i.e., if and only if
ωj has no roots on T for each j = 1, . . . ,m. In case TΩ is
Fredholm we have

IndexTΩ =
m∑
j=1

IndexTωj .



Fredholm: nondiagonal case

Let Ω(z) = z−kΩ−(z)Ω0(z)P0(z)Ω+(z) be the Wiener-Hopf type
factorization of Ω as above. Put Ξ(z) = z−kΩ0(z)P0(z). Then TΩ

is Fredholm if and only if TΞ is Fredholm if and only if TΩ0 is
Fredholm, which happens exactly when each of the entries ϕj of
Ω0 has no zeroes on T. In case TΩ is Fredholm,

IndexTΩ = IndexTΞ = mk + IndexTΩ0 + IndexTP0

= mk +
m∑
j=1

degree qj −
m∑
j=1

kj ,

where ϕj =
sj
qj

and qj has roots only on T and kj are the powers of

z on the diagonal of P0.
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Fredholm: example

For Ω =

(
1 1

z−1

0 1

)
then

Ω(z) = z−2Ω−(z)

(
z − 1 0
0 1

z−1

)(
1 0

z3 + z2 − z z4

)
Ω+(z).

Since

Ω0(z) =

(
z − 1 0
0 1

z−1

)
has a zero on T we have that TΩ is not Fredholm even though
detΩ = 1.



Fredholm: indices

Let

Ξ(z) = Ω0(z)P0(z) =


zk1
q1(z)

0 · · · 0

p2,1
q2(z)

zk2
q2(z)

. . .
...

...
. . .

. . . 0
pm,1

qm(z)
· · · pm,m−1

qm(z)
zkm
qm(z)


Are the numbers k1, k2, . . . , km unique as in the classical
(bounded) case, when Ξ results from a Wiener-Hopf factorization?
Or, are the partial indices on the main diagonal
degree qj − kj , j = 1, . . . ,m unique?



Fredholm: indices

Suppose

Ξ(z) = Ω0(z)P0(z) =


zk1
q1(z)

0 · · · 0

p2,1
q2(z)

zk2
q2(z)

. . .
...

...
. . .

. . . 0
pm,1

qm(z)
· · · pm,m−1

qm(z)
zkm
qm(z)


results from a Wiener-Hopf factorization with

kj − degree qj ≥ degree pi ,j − degree qi , i = j + 1 . . .m.

If TΩ is Fredholm then we can read the Fredholm partial indices of
TΩ from the main diagonal entries.



Fredholm: indices(example 1)

Let

Ξ(z) =

(
1

(z−1)3
0

z2

(z−1)4
z5

(z−1)4

)
Then Ξ(z) is in the required form and so Index (TΞ) = 3− 1 = 2.
Note, though, that

Ξ(z) = Ξ−(z)
−1

(
z3

(z−1)3
0

0 z2

(z−1)4

)
Ξ+(z)

−1

where

Ξ−(z) =

(
−1 z−1

z2

0 1

)
,Ξ+(z) =

(
−z3 1
1 0

)
.

Note that Ξ− and its inverse are minus functions whereas Ξ+ and
its inverse are plus functions.



Fredholm: indices(example 2)

Let

Ξ1(z) =

(
1

(z−1)3
0

z
(z−1)4

z5

(z−1)4

)
Then Ξ1(z) is in the required form and so again,
Index (TΞ1) = 3− 1 = 2. Note now, though, that

Ξ(z) = Ξ−(z)
−1

(
z4

(z−1)3
0

0 z
(z−1)4

)
Ξ+(z)

−1

where

Ξ−(z) =

(
−1 z−1

z
0 1

)
,Ξ+(z) =

(
−z4 1
1 0

)
.

Again Ξ− and its inverse are minus functions whereas Ξ+ and its
inverse are plus functions.



The End

Thank you for your attention


