
Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

A functorial presentation of parsers

G. Feierabend, Stellenbosch University



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Introduction



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Introduction

Translating unformatted input into some meaningful data structure:

abc[def]ghi

w[ee[r]]er[

]erktpq[w]x

parsing



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Introduction

abc[def]ghi

w[ee[r]]er[

]erktpq[w]x

e[r]]er[

]erktpq[

r]]er[

parsing

parsing

substring ?



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

The SOFiA Proof Assistant Project

A SOFiA proof:

[X][Y][[X]=[Y]] /L1: assumption.

[[X]=[X]] /L2: self-equate from L1(1).

[[Y]=[X]] /L3: right substitution, L1(3) in L2(1).

[[X][Y][[X]=[Y]]:[[Y]=[X]]] /L4: synapsis (L1-3).



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Non-functorial parser for SOFiA

option p = option1 p <|> return []
option1 p =

do vs1 <- p
vs2 <- option p
return (vs1 ++ vs2)

legalSymbolChars = ['a'..'z'] ++ ['A'..'Z'] ++ ['0'..'9'] ++ ['%',' ','+', '!',
'\'']

isValidSymbol :: String -> Bool
isValidSymbol cs = [c | c <- cs, not $ elem c legalSymbolChars] == []

sCharacter :: Parser Char
sCharacter = sat (\x -> elem x legalSymbolChars)

specialChar :: Char -> Parser Char
specialChar x = sat (== x)

sSymbol :: Parser String
sSymbol =

do x <- sCharacter
xs <- many sCharacter
return [y | y <- (x:xs), y /= ' ']

sFormulator :: Parser SofiaTree
sFormulator =

do many $ specialChar ' '
specialChar ':'
many $ specialChar ' '
return (newSofiaTree [] Implication [])
<|> do many $ specialChar ' '

specialChar '='
many $ specialChar ' '
return (newSofiaTree [] Equality [])
<|> do x <- sSymbol

return (newSofiaTree x Symbol [])

sAtom :: Parser SofiaTree
sAtom =

do many (specialChar ' ')
specialChar '['
many (specialChar ' ')
x <- sFormula
many (specialChar ' ')
specialChar ']'
many (specialChar ' ')
return (newSofiaTree "" Atom [x])
<|> do many (specialChar ' ')

specialChar '['
many (specialChar ' ')
x <- sStatement
many (specialChar ' ')

(a) lines 1–52

specialChar ']'
many (specialChar ' ')
return (newSofiaTree "" Atom [x])

<|> do many (specialChar ' ')
specialChar '['
many (specialChar ' ')
specialChar ']'
many (specialChar ' ')
return (newSofiaTree "" Atom [])

sStatement :: Parser SofiaTree
sStatement = do x <- sAtom

xs <- many sAtom
return (newSofiaTree "" Statement (x:xs))

sFormula :: Parser SofiaTree
sFormula =

do x <- sFormulator;
do y <- sStatement;

zs <- option
(do z1 <- sFormulator

z2 <- sStatement
return [z1, z2]

)
do f <- sFormulator

return (newSofiaTree "" Formula ([x, y] ++ zs ++ [f]))
<|> return (newSofiaTree "" Formula ([x, y] ++ zs))

<|> return (newSofiaTree "" Formula [x])
<|> do x <- sStatement

y <- sFormulator
zs <- option

(do z1 <- sStatement
z2 <- sFormulator
return [z1, z2]

)
do f <- sStatement

return (newSofiaTree "" Formula ([x, y] ++ zs ++ [f]))
<|> return (newSofiaTree "" Formula ([x, y] ++ zs))

sExpression :: Parser SofiaTree
sExpression =

do x <- sFormula
return x
<|> do x <- sStatement

return x

treeParse :: String -> SofiaTree
treeParse x = case parsed of

[] -> newSofiaTree "" Error []
[(_, x:xs)] -> newSofiaTree "" Error []
_ -> fst $ head $ parsed
where parsed = parse sExpression x

(b) lines 53–104

Figure: recursive descend parser for SOFiA



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Labelled Charged Graphs



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Finite sequences

Definition
A finite sequence of length n over a set Σ is a function from
{1, . . . , n} to Σ. We denote the length of a finite sequence s by ∥s∥.
The unique sequence of length 0 is denoted by ε. Given any set Σ, we
denote the set of all finite sequences over Σ by Σ

∗
.

Definition
Given finite sequences s1, s2 ∈ Σ

∗
over some set (alphabet) Σ, we define

s1 ⊕ s2 to be the concatenation of s1 and s2.



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Definition
A labelled charged graph (LCG) is a tuple (V ,E ,Σ, λ, c , ρ):

• (V ,E): graph

• Σ: alphabet

• λ ∶ V → Σ
∗

:
labelling function

• c : charge

• ρ: root

- +

u c s g j p qw a

a

b

c

de

g

s

t

e

r

e

x



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

LCG-isomorphisms

- +

u c s g j p qw a

a

b

c

de

g

s

t

e

r

e

x

≃
- +

u c s g j p qw a

a

b

c

de

g

s

t

e

r

e

x

Figure: two LCGs with different underlying vertex-sets but the same structure



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

LCG-isomorphisms

Definition
G1 = (V1,E1,Σ, λ1, c1, ρ1) and G2 = (V2,E2,Σ, λ2, c2, ρ2) are isomorphic
to each other, if there exists a bijection ϕ ∶ V1 → V2 such that:

(I1) ϕ preserves edges: ∀va,vb∈V1
[(va, vb) ∈ E1 ⇔ (ϕ(va), ϕ(vb)) ∈ E2].

(I2) ϕ preserves the length of charges: ∥c1∥ = ∥c2∥.

(I3) ϕ preserves charges: For all i ∈ {1, 2, . . . ,∥c1∥}, ϕ(c1(i)) = c2(i).

(I4) ϕ preserves labels: For all v ∈ V1, λ1(v) = λ2(ϕ(v)).

(I5) ϕ preserves roots: ϕ(ρ1) = ρ2.

We then write G1 ≃ G2.



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Concatenation of LCGs

The coincidence relation ∼ is an equivalence relation on the disjoint
union of the underlying vertex sets of two LCGs.

+-

+-

Figure: coinciding vertices



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Concatenation of LCGs

Given two LCGs G1 and G2, the vertex set of the concatenation G1 ⊎ G2

is the quotient set (V1 ⊔ V2)/∼.

+-

Figure: concatenating two LCGs



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Monoids over LCGs



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Monoid “up to isomorphism”

Definition
Let M be a set and let ≅ be an equivalence relation on M and let ⊗ be a
binary operation on M. We say that (M,⊗,≅) is a monoid up to
isomorphism, if all of the following conditions hold:

(1) For all a, b, c ∈ M, (a⊗ b)⊗ c ≅ a⊗ (b ⊗ c).

(2) There exists e ∈ M such that for all a ∈ M, e ⊗ a ≅ a ≅ a⊗ e.

Theorem
LCGs over a fixed alphabet Σ together with concatenation and
LCG-isomorphisms form a monoid up to isomorphism.



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Proof idea

Let G1 = (V1,E1,Σ, λ1, c1, ρ1), G2 = (V2,E2,Σ, λ2, c2, ρ2) and
G3 = (V3,E3,Σ, λ3, c3, ρ3) be LCGs over some fixed alphabet Σ and let

• (G1 ⊎ G2) ⊎ G3 = (VL,EL,Σ, λL, cL, ρL)
• G1 ⊎ (G2 ⊎ G3) = (VR ,ER ,Σ, λR , cR , ρR)

Let ϕ ∶ VL → VR be defined as follows:

ϕ([(a, v)])

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[(1, v1)] if ∃v1∈V1
[(a, v)] = [(1, [(1, v1)])]

[(2, [(1, v2)])] if ∃v2∈V2
[[(a, v)] = [(1, [(2, v2)])] and ∣[(2, v2)]∣ = 1]

[(2, [(2, v3)])] if ∃v3∈V3
[∣[(a, v)]∣ = 1 and [(a, v)] = [(2, v3)]]

Then:

• Show that ϕ is well-defined and an LCG-isomorphism.

• Show that any single node LCG with a label of length 0 is an identity.



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Extending the definitions

We can extend LCG-concatenation to equivalence classes of LCGs:

Lemma
Let G1, G

′
1, G2 be LCGs such that there exists an isomorphism ϕ between

G1 and G
′
1 and let 1G be the identity isomorphism on G2. Then we can

define isomorphisms 1G ⊎ ϕ and ϕ ⊎ 1G between G2 ⊎ G1 and G2 ⊎ G
′
1,

and G1 ⊎ G2 and G
′
1 ⊎ G2 respectively.

Theorem
Let [G], [H] be equivalence classes of LCGs over some fixed alphabet Σ
and suppose G1,G2 ∈ [G] and H1,H2 ∈ [H]. Then
[G1 ⊎ H1] = [G2 ⊎ H2].

Corollary
Equivalence classes of isomorphic LCGs together with their concatenation
form a monoid.



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Words

We represent words as equivalence classes of single-vertex LCGs.

Theorem
Words together with their concatenation form a sub-monoid of the
monoid of equivalence classes of LCGs.

Definition
A word [W ] is embedded into another word [W ′] if there exist two
words [L] and [R] such that [L] ⊎ [W ] ⊎ [R] = [W ′].

ai

- + ⊎
dxb

- + ⊎
j

- +
≃

aidxbj

- +

Figure: a word embedded into another word



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

The category of embedded LCGs and the parser



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Embeddings of LCGs

We can extend the notion of embeddings to arbitrary LCGs:

-

+

⊎ - + ⊎
-

+
≃

-

+

Figure: a general LCG embedded into another LCG

Definition
An LCG G is embedded into another LCG G

′
if there exist two LCGs L

and R such that [L] ⊎ [G] ⊎ [R] = [G ′].

Theorem
Equivalence classes of isomorphic LCGs together with embeddings form a
category denoted by eLCG(Σ).

Theorem
Words give rise to a subcategory of eLCG(Σ), denoted by wLCG(Σ).



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

The free monoid

Theorem (universal property of the free monoid)

in Mon: M(A) N
f̂

in Set:

∣M(A)∣ ∣N∣

A

∣f̂ ∣

i
f

Theorem
(Σ

∗
,⊕, ε) is the free monoid over Σ.

Theorem
The monoid (wLCG(Σ)0,⊎) is isomorphic to (Σ

∗
,⊕). We denote this

isomorphism by φ.



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

We can now define a function f from an alphabet Σ with two distinct
special elements ⟦ and ⟧ to respectively map ⟦, x ∈ Σ \ {⟦, ⟧} and ⟧ to
the equivalences classes of the following LCGs:

-

+

⟦
- +
x

-

+

⟧



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Theorem
Let Σ be an alphabet with two distinct special elements denoted ⟦ and ⟧
and let f ∶ Σ→ eLCG(Σ)0 be the function defined as follows:

f (x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[⊷] if x = ⟦
[⊶] if x =⟧
NxT otherwise

Moreover, let f̂ be the unique monoid homomorphism from
(Σ

∗
,⊕, ε)→ eLCG(Σ)0 such that f = f̂ ◦ i and let p = f̂ ◦ φ.

We can define a functor P ∶ wLCG(Σ)→ eLCG(Σ) as follows:

P0([W ]) = p([W ])
P1([W1], [L1], [R1], [W2]) = (p([W1]), p([L1]), p([R1]), p([W2]))



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

- +

⟦⟧⟦⟧

a b

- +

d⟦⟧z⟦⟧

⟦⟧⟦⟧ g

a b

-

+

d⟦
-

+

⟧z⟦⟧

g,

⟦a⟧⟦b⟧
- +

d⟦⟦a⟧⟦b⟧⟧z⟦g⟧
- +

- +

d⟦
- +

⟧z⟦g⟧,

P

P

P

Figure: the parser functor “in action”



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Functorial parser for SOFiA

1 data Tree = Vertex [Char] [Tree] deriving Show
2 data LCT = LCT Int Int Tree deriving Show
3

4 (\+/) :: LCT -> LCT -> LCT
5 (\+/) (LCT ca1 ca2 ta) (LCT cb1 cb2 tb) = LCT c1 c2 (merge c d ta tb)
6 where c = ca2 - cb1
7 d = min ca2 cb1
8 c1 = (max 0 (cb1 - ca2)) + ca1
9 c2 = (max 0 (ca2 - cb1)) + cb2

10

11 merge :: Int -> Int -> Tree -> Tree -> Tree
12 merge c d (Vertex l1 ts1) (Vertex l2 ts2) =
13 if c < 0 then Vertex l2 ((merge (c + 1) d (Vertex l1 ts1) (head ts2)):(tail ts2))
14 else if c == 0 && d == 0 then Vertex (l1 ++ l2) (ts1 ++ ts2)
15 else if c == 0 && d /= 0 then Vertex (l1 ++ l2)
16 ((init ts1) ++ ((merge 0 (d - 1) (last ts1) (head ts2)):(tail ts2)))
17 else Vertex l1 ((init ts1) ++ [merge (c - 1) d (last ts1) (Vertex l2 ts2)])
18

19 parse :: [Char] -> LCT
20 parse xs = foldl (\+/) (LCT 0 0 (Vertex [] [])) (map f xs)
21 where f x = case x of
22 '[' -> LCT 0 1 (Vertex "[" [Vertex "" []])
23 ']' -> LCT 1 0 (Vertex "]" [Vertex "" []])
24 _ -> LCT 0 0 (Vertex [x] [])



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

Thank you very much for listening!



Introduction Labelled Charged Graphs Monoids over LCGs The category of embedded LCGs and the parser References

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles, Techniques, and
Tools. Addison-Wesley series in computer science and information processing.
Addison-Wesley Publishing Company, 1986. isbn: 9780201100884.

[2] S. Awodey. Category Theory. Oxford Logic Guides. OUP Oxford, 2010.
isbn: 9780199587360.

[3] G. Chartrand. Introductory Graph Theory. Dover Books on Mathematics
Series. Dover, 1977. isbn: 9780486247755.

[4] G. Feierabend. The SOFiA Proof Assistant. 2022. url:
http://81.7.3.57:3000/.

[5] G. Hutton. Programming in Haskell. 2005. url:
http://www.cs.nott.ac.uk/~pszgmh/pih.html.

[6] Z. Janelidze. The SOFiA Proof Assistant Project. 2022. url:
https://www.zurab.online/2022/08/the-sofia-proof-assistant-

project.html.

[7] B. Laing. “Sketching SOFiA”. MA thesis. Stellenbosch University, 2020.

[8] S. MacLane. Categories for the Working Mathematician. Graduate Texts in
Mathematics. Springer New York, 1971. isbn: 9781461298397.

[9] M. Sipser. Introduction to the theory of computation. 3rd ed. Florence, AL:
Course Technology, Jan. 2021.

http://81.7.3.57:3000/
http://www.cs.nott.ac.uk/~pszgmh/pih.html
https://www.zurab.online/2022/08/the-sofia-proof-assistant-project.html
https://www.zurab.online/2022/08/the-sofia-proof-assistant-project.html

	Introduction
	Labelled Charged Graphs
	Monoids over LCGs
	The category of embedded LCGs and the parser
	References

