When are mixed convergences topological?

Jurie Conradie

University of Cape Town

SAMS University of Stellenbosch 7 December 2022

Joint work with

Michael O'Brien, Vladimir Troitsky and Jan Harm van der Walt.

Let (Ω, Σ, μ) be a measure space and $f_1, f_2, f_3, \dots, f \in L_1(\Omega, \Sigma, \mu)$. Then if

- there is a $0 \le g \in L_1(\Omega, \Sigma, \mu)$ such that $|f_n(x)| \le g(x)$ for all $n \in \mathbb{N}$ and $|f(x)| \le g(x)$ almost everywhere,
- and either

Let (Ω, Σ, μ) be a measure space and $f_1, f_2, f_3, \dots, f \in L_1(\Omega, \Sigma, \mu)$. Then if

- there is a $0 \le g \in L_1(\Omega, \Sigma, \mu)$ such that $|f_n(x)| \le g(x)$ for all $n \in \mathbb{N}$ and $|f(x)| \le g(x)$ almost everywhere,
- and either
 - (f_n) convergences almost everywhere to f, or

Let (Ω, Σ, μ) be a measure space and $f_1, f_2, f_3, \dots, f \in L_1(\Omega, \Sigma, \mu)$. Then if

- there is a $0 \le g \in L_1(\Omega, \Sigma, \mu)$ such that $|f_n(x)| \le g(x)$ for all $n \in \mathbb{N}$ and $|f(x)| \le g(x)$ almost everywhere,
- and either
 - (f_n) convergences almost everywhere to f, or
 - (f_n) convergences to f in measure on sets of finite measure,

Let (Ω, Σ, μ) be a measure space and $f_1, f_2, f_3, \dots, f \in L_1(\Omega, \Sigma, \mu)$. Then if

- there is a $0 \le g \in L_1(\Omega, \Sigma, \mu)$ such that $|f_n(x)| \le g(x)$ for all $n \in \mathbb{N}$ and $|f(x)| \le g(x)$ almost everywhere,
- and either
 - (f_n) convergences almost everywhere to f, or
 - \bullet (f_n) convergences to f in measure on sets of finite measure,

then $\int |f_n - f| d\mu \to 0$, i.e. (f_n) converges to f in the L_1 -norm.

X a topological space, $x \in X$.

X a topological space, $x \in X$.

 $\mathcal{N}(x)$ is the set of all neighbourhoods of x.

X a topological space, $x \in X$.

 $\mathcal{N}(x)$ is the set of all neighbourhoods of x.

 $(x_{\alpha})_{\alpha \in A}$ is a net in X.

X a topological space, $x \in X$.

 $\mathcal{N}(x)$ is the set of all neighbourhoods of x.

 $(x_{\alpha})_{\alpha \in A}$ is a net in X.

Then (x_{α}) converges to x (written $x_{\alpha} \to x$) if for every $N \in \mathcal{N}(x)$, there is an $\alpha_0 \in A$ such that $x_{\alpha} \in N$ for all $\alpha \geq \alpha_0$.

Topological convergence: filters

 $\mathcal{N}(x)$ is a **filter** on X.

Topological convergence: filters

 $\mathcal{N}(x)$ is a **filter** on X.

A filter \mathcal{F} on a set X is a non-empty collection of non-empty subsets of X such that

- $F_1, F_2 \in \mathcal{F} \Rightarrow F_1 \cap F_2 \in \mathcal{F}$;
- $F \in \mathcal{F}, G \supseteq F \Rightarrow G \in \mathcal{F}$.

Topological convergence: filters

 $\mathcal{N}(x)$ is a **filter** on X.

A filter \mathcal{F} on a set X is a non-empty collection of non-empty subsets of X such that

- $F_1, F_2 \in \mathcal{F} \Rightarrow F_1 \cap F_2 \in \mathcal{F}$;
- $F \in \mathcal{F}, G \supseteq F \Rightarrow G \in \mathcal{F}$.

A filter \mathcal{F} converges to x in X (written $\mathcal{F} \to x$) if $\mathcal{F} \supseteq \mathcal{N}(x)$.

If $(x_{\alpha})_{\alpha \in A}$ is a net and $\alpha_0 \in A$, then we call the set $\{x_{\alpha} : \alpha \geq \alpha_0\}$ a **tail** of the net.

If $(x_{\alpha})_{\alpha \in A}$ is a net and $\alpha_0 \in A$, then we call the set $\{x_{\alpha} : \alpha \geq \alpha_0\}$ a **tail** of the net.

The set

$$\mathcal{F} = \{ \mathbf{F} \subseteq \mathbf{X} : \mathbf{F} \supset \{ \mathbf{x}_{\alpha} : \alpha \ge \alpha_{\mathbf{0}} \} \text{ for some } \alpha_{\mathbf{0}} \in \mathbf{A} \}$$

of all subsets of *X* containing a tail of the net is a filter.

If $(x_{\alpha})_{\alpha \in A}$ is a net and $\alpha_0 \in A$, then we call the set $\{x_{\alpha} : \alpha \geq \alpha_0\}$ a **tail** of the net.

The set

$$\mathcal{F} = \{ \mathbf{F} \subseteq \mathbf{X} : \mathbf{F} \supset \{ \mathbf{x}_{\alpha} : \alpha \ge \alpha_{\mathbf{0}} \} \text{ for some } \alpha_{\mathbf{0}} \in \mathbf{A} \}$$

of all subsets of X containing a tail of the net is a filter.

If
$$x_{\alpha} \to x$$
, then $\mathcal{F} \to x$.

If $(x_{\alpha})_{\alpha \in A}$ is a net and $\alpha_0 \in A$, then we call the set $\{x_{\alpha} : \alpha \geq \alpha_0\}$ a **tail** of the net.

The set

Prologue

$$\mathcal{F} = \{ F \subseteq X : F \supset \{ x_{\alpha} : \alpha \ge \alpha_0 \} \text{ for some } \alpha_0 \in A \}$$

of all subsets of X containing a tail of the net is a filter.

If $x_{\alpha} \to x$, then $\mathcal{F} \to x$.

Conversely, given a filter \mathcal{F} on X, it is possible to construct a net $(x_{\alpha})_{\alpha \in A}$ such that

$$\mathcal{F} = \{ \mathbf{F} \subseteq \mathbf{X} : \mathbf{F} \supseteq \{ \mathbf{x}_{\alpha} : \alpha \ge \alpha_0 \}, \alpha_0 \in \mathbf{A} \},$$

and such that if $\mathcal{F} \to x$, $x_{\alpha} \to x$.

Convergence structures

Convergence, rather than open sets (topology), becomes the primary notion.

Convergence structures

Convergence, rather than open sets (topology), becomes the primary notion.

Concepts (such as compactness) are defined in terms of convergence rather than open sets.

Filter convergence structures

The family of all filters on X will be denoted by Fil(X).

Filter convergence structures

The family of all filters on X will be denoted by Fil(X).

A *filter convergence structure* on X is a function $\lambda: X \to \mathcal{P}(\texttt{Fil}(X))$ such that

- \bigcirc $\mathcal{F} \in \lambda(x), \mathcal{G} \in \text{Fil}(X) \text{ and } \mathcal{F} \supseteq \mathcal{F} \Rightarrow \mathcal{G} \in \lambda(x).$

The pair (X, λ) is called a *convergence space*.

Filter convergence structures

The family of all filters on X will be denoted by Fil(X).

A *filter convergence structure* on X is a function $\lambda: X \to \mathcal{P}(\text{Fil}(X))$ such that

- \bigcirc $\mathcal{F} \in \lambda(x), \mathcal{G} \in \text{Fil}(X) \text{ and } \mathcal{F} \supseteq \mathcal{F} \Rightarrow \mathcal{G} \in \lambda(x).$

The pair (X, λ) is called a *convergence space*.

We write $\mathcal{F} \in \lambda(x)$ as $\mathcal{F} \to x$ in (X, λ) , or simply as $\mathcal{F} \to x$ in X. In this case we say \mathcal{F} *converges* to x, or x is the *limit* of \mathcal{F} .

The class of all nets on X will be denoted by Net(X).

Prologue

The class of all nets on X will be denoted by Net(X).

A **net convergence structure** on *X* is a function

 $\eta: X \to \mathcal{P}(\operatorname{\texttt{Net}}(X))$ such that

- **a** if $x_{\alpha} = x$ for every α , then $(x_{\alpha}) \in \eta(x)$, for every $x \in X$;
- if $(x_{\alpha}), (y_{\alpha}) \in \eta(x)$, then $(z_{\alpha}) \in \eta(x)$, where for each α , $z_{\alpha} \in \{x_{\alpha}, y_{\alpha}\}.$
- o if $(x_{\alpha}) \in \eta(x)$, then $(y_{\beta}) \in \eta(x)$ for every quasi-subnet (y_{β}) of (x_{α}) ;

Prologue

The class of all nets on X will be denoted by Net(X).

A **net convergence structure** on *X* is a function

 $\eta: X \to \mathcal{P}(\operatorname{\mathtt{Net}}(X))$ such that

- **a** if $x_{\alpha} = x$ for every α , then $(x_{\alpha}) \in \eta(x)$, for every $x \in X$;
- if $(x_{\alpha}), (y_{\alpha}) \in \eta(x)$, then $(z_{\alpha}) \in \eta(x)$, where for each α , $z_{\alpha} \in \{x_{\alpha}, y_{\alpha}\}.$
- o if $(x_{\alpha}) \in \eta(x)$, then $(y_{\beta}) \in \eta(x)$ for every quasi-subnet (y_{β}) of (x_{α}) ;

For $(x_{\alpha}) \in \eta(x)$ we write $x_{\alpha} \xrightarrow{\eta} x$, or simply $x_{\alpha} \to x$.

Prologue

The class of all nets on X will be denoted by Net(X).

A **net convergence structure** on *X* is a function

 $\eta: X o \mathcal{P}(\operatorname{\mathtt{Net}}(X))$ such that

- **a** if $x_{\alpha} = x$ for every α , then $(x_{\alpha}) \in \eta(x)$, for every $x \in X$;
- if $(x_{\alpha}), (y_{\alpha}) \in \eta(x)$, then $(z_{\alpha}) \in \eta(x)$, where for each α , $z_{\alpha} \in \{x_{\alpha}, y_{\alpha}\}.$
- if $(x_{\alpha}) \in \eta(x)$, then $(y_{\beta}) \in \eta(x)$ for every quasi-subnet (y_{β}) of (x_{α}) ;

For $(x_{\alpha}) \in \eta(x)$ we write $x_{\alpha} \xrightarrow{\eta} x$, or simply $x_{\alpha} \to x$.

The pair (X, η) , or (X, \rightarrow) , is called a **net convergence space**.

Equivalence of net and filter convergence structures

Using the correspondence between nets and filters mentioned earlier, it is possible to set up a one-to-one correspondence between filter and net convergence structures.

Equivalence of net and filter convergence structures

Using the correspondence between nets and filters mentioned earlier, it is possible to set up a one-to-one correspondence between filter and net convergence structures.

In a specific context, one can use filter or net convergence structures, whichever is more convenient.

Equivalence of net and filter convergence structures

Using the correspondence between nets and filters mentioned earlier, it is possible to set up a one-to-one correspondence between filter and net convergence structures.

In a specific context, one can use filter or net convergence structures, whichever is more convenient.

In what follows, "convergence" will stand for either form of convergence.

Examples of convergence structures (1)

If X is a topological space, then the usual convergence with respect to the topology (defined in terms of nets or filters) give an example of a convergence stucture.

Examples of convergence structures (1)

If X is a topological space, then the usual convergence with respect to the topology (defined in terms of nets or filters) give an example of a convergence stucture.

If a convergence structure on X can be derived from a topology on X, we call the convergence **topological**.

Examples of convergence structures (2)

If (Ω, Σ, μ) is a measure space and M the set of all measurable real-valued functions on X. A sequence (f_n) in M converges almost everywhere to $f \in M$ iff $f_n(x) \to f(x)$ for every $x \in \Omega \setminus \Omega_0$, where $\mu(\Omega_0) = 0$.

Examples of convergence structures (2)

If (Ω, Σ, μ) is a measure space and M the set of all measurable real-valued functions on X. A sequence (f_n) in M converges almost everywhere to $f \in M$ iff $f_n(x) \to f(x)$ for every $x \in \Omega \setminus \Omega_0$, where $\mu(\Omega_0) = 0$.

This type of convergence is, in general, not topological.

Examples of convergence structures (3)

Let K be a topological space and denote by C(K) the space of all continuous real-valued functions on K. Define a net convergence structure on C(K) by $f_{\alpha} \stackrel{c}{\rightarrow} f$ iff whenever $x_{\beta} \rightarrow x$ in the topology of K we have $f_{\alpha}(x_{\beta}) \rightarrow f(x)$. The convergence $\stackrel{c}{\rightarrow}$ is known as **continuous convergence**.

Examples of convergence structures (3)

Let K be a topological space and denote by C(K) the space of all continuous real-valued functions on K. Define a net convergence structure on C(K) by $f_{\alpha} \stackrel{c}{\longrightarrow} f$ iff whenever $x_{\beta} \to x$ in the topology of K we have $f_{\alpha}(x_{\beta}) \to f(x)$. The convergence $\stackrel{c}{\longrightarrow}$ is known as **continuous convergence**.

This type of convergence is, in general, not topological either.

Convergence vector spaces

Continuity of functions between convergence spaces can be defined in the natural way.

Convergence vector spaces

Continuity of functions between convergence spaces can be defined in the natural way.

A **convergence vector space** is a vector space equipped with a convergence structure for which addition and scalar multiplication are continuous.

Riesz spaces

A vector space with a compatible partial order in which each pair of elements has a supremum and an infimum is called a vector lattice, or **Riesz space**.

Riesz spaces

A vector space with a compatible partial order in which each pair of elements has a supremum and an infimum is called a vector lattice, or **Riesz space**.

An example: If (Ω, Σ, μ) is a measure space, the vector space $L_0(\Omega, \Sigma, \mu)$ of all (equivalence classes modulo almost everywhere equality) of real-valued measurable functions becomes a vector lattice when equipped with the partial order $f \leq g$ iff $f(x) \leq g(x)$ for almost every $x \in \Omega$.

Solid sets

A subset A of a Riesz space E is **solid** if $y \in A$, $|x| \le |y|$ implies $x \in A$.

Solid sets

A subset A of a Riesz space E is **solid** if $y \in A$, $|x| \le |y|$ implies $x \in A$.

A subset A of E is **order-bounded** if there is a $0 < b \in E$ such that $|x| \le b$ for all $x \in A$.

Solid sets

A subset A of a Riesz space E is **solid** if $y \in A$, $|x| \le |y|$ implies $x \in A$.

A subset A of E is **order-bounded** if there is a $0 < b \in E$ such that $|x| \le b$ for all $x \in A$.

A **locally solid** convergence vector lattice is a vector lattice equipped with a vector space convergence structure such that if $x_{\alpha} \to 0$ and $|y_{\alpha}| \le |x_{\alpha}|$ for every α implies $y_{\alpha} \to 0$.

An element a > 0 in a Riesz space E is an atom if the solid linear subspace generated by a,

$$\{x \in E : |x| \le \lambda a, \lambda \in [0, \infty)\}$$

equals the linear span of a.

An element a > 0 in a Riesz space E is an atom if the solid linear subspace generated by a,

$$\{x \in E : |x| \le \lambda a, \lambda \in [0, \infty)\}$$

equals the linear span of a.

The Riesz space E is atomic (or discrete) if it contains a complete disjoint system $\{x_i : i \in I\}$ of atoms, i.e. $x_i \wedge x_j = 0$ for all $i, j \in I$, $i \neq j$ and $x_i \wedge x = 0$ for all $i \in I$ implies x = 0.

An element a > 0 in a Riesz space E is an atom if the solid linear subspace generated by a,

$$\{x \in E : |x| \le \lambda a, \lambda \in [0, \infty)\}$$

equals the linear span of a.

The Riesz space E is atomic (or discrete) if it contains a complete disjoint system $\{x_i : i \in I\}$ of atoms, i.e. $x_i \wedge x_j = 0$ for all $i, j \in I$, $i \neq j$ and $x_i \wedge x = 0$ for all $i \in I$ implies x = 0.

E is atomic iff it is lattice isomorphic to a order dense sublattice of a vector lattice of the form \mathbb{R}^A .

An element a > 0 in a Riesz space E is an atom if the solid linear subspace generated by a,

$$\{x \in E : |x| \le \lambda a, \lambda \in [0, \infty)\}$$

equals the linear span of a.

The Riesz space E is atomic (or discrete) if it contains a complete disjoint system $\{x_i : i \in I\}$ of atoms, i.e. $x_i \wedge x_j = 0$ for all $i, j \in I$, $i \neq j$ and $x_i \wedge x = 0$ for all $i \in I$ implies x = 0.

E is atomic iff it is lattice isomorphic to a order dense sublattice of a vector lattice of the form \mathbb{R}^A .

Typical examples of atomic Riesz spaces are the spaces ℓ_p and c_0 .

A net $(x_{\alpha})_{\alpha \in A}$ in a Riesz space E converges in order to x in E (denoted $x_{\alpha} \stackrel{o}{\to} x$) if there is a net $(y_{\beta})_{\beta \in B}$ in E^+ such that $y_{\beta} \downarrow 0$ and for every $\beta \in B$ there is an $\alpha_{\beta} \in A$ such that $|x_{\alpha} - x| \leq y_{\beta}$ for every $\alpha \geq \alpha_{\beta}$.

A net $(x_{\alpha})_{\alpha \in A}$ in a Riesz space E converges in order to x in E (denoted $x_{\alpha} \stackrel{o}{\to} x$) if there is a net $(y_{\beta})_{\beta \in B}$ in E^+ such that $y_{\beta} \downarrow 0$ and for every $\beta \in B$ there is an $\alpha_{\beta} \in A$ such that $|x_{\alpha} - x| \leq y_{\beta}$ for every $\alpha \geq \alpha_{\beta}$.

 $(E, \stackrel{o}{\rightarrow})$ is a locally solid convergence space.

Prologue

A net $(x_{\alpha})_{\alpha \in A}$ in a Riesz space E converges in order to x in E (denoted $x_{\alpha} \stackrel{o}{\to} x$) if there is a net $(y_{\beta})_{\beta \in B}$ in E^+ such that $y_{\beta} \downarrow 0$ and for every $\beta \in B$ there is an $\alpha_{\beta} \in A$ such that $|x_{\alpha} - x| \leq y_{\beta}$ for every $\alpha \geq \alpha_{\beta}$.

 $(E, \stackrel{o}{\rightarrow})$ is a locally solid convergence space.

In the case $E = L_0$, $f_n \stackrel{o}{\to} 0$ iff $f_n \to 0$ almost everywhere.

Prologue

A net $(x_{\alpha})_{\alpha \in A}$ in a Riesz space E converges in order to x in E (denoted $x_{\alpha} \stackrel{o}{\to} x$) if there is a net $(y_{\beta})_{\beta \in B}$ in E^+ such that $y_{\beta} \downarrow 0$ and for every $\beta \in B$ there is an $\alpha_{\beta} \in A$ such that $|x_{\alpha} - x| \leq y_{\beta}$ for every $\alpha \geq \alpha_{\beta}$.

 $(E, \stackrel{o}{\rightarrow})$ is a locally solid convergence space.

In the case $E = L_0$, $f_n \stackrel{o}{\to} 0$ iff $f_n \to 0$ almost everywhere.

In the case $E = L_1$, $f_n \stackrel{o}{\to} 0$ iff $f_n \to 0$ almost everywhere and some tail of (f_n) is order-bounded.

A net (x_{α}) in a Riesz space E converges unboundedly in order to x in E (denoted $x_{\alpha} \xrightarrow{uo} x$) if for every $0 < u \in E$, $|x_{\alpha} - x| \wedge u \xrightarrow{o} 0$.

A net (x_{α}) in a Riesz space E converges unboundedly in order to x in E (denoted $x_{\alpha} \xrightarrow{uo} x$) if for every $0 < u \in E$, $|x_{\alpha} - x| \wedge u \xrightarrow{o} 0$.

 (E, \xrightarrow{uo}) is also a locally solid convergence space.

A net (x_{α}) in a Riesz space E converges unboundedly in order to x in E (denoted $x_{\alpha} \xrightarrow{uo} x$) if for every $0 < u \in E$, $|x_{\alpha} - x| \wedge u \xrightarrow{o} 0$.

 $(E, \stackrel{uo}{\longrightarrow})$ is also a locally solid convergence space.

In the case $E = L_1$, $f_n \xrightarrow{uo} 0$ iff $f_n \to 0$ almost everywhere.

A net (x_{α}) in a Riesz space E converges unboundedly in order to x in E (denoted $x_{\alpha} \xrightarrow{uo} x$) if for every $0 < u \in E$, $|x_{\alpha} - x| \wedge u \xrightarrow{o} 0$.

 $(E, \stackrel{uo}{\longrightarrow})$ is also a locally solid convergence space.

In the case $E = L_1$, $f_n \xrightarrow{uo} 0$ iff $f_n \to 0$ almost everywhere.

In the case $E = c_o$, unbounded convergence is pointwise (coordinatewise) convergence.

A net (x_{α}) in a Riesz space E converges unboundedly in order to x in E (denoted $x_{\alpha} \xrightarrow{uo} x$) if for every $0 < u \in E$, $|x_{\alpha} - x| \wedge u \xrightarrow{o} 0$.

 $(E, \stackrel{uo}{\longrightarrow})$ is also a locally solid convergence space.

In the case $E = L_1$, $f_n \stackrel{uo}{\longrightarrow} 0$ iff $f_n \to 0$ almost everywhere.

In the case $E = c_o$, unbounded convergence is pointwise (coordinatewise) convergence.

For the sequence (e_n) in c_0 , we have $e_n \xrightarrow{uo} 0$, but (e_n) does not converge in order to 0.

Vector bornologies

Prologue

A family \mathcal{B} of subsets of a vector space E is a *vector bornology* on E if

- \odot \mathcal{B} is closed under the formation of balanced hulls.

Vector bornologies

A family \mathcal{B} of subsets of a vector space E is a *vector bornology* on E if

- \odot \mathcal{B} is closed under the formation of balanced hulls.

A subclass \mathcal{B}_0 of \mathcal{B} is a basis for \mathcal{B} if for every $B \in \mathcal{B}$, there is a $B_0 \in \mathcal{B}_0$ such that $B \subseteq B_0$.

Let (E, \to) be a (net) convergence vector space and $\mathcal A$ a vector bornology on E. The triple $(E, \mathcal A, \to)$ is called a mixed convergence space.

Let (E, \to) be a (net) convergence vector space and $\mathcal A$ a vector bornology on E. The triple $(E, \mathcal A, \to)$ is called a mixed convergence space.

The mixed (or specified sets) convergence on E, denoted by $\rightarrow_{\mathcal{A}}$, is defined by

$$x_{\alpha} \to_{\mathcal{A}} 0 \Leftrightarrow x_{\alpha} \to 0$$
 and some tail of (x_{α}) is in \mathcal{A} .

Let (E, \to) be a (net) convergence vector space and $\mathcal A$ a vector bornology on E. The triple $(E, \mathcal A, \to)$ is called a mixed convergence space.

The mixed (or specified sets) convergence on E, denoted by $\rightarrow_{\mathcal{A}}$, is defined by

$$x_{\alpha} \to_{\mathcal{A}} 0 \Leftrightarrow x_{\alpha} \to 0$$
 and some tail of (x_{α}) is in \mathcal{A} .

 $(E, \rightarrow_{\mathcal{A}})$ is also a convergence vector space.

Let (E, \to) be a (net) convergence vector space and $\mathcal A$ a vector bornology on E. The triple $(E, \mathcal A, \to)$ is called a mixed convergence space.

The mixed (or specified sets) convergence on E, denoted by $\rightarrow_{\mathcal{A}}$, is defined by

$$x_{\alpha} \to_{\mathcal{A}} 0 \Leftrightarrow x_{\alpha} \to 0$$
 and some tail of (x_{α}) is in \mathcal{A} .

 $(E, \rightarrow_{\mathcal{A}})$ is also a convergence vector space.

If E is a vector lattice and \to a locally solid vector convergence on E and $\mathcal A$ a solid bornology on E, then $\to_{\mathcal A}$ is a locally solid convergence.

Mixed convergence (filters)

There is an equivalent definition for mixed convergences in terms of filters:

Mixed convergence (filters)

There is an equivalent definition for mixed convergences in terms of filters:

If (E, λ) is a filter convergence space and A a vector bornology on E. The mixed (filter) convergence λ_A on E is defined by

$$\mathcal{F} \in \lambda_{\mathcal{A}}(0) \Leftrightarrow \mathcal{F} \in \lambda(0) \text{ and } \mathcal{F} \cap \mathcal{A} \neq \emptyset.$$

Let E be a Riesz space and A the solid vector bornology of order-bounded subset of E. On E, consider the locally solid convergence $\stackrel{uo}{\longrightarrow}$ of unbounded order convergence.

Let E be a Riesz space and A the solid vector bornology of order-bounded subset of E. On E, consider the locally solid convergence $\stackrel{uo}{\longrightarrow}$ of unbounded order convergence.

The mixed convergence $\stackrel{uo}{\longrightarrow}_{\mathcal{A}}$ is order convergence $(\stackrel{o}{\rightarrow})$.

Let E be a topological vector space and $\mathcal{L}(E)$ be the vector space of all continuous linear functionals on E.

Let E be a topological vector space and $\mathcal{L}(E)$ be the vector space of all continuous linear functionals on E.

Let A be the vector bornology of all equicontinuous subsets of $\mathcal{L}(E)$.

Let E be a topological vector space and $\mathcal{L}(E)$ be the vector space of all continuous linear functionals on E.

Let \mathcal{A} be the vector bornology of all equicontinuous subsets of $\mathcal{L}(\mathcal{E})$.

Let $\xrightarrow{w*}$ denote convergence with respect to the weak*-topology on $\mathcal{L}(E)$ (i.e. $f_{\alpha} \xrightarrow{w*} 0 \Leftrightarrow f_{\alpha}(x) \to 0$ for every $x \in E$).

Let E be a topological vector space and $\mathcal{L}(E)$ be the vector space of all continuous linear functionals on E.

Let A be the vector bornology of all equicontinuous subsets of $\mathcal{L}(E)$.

Let $\xrightarrow{w*}$ denote convergence with respect to the weak*-topology on $\mathcal{L}(E)$ (i.e. $f_{\alpha} \xrightarrow{w*} 0 \Leftrightarrow f_{\alpha}(x) \to 0$ for every $x \in E$).

The mixed convergence $\xrightarrow{w*}_{\mathcal{A}}$ is continuous convergence (\xrightarrow{c}) on $\mathcal{L}(E)$, a vector subspace of C(E).

Mixed convergences as final convergences

If (E, A, \rightarrow) is a mixed convergence space, then the mixed convergence $\rightarrow_{\mathcal{A}}$ on E is the finest convergence on E for which the embedding

$$e_A:(A,\rightarrow)\hookrightarrow E$$

is continuous for each $A \in A$.

Mixed convergences as final convergences

If (E, A, \rightarrow) is a mixed convergence space, then the mixed convergence $\rightarrow_{\mathcal{A}}$ on E is the finest convergence on E for which the embedding

$$e_A:(A,\rightarrow)\hookrightarrow E$$

is continuous for each $A \in A$.

Equivalently, the convergence $\rightarrow_{\mathcal{A}}$ is the finest convergence on E which agrees with the convergence \rightarrow on the sets in \mathcal{A} .

When is a vector convergence topological?

It is convenient to use filter convergence here.

When is a vector convergence topological?

It is convenient to use filter convergence here.

For a convergence space (E, λ) , we define the neighbourhood filter of $x \in E$ by

$$\mathcal{N}_{\lambda}(\mathbf{x}) = \cap \{\mathcal{F} \in \text{Fil}(\mathbf{E}) : \mathcal{F} \in \lambda(\mathbf{x})\},$$

i.e. $\mathcal{N}_{\lambda}(x)$ is the intersection of all filters λ -converging to x.

When is a vector convergence topological?

It is convenient to use filter convergence here.

For a convergence space (E, λ) , we define the neighbourhood filter of $x \in E$ by

$$\mathcal{N}_{\lambda}(\mathbf{x}) = \cap \{\mathcal{F} \in \text{Fil}(\mathbf{E}) : \mathcal{F} \in \lambda(\mathbf{x})\},$$

i.e. $\mathcal{N}_{\lambda}(x)$ is the intersection of all filters λ -converging to x.

A vector convergence space (E, λ) is topological iff $\mathcal{N}_{\lambda}(0) \in \lambda(0)$ (i.e. $\mathcal{N}_{\lambda}(0)$ converges to 0).

When is a mixed convergence topological?

Prologue

$$\lambda_{\mathcal{A}}$$
 is topological $\Leftrightarrow \mathcal{N}_{\lambda_{\mathcal{A}}}(0) \in \lambda_{\mathcal{A}}(0)$
 $\Leftrightarrow \mathcal{N}_{\lambda_{\mathcal{A}}}(0) \in \lambda(0) \text{ and } \mathcal{N}_{\lambda_{\mathcal{A}}}(0) \cap \mathcal{A} \neq \emptyset$

When is a mixed convergence topological?

$$\lambda_{\mathcal{A}}$$
 is topological $\Leftrightarrow \mathcal{N}_{\lambda_{\mathcal{A}}}(0) \in \lambda_{\mathcal{A}}(0)$
 $\Leftrightarrow \mathcal{N}_{\lambda_{\mathcal{A}}}(0) \in \lambda(0) \text{ and } \mathcal{N}_{\lambda_{\mathcal{A}}}(0) \cap \mathcal{A} \neq \emptyset$

Since $\mathcal{N}_{\lambda_{\mathcal{A}}}(0) \subseteq \mathcal{N}_{\lambda}(0)$, it follows that a necessary condition for $\lambda_{\mathcal{A}}$ to be topological is that λ be topological.

Topological in, topological out?

If we start with a topological vector convergence \rightarrow on a vector space E, a vector bornology $\mathcal A$ on E and look at a corresponding mixed convergence $\rightarrow_{\mathcal A}$, will the result be a topological convergence as well?

Let E be Riesz space and consider unbounded order convergence $\stackrel{uo}{\longrightarrow}$ on E. As bornology $\mathcal A$ we take the set of order-bounded sets in E.

Let E be Riesz space and consider unbounded order convergence $\stackrel{uo}{\longrightarrow}$ on E. As bornology $\mathcal A$ we take the set of order-bounded sets in E.

We have seen that in this case the mixed convergence $\stackrel{uo}{\longrightarrow}_{\mathcal{A}}$ is order convergence $\stackrel{o}{\longrightarrow}$.

Let E be Riesz space and consider unbounded order convergence $\stackrel{uo}{\longrightarrow}$ on E. As bornology $\mathcal A$ we take the set of order-bounded sets in E.

We have seen that in this case the mixed convergence $\stackrel{uo}{\longrightarrow}_{\mathcal{A}}$ is order convergence $\stackrel{o}{\longrightarrow}$.

It can be shown that $\stackrel{uo}{\longrightarrow}$ is topological iff the Riesz space is atomic (in which case it corresponds to pointwise convergence).

Prologue

Let E be Riesz space and consider unbounded order convergence $\stackrel{uo}{\longrightarrow}$ on E. As bornology $\mathcal A$ we take the set of order-bounded sets in E.

We have seen that in this case the mixed convergence $\stackrel{uo}{\longrightarrow}_{\mathcal{A}}$ is order convergence $\stackrel{o}{\longrightarrow}_{\cdot}$.

It can be shown that $\stackrel{uo}{\longrightarrow}$ is topological iff the Riesz space is atomic (in which case it corresponds to pointwise convergence).

However, $\xrightarrow{uo}_{\mathcal{A}} = \xrightarrow{o}$ is topological iff *E* is finite-dimensional.

Prologue

Let E be Riesz space and consider unbounded order convergence $\stackrel{uo}{\longrightarrow}$ on E. As bornology $\mathcal A$ we take the set of order-bounded sets in E.

We have seen that in this case the mixed convergence $\stackrel{uo}{\longrightarrow}_{\mathcal{A}}$ is order convergence $\stackrel{o}{\longrightarrow}$.

It can be shown that $\stackrel{uo}{\longrightarrow}$ is topological iff the Riesz space is atomic (in which case it corresponds to pointwise convergence).

However, $\xrightarrow{uo}_{\mathcal{A}} = \xrightarrow{o}$ is topological iff *E* is finite-dimensional.

Thus the mixed convergence $\xrightarrow{uo}_{\mathcal{A}}$ is topological iff E is both atomic and finite-dimensional (and so lattice isomorphic to \mathbb{R}^n , for some n).

E be a topological vector space.

E be a topological vector space.

 $\mathcal{L}(E)$ be the vector space of all continuous linear functionals on E.

E be a topological vector space.

 $\mathcal{L}(E)$ be the vector space of all continuous linear functionals on E.

Let A be the vector bornology of all equicontinuous subsets of $\mathcal{L}(E)$.

E be a topological vector space.

 $\mathcal{L}(E)$ be the vector space of all continuous linear functionals on E.

Let A be the vector bornology of all equicontinuous subsets of $\mathcal{L}(E)$.

Let $\xrightarrow{w*}$ denote convergence with respect to the weak*-topology on $\mathcal{L}(E)$.

E be a topological vector space.

 $\mathcal{L}(E)$ be the vector space of all continuous linear functionals on E.

Let \mathcal{A} be the vector bornology of all equicontinuous subsets of $\mathcal{L}(\mathcal{E})$.

Let $\xrightarrow{w*}$ denote convergence with respect to the weak*-topology on $\mathcal{L}(E)$.

The mixed convergence $\xrightarrow{w*}_{\mathcal{A}}$ is continuous convergence (\xrightarrow{c}) on $\mathcal{L}(E)$.

E be a topological vector space.

 $\mathcal{L}(E)$ be the vector space of all continuous linear functionals on E.

Let A be the vector bornology of all equicontinuous subsets of $\mathcal{L}(E)$.

Let $\xrightarrow{w*}$ denote convergence with respect to the weak*-topology on $\mathcal{L}(E)$.

The mixed convergence $\xrightarrow{w*}_{\mathcal{A}}$ is continuous convergence (\xrightarrow{c}) on $\mathcal{L}(E)$.

The mixed convergence is topological iff *E* is locally compact.

E be a topological vector space.

 $\mathcal{L}(E)$ be the vector space of all continuous linear functionals on E.

Let \mathcal{A} be the vector bornology of all equicontinuous subsets of $\mathcal{L}(\mathcal{E})$.

Let $\xrightarrow{w*}$ denote convergence with respect to the weak*-topology on $\mathcal{L}(E)$.

The mixed convergence $\xrightarrow{w*}_{\mathcal{A}}$ is continuous convergence (\xrightarrow{c}) on $\mathcal{L}(E)$.

The mixed convergence is topological iff *E* is locally compact.

This is the case iff E is finite-dimensional, and in this case $\mathcal{L}(E)$ is finite-dimensional as well.

Lebesque's dominated convergence theorem

Let (Ω, Σ, μ) be a measure space and $f_1, f_2, f_3, \dots, f \in L_1(\Omega, \Sigma, \mu)$. Then if

- there is a $0 \le g \in L_1(\Omega, \Sigma, \mu)$ such that $|f_n(x)| \le g(x)$ for all $n \in \mathbb{N}$ and $|f(x)| \le g(x)$ almost everywhere,
- and either

Prologue

- (f_n) convergences almost everywhere to f, or
- \bullet (f_n) convergences to f in measure on sets of finite measure,

then $\int |f_n - f| d\mu \to 0$, i.e. (f_n) converges to f in the L_1 -norm.

Epiloque