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Abstract

Internal categorical structures play an important role in categorical algebra. In
semi-abelian categories, internal categories form a variety, namely the variety of
crossed modules [10]. The notion of star multiplication was introduced by G.
Janelidze in [10] where it was applied to the description of crossed modules in a
semi-abelian category. In the same paper, the question of describing
semi-abelian categories with the property that every star-multiplicative graph
uniquely extends to an internal category structure was asked.

N. Martins-Ferreira [14] introduced conditions that provide a simple description
of internal groupoids as crossed modules in the semi-abelian categories of
groups and rings. The aim of this talk is to describe star-multiplication in
varieties of right Q-loops in the sense of [9].
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Notation and preliminaries

Let C be a finitely complete category with coproducts.

Ptc(B), the category of points over B:

The objects in Ptc(B) are triples (A, «, 3), where «: A— B and

B : B — A are morphisms in C in with a8 = 1g. A morphism
f:(Aa,B)— (A,d,B") in Ptc(B) is a morphism f: A— A" in C with
of=a and f3=20".




Protomodular and semiabelian categories provide the appropriate setting for
describing the essential features of groups and other algebraic structures. A
category C is semi-abelian (Janelidze, Marki and Tholen, [11]) when

(a) C is pointed.

b) C

c) C is finitely cocomplete.

d) C is Barr-exact (M. Barr, 1971).

> regular: finitely complete with pullback stable regular epis and coequalizers
of kernel pairs
> every internal equivalence relation is a kernel pair
(e) C is protomodular (Bourn, 1991); Pullback functor
f*: Pt(B) — Pt(E) conservative <= short 5 lemma (in pointed case)

is finitely complete.

(
(
(



Internal actions and semidirect products of €2-loops

Let C be a finitely complete category with coproducts. Then for any object B
in C, we can define a functor U from the category of split epimorphisms over B
into C

o
_— >

-
B

U:Ptg(C)——C, A B+—— ker(a).

[1,0]
LN
X - B

and the monad corresponding to this adjunction is denoted by Bb(—). The
Bb(—)-algebras are called B-actions in C (See [4]).

This functor has a left adjoint F: C —— Ptg(C), X —— B +



T is the monad on C determined by the adjoint pair (F,U), C™ = BbX the
category of T-algebras, and U7, FT, and K are the corresponding forgetful
functor, free functor, and comparison functor respectively. L is the left adjoint
of K.



Remarks 1

> We write
KB.X [1,0]

BYX —% B+ X B (1)

for the diagram in which + denotes the coproduct and kg x is the kernel
of the morphism [1, 0] induced by the identity morphism of B and the zero
morphism from B to X.

» In the category of groups, the object BbX is the group generated by the
formal conjugates of elements of B by the triples (b, x, b™") with b € B
and x € X.



Definition 2
The algebras for the monad Bb(—) (or T2 ) induced by the adjunction (F, U)
called internal B-actions in C. We denote by CZ the category of these algebras.



Definition 3

(D. Bourn and G. Janelidze, [1])

Let T8 be the monad on C corresponding to the monadic functor

U : Ptc(B) — C. Given a TB-algebra (X, &), we define the semidirect product

B x (X,¢)

to be the object in Ptc(B) corresponding to (X, &) under the category
equivalence

Pte(B)=C™"

L(Xaf) = (B X (X,f),ﬂ'g,Lg)



Remarks 4
> Bx (X,£) = L(X,&) is defined via the coequalizer diagram

KB, X
BYX — = B+ X — > (X, €) ()
3

» For (A o, B) in Ptc(B), consider the diagram

. [1,0]
BbX$B+X—>ELlB 3)

3 [8,5]

X— " s A8
B
where (BbX, kg,x) is the kernel of [1,0], (X,k) is the kernel of o, and
& is the induced morphism between these kernels. We can write

K(A, a, ) = (X, ).



Theorem 5 ([9])

In Q-Loop Given an object B and a T5-algebra (X,¢), the semidirect product
B x (X, &) is the set-theoretical (cartesian) product B x X equipped with the
following $2-algebra structure:

w((b1,x1), -y (Bny xn)) = (w(b1, ..., bn), E(w(x1 + b1, ...y Xn + bn) — w(bn, ..., b,,());
4

for each n-ary operation w € Q and for all by, ....,b, € B, x1,...,x, € X.



Internal reflexive graphs, internal categories and crossed modules

Let C be a category with pullbacks. Recall that an internal reflexive graph in C
is give by a diagram
d

RN

C1 ; Co

\_/

c

where ( is called the "object of objects” and Ci, the "object of arrows”, such
that the domain morphism d, the codomain morphism ¢ and the identity
morphism e satisfy de = de = 1¢,.

C is endowed with an internal category structure

T d

Go

G xq, GG —m> Gy <—
™ c

when there is a multiplication m : i x¢, G — G satisfying the axioms
C1 m(1g¢x),x) = x = m(x, 1ge0)
C2 d(m(x,y)) = d(x)
C3 c(m(x,y)) = c(y)
C4 m(x,m(y, z)) = m(m(x,y), z)
where 1x = e(X) and G X ¢, G denotes the pullback of d and c.



We shall denote by cat(C) the category of internal categories in C and by
RG(C) that of internal reflexive graphs.

In [6] it was shown that the notions of reflexive multiplicative graph, internal
category and internal groupoid coincide

Theorem 6
If Cis a Cis a Maltsev category, then
1. any internal reflexive graph admits at most one structure
reflexive-multiplicative graph;
2. V. Cat(C)“—= RMG(C) and U: Grpd(C)“—— Cat(C) are
isomorphisms.



There are several algebraic and combinatorial categories equivalent to the
category of crossed modules (see Brown and Spencer [5], Porter [17], for a
more categorical setting). A paper for this kind of result in a semiabelian
setting is [10].

One of the categories equivalent to crossed modules of groups is Cat’-Groups,
the category of Cat!-groups.



Recall:

Definition 7
A crossed module (A, B, §) consists of a homomorphism 6 : A — B together
with an action of the group B on A, written as b.a such that

(a) 8(a).a =a+a —a
(b) 6(b.a)=b+d(a)—b
for all a,a’ € A and b € B.



In a semi-abelian category internal crossed modules are equivalent to internal
categories [10].



Definition 8

An internal precrossed module in a semi-abelian category C is a 4-tuple

(B, X,&,0) in which (X,€) is a B-action and § : X — B a morphism in C
such that the diagram

BX — X L B X (5)

13 [1,8]

X45>B

commutes.



Definition 9
An internal crossed module in a semi-abelian category C is an internal
precrossed module (B, X,&,8) for which the diagram

[1g,d]b1x

(B+ X)pX BbX (6)
[laix,talt 3
BbX c X

commutes. Here, [1gix, Lg]ﬁ is the unique morphism such that
ke x[181x, 2] = [1B1x, t2]KBix,X-



Theorem 10

A crossed module in a variety I of right Q-loops is a quadruple (B, X,&,8) in
which (X, &) is a B-action and ¢ : X — B is a morphism such that for an
n-ary operation w € <,



w(5(x1) + b1, ey 5(Xn) + b,) — w(b1 )

£+ (50x2) + br), s i+ (30x0) + b))~

w(d(x1) + b1y ..., 8(xn) + b))+

E(w(x1 + b1y ooy Xn + bn) — w(bu, ..., bn)

= &(w((x1 + x1) + by weey (Xp + Xn) + bn) — w(b1, ..y bn)

)
6(&(wlxa + b1 o Xn + by) — w(by, ...,



Star multiplication

Definition 11
A multiplicative graph is a reflexive graph

Aﬁ-B
B

(7)
together with a binary multiplication, that is, a morphism A xg A——> B
such that the following diagram commutes;
1 1
<L,Ba> o ShBer  Axp A< <p7,1> (8)

A4



Definition 12

[10] Let S = (A, B,«, 8,7) be an internal reflexive graph in a pointed category
C with finite limits, and k : X — A a (fixed) kernel of «. The graph S is
said to be star-multiplicative if there exists a unique morphism

s: Axg X — X making the diagram

<K,0> <Byk,1>

T L Axp X <2 9)

NS

commute; here A xg X is defined as the pullback

AxgX —2 > X (10)

st J/'ym
B

A



Can every star-multiplicative graph in a semiabelian category be equipped with
a unique internal groupoid structure? [10]

1. Conditions that provide a description of internal groupoids as crossed
modules in the semi-abelian categories of groups and rings provided in [14].

2. Using commutator theory, N. Martins-Ferreira and T. Van der Linden
proved that in a semiabelian category, a reflexive graph has the " Smith is
Huq” or (SH) property if and only if every star-multiplicative graph is a
groupoid [15].
i.e If the Smith commutator coincides with the Hug commutator, then
every star-multiplicative graph uniquely extends to an internal category
structure.



Examples of semi-belian categories that satisfy the Smith is Hug Condition
(SH) are:

» groups

» rings, not necessarily unitary

» all Orzech categories of interest [16]

The category of loops is semi-abelian but does not satisfy SH ([7], Example 4.9)
G.Janelidze, L. Marki and S. Veldsman [12]

In the semi-abelian category of nearrings,it was shown by an counter-example,
that the Hug and Smith commutators of ideals (normal subobjects) need not
coincide.



Remark 13

A near-ring is a system N = (N,0,4, —, ) in which (N,+) is a group (not
necessarily abelian), (N, -) is a semigroup, and the right distributive law
(x+y) - z=a-z+y-z holds.



Theorem 14
An internal crossed module (B, X,&,6) in Q-RLoop corresponds to a
star-multiplicative graph under the equivalence

PXMod(£2-RLoop) = RG(Q2-RLoop) (11)
if and only if
E@(E0) + 31, 6(x0) + Xn) — (31, - 30))
= w(X] + X1, oy Xp + Xn) — W(X1, oy Xn ).
(12)

for all xi,....;xan € X, x{,...,xp € X.



Consider a diagram in Q-RLoop of the form

™2

<HYO> /_\

X — 7 L Axg X X . (13)

S

<Byk,0>

If€: XbX — X is the X-action on X corresponding to this split

epimorphism, then £ making the diagram

XbX ——% L X 4 X (14)
£ [<Bvk,1>,<k,0>]

_— >
X <k,0> Axg X

commute; that is to say that

<k, 0> E=[<Byr, 1>, <K, 0 >]rxx (15)



This is equivalent to the requirement that the diagram

XbX — 2 x4 x (16)
3 [<ByK,k>]

X%—A

commutes.



By chasing this diagram, we get

KE = [Byk, K]kx x
= RE(W(X F X1, ey X+ Xn) — W(X1, ey Xn))
= [Byr, Klrx x (W(X] 4 X1, oy X+ Xn) — W(X1, 2oy Xn))
= E(W(X] + Xty ooy X+ Xn) — W(XT, o0y X))
= [Byk, K)(W(X] + X1, ooy Xp + Xn) — W(X15 -eny Xn))
= E(W(X] + Xty ey X+ Xn) — W(X1, oy X))
= w(x{ X1,y X Xn) — W(X1y oey Xn)

(17)



An internal crossed module (B, X,&,d) will then correspond to a
star-multiplicative graph under the equivalence

PXMod(£2-RLoop) =~ RG(Q2-RLoop) (18)

if and only if the diagram

XpX — o X (19)
b1

BbX£—>X

commutes.



By the commutativity of this diagram, we have

(L) (W + X1, vy X+ Xn) — W(X1, oy Xn))
= E(W(X] + X1y ey X+ Xn) — W(X, ey Xn))
= E(W(S(X1) 4 X1y o 6(X0) + Xn) — W(X1, ooy Xn))
= W(X{ F X1, ey X+ Xn) — WXL, o0y Xn)

(20)



Corollary 15

In the category Grp of groups every star-multiplicative graph extends to an
internal category structure.



Proof.
In equation 14 let w be the binary +. Then

E((5(x1) +x1) + (6(x2) + x2) — (31 + x2))
=(q +x)+0a+x)— (a+x)
= £(0(x) +x + () —x1) = x| +x1 + x5 —x

(21)

Since this equation holds for all x1,x],x2,x3 € X, we can substitute x; = 0.
We then have

E(xa +0(x0) —x1) = x1 + x5 — x1; (22)
that is, d(x1).x3 = x1 + x3 — x1, (the Peiffer condition for crossed modules in
groups).
This confirms (see [10], Remark 4.7) that every star multiplicative graph in the
category of groups is an internal category. O
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