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Lebesque’s dominated convergence theorem

Let (2, X, 1) be a measure space and

f1,f2, f3, ceey fe L1 (Q, Z,u). Then if

@ thereisa 0 < ge Ly(Q, %, u) such that |f,(x)| < g(x) for all
n e Nand |f(x)| < g(x) almost everywhere,

@ and either

e (f,) convergences almost everywhere to f, or
e (f,) convergences to f in measure on sets of finite measure,

then [ |f, — f|du — 0, i.e. (f,) converges to f in the Ly-norm.
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Topological convergence: nets

X atopological space, x € X.
N(x) is the set of all neighbourhoods of x.
(Xa)aca is @ netin X.

Then (x,) converges to x (written x, — x) if
for every N € N(x), thereisan ag € A
such that x, € N for all « > ayp.
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Topological convergence: filters

N(x) is a filter on X.

A filter 7 on a set X is a non-empty collection of non-empty
subsets of X such that

@ Fi,Foe F=FNFkcF,
@ Fe F,GDF=GeF.

A filter F converges to x in X (written 7 — x) if 7 O N(x).
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Topological convergence: the link between nets and

filters

If (Xo)aca is @ net and ag € A, then we call the set
{Xa : @ > ag} atail of the net.

The set
F={FCX:FD{Xy,:a>ap} forsome ag € A}

of all subsets of X containing a tail of the net is a filter.
If x, — x, then F — x.

Conversely, given a filter F on X, it is possible to construct a
net (X,)aca such that

]::{FgX:FQ{Xa:OZZOZO}vaoeA}a

and such that if 7 — x, x, — Xx.
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Convergence structures

Convergence, rather than open sets (topology), becomes the
primary notion.

Concepts (such as compactness) are defined in terms of
convergence rather than open sets.
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Filter convergence structures

The family of all filters on X will be denoted by Fi1(X).

A filter convergence structure on X is a function
A X — P(Fil(X)) such that

@ [xX]={FC X:xeF}e\x)forevery x € X;
@ F,Ge)x)=FnNGe\x)forevery x € X;
@ Felx),gerFil(X)and F 2 F = G € \(x).
The pair (X, \) is called a convergence space.

We write 7 € A\(x) as F — x in (X, A), or simply as F — x in X.
In this case we say F converges to x, or x is the limit of F.
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Net convergence structures

The class of all nets on X will be denoted by Net (X).

A net convergence structure on X is a function

n: X — P(Net (X)) such that

@ if x, = x for every «, then (x,,) € n(x), for every x € X;
@ if (xa), (Va) € n(x), then (z,) € n(x), where for each «,

Za € {Xa,ya}-
@ if (xa) € n(x), then (y3) € n(x) for every quasi-subnet (y3)

of (Xa);
For (x,) € n(x) we write X, - X, or simply x, — X.
The pair (X, n), or (X, —), is called a net convergence space.
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Equivalence of net and filter convergence structures

Using the correspondence between nets and filters mentioned
earlier, it is possible to set up a one-to-one correspondence
between filter and net convergence structures.

In a specific context, one can use filter or net convergence
structures, whichever is more convenient.

In what follows, “convergence” will stand for either form of
convergence.
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Examples of convergence structures (1)

If X is a topological space, then the usual convergence with
respect to the topology (defined in terms of nets or filters) give
an example of a convergence stucture.

If a convergence structure on X can be derived from a topology
on X, we call the convergence topological.
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If (2, %, ) is a measure space and M the set of all measurable
real-valued functions on X. A sequence (f,) in M converges
almost everywhere to f ¢ M iff f5(x) — f(x) for every

x € Q\ Qo, where (Qp) = 0.

This type of convergence is, in general, not topological.
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Examples of convergence structures (3)

Let K be a topological space and denote by C(K) the space of
all continuous real-valued functions on K. Define a net
convergence structure on C(K) by f, < f iff whenever Xz — X
in the topology of K we have f,(x3) — f(x). The convergence

%, is known as continuous convergence.
This type of convergence is, in general, not topological either.



Convergences
0000000000 e

Conve rgence vector spaces

Continuity of functions between convergence spaces can be
defined in the natural way.



Convergences
0000000000 e

Conve rgence vector spaces

Continuity of functions between convergence spaces can be
defined in the natural way.

A convergence vector space is a vector space equipped with
a convergence structure for which addition and scalar
multiplication are continuous.
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Riesz spaces

A vector space with a compatible partial order in which each
pair of elements has a supremum and an infimum is called a
vector lattice, or Riesz space.

An example: If (2, X, 1) is a measure space, the vector space
Lo(2, %, 1) of all (equivalence classes modulo almost
everywhere equality) of real-valued measurable functions
becomes a vector lattice when equipped with the partial order
f < giff f(x) < g(x) for almost every x € Q.
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Solid sets

A subset A of a Riesz space E is solid if y € A, |x| < |y| implies
x €A

A subset A of E is order-bounded if thereisa 0 < b € E such
that |x| < bforall x € A.

A locally solid convergence vector lattice is a vector lattice
equipped with a vector space convergence structure such that
if X, — 0 and |y,| < || for every « implies y, — O.
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Atomic Riesz spaces

An element a > 0 in a Riesz space E is an atom if the solid
linear subspace generated by a,

{x € E:|x]<Xa,\e€[0,00)}

equals the linear span of a.

The Riesz space E is atomic (or discrete) if it contains a
complete disjoint system {x; : i € I} of atoms, i.e. x; A x; = 0 for
alli;jeli#jand x; A x =0forall i € | implies x = 0.

E is atomic iff it is lattice isomorphic to a order dense sublattice
of a vector lattice of the form RA.

Typical examples of atomic Riesz spaces are the spaces ¢, and
Co-
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Order convergence

A net (X,)aca in a Riesz space E converges in order to x in E
(denoted x, > x) if there is a net (y3)sep in E* such that

ys 1 0 and for every 3 € Bthere is an ag € A such that

|Xo — x| < yp for every a > ag.

(E,>) is a locally solid convergence space.

In the case E = Ly, fy 2 0iff £, — 0 almost everywhere.

In the case E = Ly, f, 2 0iff f, — 0 almost everywhere and
some tail of (f,) is order-bounded.
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Unbounded order convergence

A net (x,) in a Riesz space E converges unboundedly in order
to x in E (denoted x, = x) if forevery 0 < u € E,

IXa —X|Au>0.

(E, %) is also a locally solid convergence space.

Inthe case E = L4, f, 9 0 iff fn — 0 almost everywhere.

In the case E = c¢,, unbounded convergence is pointwise
(coordinatewise) convergence.

For the sequence (ey) in ¢, we have e, = 0, but (e,) does
not converge in order to 0.
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Vector bornologies

A family B of subsets of a vector space E is a vector bornology
on E if

U{B: Be B} =E;

BeB, CCB= CebhB;

Bi,Boe B= B+ B eB;

BeB,0£AANeR= ABeB;

B is closed under the formation of balanced hulls.

©66eo6e06



Mixed convergences
@00000

Vector bornologies

A family B of subsets of a vector space E is a vector bornology
on E if

@ U{B:BeB}=E;

@ BeB,CCB=CehB;

@ B.BeB=Bi+B,cB;

@ BeB0#ANceR=\BeB;

@ Bis closed under the formation of balanced hulls.

A subclass By of B is a basis for B if for every B € B, there is a
By € By such that B C B,.
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Mixed convergence (nets)

Let (E,—) be a (net) convergence vector space and A a vector
bornology on E. The triple (E, A, —) is called a mixed
convergence space.

The mixed (or specified sets) convergence on E, denoted by
— 4, is defined by

Xo =4 0 < X, — 0and some tail of (X,) is in A.

(E,—4) is also a convergence vector space.

If E is a vector lattice and — a locally solid vector convergence
on E and A a solid bornology on E, then — 4 is a locally solid
convergence.
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Mixed convergence (filters)

There is an equivalent definition for mixed convergences in
terms of filters:

If (E, ) is a filter convergence space and A a vector bornology
on E. The mixed (filter) convergence A 4 on E is defined by

F e xa(0) = FeA0)and F N A #D.
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Examples of mixed convergences(1)

Let E be a Riesz space and A the solid vector bornology of
order-bounded subset of E. On E, consider the locally solid

convergence —» of unbounded order convergence.

The mixed convergence <% 4 is order convergence ().
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Examples of mixed convergences(2)

Let E be a topological vector space and £(E) be the vector
space of all continuous linear functionals on E.

Let A be the vector bornology of all equicontinuous subsets of
L(E).

Let -, denote convergence with respect to the weak*-topology
on L(E) (i.e. f, =5 0 < f,(x) — 0 for every x € E).

The mixed convergence = 4 is continuous convergence (=)
on L(E), a vector subspace of C(E).
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is continuous for each A € A.
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Mixed convergences as final convergences

If (E,.A,—) is a mixed convergence space, then the mixed
convergence — 4 on E is the finest convergence on E for which
the embedding

ea: (A —)—E
is continuous for each A € A.

Equivalently, the convergence — 4 is the finest convergence on
E which agrees with the convergence — on the sets in A.
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[ JeJelele]

When is a vector convergence topological?

It is convenient to use filter convergence here.
For a convergence space (E, \), we define the neighbourhood
filter of x € E by

M) =n{F eril(E): F € \(x)},

i.e. N)\(x) is the intersection of all filters A\-converging to x.

A vector convergence space (E, \) is topological iff
N,(0) € A(0) (i.e. NV,(0) converges to 0).
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When is a mixed convergence topological?

A4 is topological < N, ,(0) € A4(0)
& N, ,(0) e A(0)and NV, , (0)N A #D

Since NV, ,(0) € N, (0), it follows that a necessary condition for
A4 1o be topological is that A be topological.
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Topological in, topological out?

If we start with a topological vector convergence — on a vector

space E, a vector bornology .A on E and look at a
corresponding mixed convergence — 4, will the result be a

topological convergence as well?
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Let E be Riesz space and consider unbounded order
convergence 2% on E. As bornology A we take the set of
order-bounded sets in E.

We have seen that in this case the mixed convergence % 4 is
order convergence 2.

It can be shown that 2> is topological iff the Riesz space is
atomic (in which case it corresponds to pointwise convergence).
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Let E be Riesz space and consider unbounded order
convergence 2% on E. As bornology A we take the set of
order-bounded sets in E.

We have seen that in this case the mixed convergence % 4 is
order convergence .

It can be shown that 2> is topological iff the Riesz space is
atomic (in which case it corresponds to pointwise convergence).

However, 2% 4= is topological iff E is finite-dimensional.
polog

Thus the mixed convergence %% 4 is topological iff £ is both
atomic and finite-dimensional (and so lattice isomorphic to R”,
for some n).
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What about continuous convergence?

E be a topological vector space.
L(E) be the vector space of all continuous linear functionals on

E.

Let A be the vector bornology of all equicontinuous subsets of
L(E).

Let %, denote convergence with respect to the weak*-topology
on L(E).

The mixed convergence 2 4 is continuous convergence (=)
on L(E).

The mixed convergence is topological iff E is locally compact.

This is the case iff E is finite-dimensional, and in this case £L(E)
is finite-dimensional as well.



Epilogue
°

Lebesque’s dominated convergence theorem

Let (2, X, 1) be a measure space and

f1,f2, f3, ceey fe L1 (Q, Z,u). Then if

@ thereisa 0 < ge Ly(Q, %, u) such that |f,(x)| < g(x) for all
n e Nand |f(x)| < g(x) almost everywhere,

@ and either

e (f,) convergences almost everywhere to f, or
e (f,) convergences to f in measure on sets of finite measure,

then [ |f, — f|du — 0, i.e. (f,) converges to f in the Ly-norm.
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