Split extension cores for internal semi-abelian algebras in a cartesian closed category

James Richard Andrew Gray

December 6, 2022

Actions and split extensions

In the category of groups each split extension

$$X \xrightarrow{\kappa} A \xrightarrow{\alpha} B$$
 $\kappa = \ker(\alpha)$ $\alpha\beta = 1_B$

of B with kernel X, determines an action of B on X, that is, a map $\cdot : B \times X \to X$ satisfying:

- 1. $e \cdot x = x$ (where e is the identity element in B);
- 2. $b \cdot (b' \cdot x) = (bb') \cdot x$;
- 3. $b \cdot (xx') = (b \cdot x)(b \cdot x')$.

This action can be defined by $\kappa(b \cdot x) = \beta(b)\kappa(x)\beta(b)^{1}$.

A split extension can be recovered (up to isomorphism) from an action via a semi-direct product and every action action arises in this way. (In fact there is an equivalence of categories between the category of split extensions of B and the category of B-groups, i.e. groups equipped with an action of B on them).

Action cores

▶ Given a group B, a B-group X and a subgroup S of X, the action core of S with respect to X is the largest sub-B-group of X contained in X. The action core always exists and has underlying set

$$\{x \in X \mid \forall b \in B, b \cdot x \in S\}.$$

▶ All of the above can be generalized to *semi-abelian* categories, in the sense of Janelidze, Marki, Tholen [JMT02], by replacing group action by *internal object action* first studied by Bourn and Janelidze in [BJ98] whose name derives from [BJK05] of Borceux, Janelidze and Kelly. This produces the notion action core in sense of [BCGV22] which unlike in the case of the category of groups do not necessarily exist in every semi-abelian category. We won't go into the details of this here, instead we will work with split extensions.

Split extensions cores

► Given a split extension

$$X \xrightarrow{\kappa} A \underset{\beta}{\overset{\alpha}{\rightleftharpoons}} B \tag{1}$$

and a monomorphism $m: S \to X$ in a pointed finitely complete category \mathbb{C} , the split extension core of S with respect (1) [BCGV22] is the terminal object in the category of morphisms of split extensions of the form

$$X' \xrightarrow{\kappa'} A' \xrightarrow{\alpha'} B$$

$$X' \xrightarrow{\kappa'} A' \xrightarrow{\beta'} B$$

$$X \xrightarrow{\kappa} A \xrightarrow{\alpha} B$$

$$X \xrightarrow{\kappa} A \xrightarrow{\alpha} B$$

$$X \xrightarrow{\kappa} A \xrightarrow{\alpha} B$$

Split extension cores

We will denote the split extension core as follows:

It turns out that whenever the split extension core exists (in the finitely complete context) that \bar{u} and \bar{v} are necessarily monomorphisms.

▶ In groups $\bar{X} = \{x \in X \mid \forall b \in B, \beta(b)\kappa(x)\beta(b)^{-1} \in m(S)\}$ and $m\bar{u}$ is the inclusion of \bar{X} in X (we do not describe the remainder of (4) since it is determined up to isomorphism).

A construction for split extension cores in semi-abelian varieties

- A variety of universal algebras \mathcal{V} is semi-abelian if it has a unique constant e and admits, for some natural number n, an n+1-ary term p and n binary terms $s_1, ..., s_n$ satisfying: $s_i(x,x)=e$ and $p(s_1(x,y),...,s_n(x,y),y)=x$.
- Examples include (Ω-) groups where n=1, p(x,y)=xy and $s_1(x,y)=xy^{-1}$, which include not necessarily unital rings and Lie algebras amongst others as well as, Heyting semi-lattices where n=2, $p(x,y,z)=(x\to z)\land y$, $s_1(x,y)=x\to y$ and $s_2(x,y)=((x\to y)\to y)\to x$ (Johnstone [Joh04]).

- For a natural number n we call an n+1-ary terms t a unary ideal term if $t(e, v_1, ..., v_n) = e$ (which is a special case of ideal term in the sense of Ursini [Urs72]). We denote the set of all n+1-ary ideal terms I_n . For example for the variety of groups the term $t(x, y) = xyx^1$ is a unary ideal term.
- ▶ Given a split extension (1) and an element x in X the sub split extension of (1) with codomain B generated by x has kernel $\langle x \rangle = \{t(x, \beta(b_1), ..., \beta(b_n)) \mid n \in \mathbb{N}, t \in I_n, b_1, ..., b_n \in B\}$ i.e forms part of the smallest split extension

$$\begin{array}{cccc}
\langle x \rangle & \longrightarrow \bullet & \longrightarrow B \\
\downarrow & & \parallel & \\
X & \stackrel{\kappa}{\longrightarrow} A & \stackrel{\alpha}{\longrightarrow} B.
\end{array}$$
(4)

with kernel containing x.

Proposition

 $\mathcal V$ admits split extension cores if and only if for each split extension (1) and each sub-algebra S of X the set $\{x \mid \langle x \rangle \subseteq S\}$ forms a sub-algebra of X. In this case \bar{X} is given by this sub-algebra.

Cartesian closed categories

- A small complete category $\mathbb C$ is cartesian closed if for each object B the functor $B \times : \mathbb C \to \mathbb C$ has a right adjoint. Equivalently, for each C in $\mathbb C$ there exists an object C^B together with a morphism $\mathrm{ev}: C^B \times B \to C$ with the following universal property: for each object A together with a morphism $h: A \times B \to C$ there exists a unique morphism $\tilde{h}: A \to C^B$ such that $\mathrm{ev}(\tilde{h} \times 1) = h$.
- The category of sets is an example of such a category where $C^A = \{f \mid f \text{ is a function from } A \text{ to } C\}$ and ev(f)(a) = f(a).

Internal algebras

An internal group (G, e, m, i) in a finitely complete category $\mathbb C$ consists of an object G in $\mathbb C$, and morphisms $e: 1 \to G$, $m: G \times G \to G$ and $i: G \to G$ (where 1 is the terminal object in $\mathbb C$) such that the following diagrams

$$G \times (G \times G) \xrightarrow{\alpha} (G \times G) \times G$$

$$1 \times m \downarrow \qquad \qquad \downarrow m \times 1$$

$$G \times G \xrightarrow{m} G \times G$$

▶ Other internal algebras can be suitably defined by replacing the underlying set by an object, the operations by morphisms, and axioms by commutative diagrams.

Split extension cores for internal semi-abelian algebras

▶ Given a split extension (1) and a monomorphism $m: S \to X$ we construct the object \bar{X} (essentially copying what happens for sets) as the meet (wide pullback) of the family of monomorphisms $u_t: X_t \to X$, indexed by unary ideal terms t, obtained via pullback

$$X_{t} \xrightarrow{u_{t}} X$$

$$\downarrow_{\tilde{t}} X$$

$$S^{B^{n}} \xrightarrow{m^{B^{n}}} X^{B^{n}}$$

where $ilde{t}$ is the unique morphism making the diagram

Split extension cores for internal semi-abelian algebras

Theorem

Let $\mathcal V$ be a variety of semi-abelian algebras and let $\mathbb C$ be a small complete cartesian closed category with small subobject lattice. If $\mathcal V$ admits split extension cores, then the category of internal $\mathcal V$ algebras in $\mathbb C$ admits split extension cores.

Idea of the proof

- Show that construction given for \bar{X} works in the case where $\mathbb{C} = \mathbf{Set}^{\mathbb{X}}$ for a category \mathbb{X} .
- Use the fact that the yoneda embeding $Y:\mathbb{C}\to \mathbf{Set}^{\mathbb{C}^{\mathrm{op}}}$ preserves limits exponents and is fully faithful to show that $\overline{Y(X)}=Y(\bar{X})$ and use this to prove that \bar{X} is a sub-algebra of X.

- [BCGV22] Dominique Bourn, Alan Stephano Cigoli, James Richard Andrew Gray, and Tim Van der Linden. Algebraic logoi. Journal of Pure and Applied Algebra, Accepted 2022.
- [BJ98] Dominique Bourn and George Janelidze.
 Protomodularity, descent and semidirect products.

 Theory and Applications of Categories, 4(2):37–46, 1998.
- [BJK05] Francis Borceux, George Janelidze, and Gregory Maxwell Kelly. Internal object actions. Commentationes Mathematicae Universitatis Carolinae, 46(2):235–255, 2005.
- [JMT02] George Janelidze, Lászlo Márki, and Walter Tholen. Semi-abelian categories.

 Journal of Pure and Applied Algebra, 168:367–386, 2002.

[Joh04] Peter Johnstone.

A note on the semiabelian variety of Heyting semilattices.

In *Galois theory, Hopf algebras, and semiabelian* categories, volume 43 of *Fields Inst. Commun.*, pages 317–318. Amer. Math. Soc., Providence, RI, 2004.

[Urs72] Aldo Ursini.

Sulle varietà di algebre con una buona teoria degli ideali.

Boll. Un. Mat. Ital. (4), 6:90-95, 1972.