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Applications of generalized curvature

Quantum gravity, manifold reconstruction and complex network
theory already use some generalized curvature estimators, inspired
by and/or derived from differential geometric notions of curvature.



Background Sectional Curvature from the Cosine Rule Random Geometric Graphs The Earth Fractals Conclusions

Existing generalized curvatures
Existing curvature estimators on graphs and hypergraphs focus on
analogues of the Ricci curvature tensor.
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Gaps to be filled

The following gaps exist in the resurging field of network curvature

1. A standard way of investigating convergence to differential
geometric curvature notions, independent of graph
construction method

2. Sectional curvature

3. Manifestly mesoscopic curvature

Since sectional curvature completely determines the curvature
tensor, it also captures all aspects of Ricci curvature.
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The cosine rule in spaces of constant curvature

Definition 2.1

The sectional curvature of a 2D linear subspace σp of the tangent
space at a point p in a Riemannian manifold is the Gaussian
curvature of the geodesic plane that is the image of σp under the
exponential map at p.

In a 2D Riemannian manifold with constant sectional curvature K,
if we have an embedded triangle with side lengths a, b, c (and the
angle opposite to c is γ), we have a generalization of the cosine
rule, namely

cos(c
√
K) = cos(a

√
K) cos(b

√
K) + sin(a

√
K) sin(b

√
K) cos(γ)
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Constructing right-angled triangles in constant curvature

If we can set γ = π
2 , we can just consider the generalization of the

Pythagorean theorem

cos(c
√
K) = cos(a

√
K) cos(b

√
K).

Again in a 2D Riemannian manifold with constant sectional
curvature K, congruent triangles have equal angles, so:
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Motivating the uniqueness and existence of roots

For us to use the root of f(x) = cos(c
√
x)− cos(a

√
x) cos(b

√
x)

as a definition for a sectional curvature estimate, we have to show

it has exactly two zeroes in x ∈
(
−∞, π2

max (a,b,c)2

]
(one being the

trivial x = 0 root), unless a2 + b2 = c2 in which case x = 0 is the
only (double) root.

1. For negative x, we can use the power mean inequality to show
order-by-order that that there can only be one relevant root

2. For positive x it is non-trivial, and only strong numerical
evidence is currently available
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Hard Annulus Random Geometric Graphs

Definition 3.1

A random geometric graph of a metric space (X, d) with respect
to a connection function I : R → [0, 1] is a graph obtained by
taking the vertices to be a random (uniform w.r.t. the volume
measure) sample of N points V ⊂ X, with the probability of two
vertices v1, v2 ∈ V being connected given by I(d(v1, v2)).

Definition 3.2

A hard annulus random geometric graph with connection length ℓ
and tolerance 0 < p < 1 is a random geometric graph with
connection function

I(d) =

{
1 |d− ℓ| < ℓp

0 otherwise
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Metric distortion: Background

We want a measure of how good or bad an embedding of a graph
into another metric space is. Such notions are called metric
distortions, and a recurring useful definition in their study is:

Definition 3.3

The embedding ratio between two points u, v ∈ G under an
embedding between metric spaces f : G → X is defined as

ρf (u, v) =
dX(f(u), f(v))

dG(u, v)
u, v ∈ G.

We can use this to define a notion of distortion, that satisfies the
following properties:

1. Manifest invariance to inverting definition of embedding ratios

2. Rescaling either metric should be irrelevant.
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Metric distortion: solution

A natural definition of our metric distortion is to take the mean
deviation of the logarithm of the ratios.

Definition 3.4

For a finite metric space G, we define the metric distortion of an
embedding f : G → X to a metric space X to be

dist(f) =
1

|G|2
∑

u,v∈G
| log(ρf (u, v))− log(ρf geom)|,

where the geometric mean is given by

ρf geom =

 ∏
u,v∈G

ρf (u, v)

|G|−2

.
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Metric distortion: induced edge length

Definition 3.5

For a graph G with the usual combinatorial metric and an
embedding f : G → X into another metric space, the effective
edge length induced by f is

ℓe = ρf geom

such that we scale ρ′f (u, v) =
ρf (u,v)
ρf geom

, simplifying the expression for

the distortion of a graph with the effective edge length induced by
f to

dist(f) =
1

|G|2
∑

u,v∈G
| log(ρ′f (u, v))|.
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Construction of manifold-like graphs
1. Generate n uniformly random (w.r.t. area/volume) points in a

manifold

2. Choose tolerance p = 0.25 as heuristic for low edge count and
distortion

3. Use binary search to find minimal connection length ℓ giving a
connected hard annulus random geometric graph
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Sectional curvature distributions of large (∼ 104 vertices)
‘constant curvature’ graphs

S2 S3 Euclidean disk Hyperbolic disk
1 1 0 -1

1.0088± 0.0013 0.974± 0.0027 −0.04± 0.16 −0.997± 0.028
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Apparent convergence of mean curvature

We can take a variety of tolerances and vertex counts to get a
range of metric distortion graphs, in order to see if the deviation of
the curvature distributions mean from (and the mean deviation
from) the underlying mean correlates with the distortion.
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Comparison: Wolfram-Ricci curvature

We can compare with Wolfram-Ricci curvature using the same test:
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Comparison: Mesoscopic Ollivier-Ricci curvature

Comparing with a convergence test done on a modified definition
of Ollivier-Ricci curvature:
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Triangles on the earth

We can draw right-angled triangles on the earth! Therefore, we
can calculate radius of curvature R = 1√

K
estimates for

constructed triangles:

The earth has an average radius of ≈ 6371 km, and from 100
triangles we get an estimate of (6370.5± 0.7) km.
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Estimating the radius distribution of the earth
It is possible to derive the distribution of radii of an oblate
spheroid with parameters corresponding to the earth

p(R) ∝ (R− 6357)−
1
2 6357 ≤ R ≤ 6399

Figure: The left plot shows the frequency of different estimated radii over
104 samples. The right plot shows the probability density of different
radius estimates over 104 with a maximum length scale of 6400 km as
compared to the expected probability density for a oblate spheroid with
parameters comparable to that of earth.
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Sierpinski triangle graphs Ŝn
3
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Sectional curvature distributions of Sierpinski triangle
graphs
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Scaling of statistics and limiting distribution

When looking at the scaling of the mean, median and standard
deviation on log plots, one notices the apparent empirical law

ε1e
n1−n
a1 + ε2e

n2−n
a2 appears to model all three statistics with

different constants, functions with fitted constants plotted above.
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Scaling of sectional curvature distribution

Since ε1e
n1−n
a1 carries the large n behaviour of the empirical law,

we can see that if for each n we scaled edge lengths by

ℓconv = e
− 1

2a1 , the corresponding statistic’s empirical law would

converge to some finite value ε1e
n1
a1 . The fitted constants and their

corresponding convergence lengths are given in the table below:

ε1 n1 a1 ℓconv

µ −1 −1.23± 0.0.32 1.78± 0.06 0.755± 0.007
M +1 1.41± 0.06 0.743± 0.007 0.5102± 0.0032
σ +1 −8± 9 4.8± 2.4 0.90± 0.05
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Scaling of sectional curvature distribution
We can now look at the rescaled distributions
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Conclusions

• We introduced a new notion of metric distortion

• Hard annulus random geometric graphs gives an efficient way
to construct low distortion graphs

• We defined a sectional curvature estimator, applicable to both
continuous and discrete geometries that seems algorithmically
and computationally simpler than tested alternatives

• We validated our approach using random geometric graphs
constructed from different manifolds, and showed that our
estimator produces accurate and convergent results,
outperforming tested alternatives
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Conclusions

• We can accurately estimate the radius of the earth and
distribution of curvature of an oblate spheroid, showing it
works outside of just constant sectional curvature

• We can apply sectional curvature distributions to Sierpinski
triangle graphs and find non-trivial behaviour

• Has potential implications for quantum gravity, numerical
relativity, data science, computational geometry and more
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