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Lebesque’s dominated convergence theorem

Let (Ω,Σ, µ) be a measure space and
f1, f2, f3, . . . , f ∈ L1(Ω,Σ, µ). Then if

(a) there is a 0 ≤ g ∈ L1(Ω,Σ, µ) such that |fn(x)| ≤ g(x) for all
n ∈ N and |f (x)| ≤ g(x) almost everywhere,

(b) and either

(fn) convergences almost everywhere to f , or
(fn) convergences to f in measure on sets of finite measure,

then
∫
|fn − f |dµ→ 0, i.e. (fn) converges to f in the L1-norm.
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Topological convergence: nets

X a topological space, x ∈ X .

N (x) is the set of all neighbourhoods of x .

(xα)α∈A is a net in X .

Then (xα) converges to x (written xα → x) if
for every N ∈ N (x), there is an α0 ∈ A
such that xα ∈ N for all α ≥ α0.
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Topological convergence: filters

N (x) is a filter on X .

A filter F on a set X is a non-empty collection of non-empty
subsets of X such that

F1,F2 ∈ F ⇒ F1 ∩ F2 ∈ F ;
F ∈ F ,G ⊇ F ⇒ G ∈ F .

A filter F converges to x in X (written F → x) if F ⊇ N (x).
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Topological convergence: the link between nets and
filters

If (xα)α∈A is a net and α0 ∈ A, then we call the set
{xα : α ≥ α0} a tail of the net.

The set

F = {F ⊆ X : F ⊃ {xα : α ≥ α0} for some α0 ∈ A}

of all subsets of X containing a tail of the net is a filter.

If xα → x , then F → x .

Conversely, given a filter F on X , it is possible to construct a
net (xα)α∈A such that

F = {F ⊆ X : F ⊇ {xα : α ≥ α0}, α0 ∈ A},

and such that if F → x , xα → x .
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Convergence structures

Convergence, rather than open sets (topology), becomes the
primary notion.

Concepts (such as compactness) are defined in terms of
convergence rather than open sets.
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Filter convergence structures

The family of all filters on X will be denoted by Fil(X ).

A filter convergence structure on X is a function
λ : X → P(Fil(X )) such that

(a) [x ] = {F ⊆ X : x ∈ F} ∈ λ(x) for every x ∈ X ;
(b) F ,G ∈ λ(x)⇒ F ∩ G ∈ λ(x) for every x ∈ X ;
(c) F ∈ λ(x),G ∈ Fil(X ) and F ⊇ F ⇒ G ∈ λ(x).

The pair (X , λ) is called a convergence space.

We write F ∈ λ(x) as F → x in (X , λ), or simply as F → x in X .
In this case we say F converges to x , or x is the limit of F .
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Net convergence structures

The class of all nets on X will be denoted by Net(X ).

A net convergence structure on X is a function
η : X → P(Net(X )) such that

(a) if xα = x for every α, then (xα) ∈ η(x), for every x ∈ X ;
(b) if (xα), (yα) ∈ η(x), then (zα) ∈ η(x), where for each α,

zα ∈ {xα, yα}.
(c) if (xα) ∈ η(x), then (yβ) ∈ η(x) for every quasi-subnet (yβ)

of (xα);

For (xα) ∈ η(x) we write xα
η−→ x , or simply xα → x .

The pair (X , η), or (X ,→), is called a net convergence space.
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Equivalence of net and filter convergence structures

Using the correspondence between nets and filters mentioned
earlier, it is possible to set up a one-to-one correspondence
between filter and net convergence structures.

In a specific context, one can use filter or net convergence
structures, whichever is more convenient.

In what follows, “convergence” will stand for either form of
convergence.
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Examples of convergence structures (1)

If X is a topological space, then the usual convergence with
respect to the topology (defined in terms of nets or filters) give
an example of a convergence stucture.

If a convergence structure on X can be derived from a topology
on X , we call the convergence topological.
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Examples of convergence structures (2)

If (Ω,Σ, µ) is a measure space and M the set of all measurable
real-valued functions on X . A sequence (fn) in M converges
almost everywhere to f ∈ M iff fn(x)→ f (x) for every
x ∈ Ω \ Ω0, where µ(Ω0) = 0.

This type of convergence is, in general, not topological.
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Examples of convergence structures (3)

Let K be a topological space and denote by C(K ) the space of
all continuous real-valued functions on K . Define a net
convergence structure on C(K ) by fα

c−→ f iff whenever xβ → x
in the topology of K we have fα(xβ)→ f (x). The convergence
c−→ is known as continuous convergence.

This type of convergence is, in general, not topological either.
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Convergence vector spaces

Continuity of functions between convergence spaces can be
defined in the natural way.

A convergence vector space is a vector space equipped with
a convergence structure for which addition and scalar
multiplication are continuous.
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Riesz spaces

A vector space with a compatible partial order in which each
pair of elements has a supremum and an infimum is called a
vector lattice, or Riesz space.

An example: If (Ω,Σ, µ) is a measure space, the vector space
L0(Ω,Σ, µ) of all (equivalence classes modulo almost
everywhere equality) of real-valued measurable functions
becomes a vector lattice when equipped with the partial order
f ≤ g iff f (x) ≤ g(x) for almost every x ∈ Ω.
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Solid sets

A subset A of a Riesz space E is solid if y ∈ A, |x | ≤ |y | implies
x ∈ A.

A subset A of E is order-bounded if there is a 0 < b ∈ E such
that |x | ≤ b for all x ∈ A.

A locally solid convergence vector lattice is a vector lattice
equipped with a vector space convergence structure such that
if xα → 0 and |yα| ≤ |xα| for every α implies yα → 0.



Prologue Convergences Vector lattices Mixed convergences When are mixed convergences topological? Epilogue

Solid sets

A subset A of a Riesz space E is solid if y ∈ A, |x | ≤ |y | implies
x ∈ A.

A subset A of E is order-bounded if there is a 0 < b ∈ E such
that |x | ≤ b for all x ∈ A.

A locally solid convergence vector lattice is a vector lattice
equipped with a vector space convergence structure such that
if xα → 0 and |yα| ≤ |xα| for every α implies yα → 0.



Prologue Convergences Vector lattices Mixed convergences When are mixed convergences topological? Epilogue

Solid sets

A subset A of a Riesz space E is solid if y ∈ A, |x | ≤ |y | implies
x ∈ A.

A subset A of E is order-bounded if there is a 0 < b ∈ E such
that |x | ≤ b for all x ∈ A.

A locally solid convergence vector lattice is a vector lattice
equipped with a vector space convergence structure such that
if xα → 0 and |yα| ≤ |xα| for every α implies yα → 0.



Prologue Convergences Vector lattices Mixed convergences When are mixed convergences topological? Epilogue

Atomic Riesz spaces

An element a > 0 in a Riesz space E is an atom if the solid
linear subspace generated by a,

{x ∈ E : |x | ≤ λa, λ ∈ [0,∞)}

equals the linear span of a.

The Riesz space E is atomic (or discrete) if it contains a
complete disjoint system {xi : i ∈ I} of atoms, i.e. xi ∧ xj = 0 for
all i , j ∈ I, i 6= j and xi ∧ x = 0 for all i ∈ I implies x = 0.

E is atomic iff it is lattice isomorphic to a order dense sublattice
of a vector lattice of the form RA.

Typical examples of atomic Riesz spaces are the spaces `p and
c0.
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Order convergence

A net (xα)α∈A in a Riesz space E converges in order to x in E
(denoted xα

o−→ x) if there is a net (yβ)β∈B in E+ such that
yβ ↓ 0 and for every β ∈ B there is an αβ ∈ A such that
|xα − x | ≤ yβ for every α ≥ αβ.

(E , o−→) is a locally solid convergence space.

In the case E = L0, fn
o−→ 0 iff fn → 0 almost everywhere.

In the case E = L1, fn
o−→ 0 iff fn → 0 almost everywhere and

some tail of (fn) is order-bounded.
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Unbounded order convergence

A net (xα) in a Riesz space E converges unboundedly in order
to x in E (denoted xα

uo−→ x) if for every 0 < u ∈ E ,
|xα − x | ∧ u o−→ 0.

(E , uo−→) is also a locally solid convergence space.

In the case E = L1, fn
uo−→ 0 iff fn → 0 almost everywhere.

In the case E = co, unbounded convergence is pointwise
(coordinatewise) convergence.

For the sequence (en) in c0, we have en
uo−→ 0, but (en) does

not converge in order to 0.
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Vector bornologies

A family B of subsets of a vector space E is a vector bornology
on E if

(a)
⋃
{B : B ∈ B} = E ;

(b) B ∈ B,C ⊆ B ⇒ C ∈ B;
(c) B1,B2 ∈ B ⇒ B1 + B2 ∈ B;
(d) B ∈ B,0 6= λ ∈ R⇒ λB ∈ B;
(e) B is closed under the formation of balanced hulls.

A subclass B0 of B is a basis for B if for every B ∈ B, there is a
B0 ∈ B0 such that B ⊆ B0.
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Mixed convergence (nets)

Let (E ,→) be a (net) convergence vector space and A a vector
bornology on E . The triple (E ,A,→) is called a mixed
convergence space.

The mixed (or specified sets) convergence on E , denoted by
→A, is defined by

xα →A 0 ⇔ xα → 0 and some tail of (xα) is in A.

(E ,→A) is also a convergence vector space.

If E is a vector lattice and→ a locally solid vector convergence
on E and A a solid bornology on E , then→A is a locally solid
convergence.
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Mixed convergence (filters)

There is an equivalent definition for mixed convergences in
terms of filters:

If (E , λ) is a filter convergence space and A a vector bornology
on E . The mixed (filter) convergence λA on E is defined by

F ∈ λA(0)⇔ F ∈ λ(0) and F ∩A 6= ∅.
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Examples of mixed convergences(1)

Let E be a Riesz space and A the solid vector bornology of
order-bounded subset of E . On E , consider the locally solid
convergence uo−→ of unbounded order convergence.

The mixed convergence uo−→A is order convergence ( o−→).
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Examples of mixed convergences(2)

Let E be a topological vector space and L(E) be the vector
space of all continuous linear functionals on E .

Let A be the vector bornology of all equicontinuous subsets of
L(E).

Let w∗−−→ denote convergence with respect to the weak*-topology
on L(E) (i.e. fα

w∗−−→ 0⇔ fα(x)→ 0 for every x ∈ E).

The mixed convergence w∗−−→A is continuous convergence ( c−→)
on L(E), a vector subspace of C(E).
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Mixed convergences as final convergences

If (E ,A,→) is a mixed convergence space, then the mixed
convergence→A on E is the finest convergence on E for which
the embedding

eA : (A,→) ↪→ E

is continuous for each A ∈ A.

Equivalently, the convergence→A is the finest convergence on
E which agrees with the convergence→ on the sets in A.
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When is a vector convergence topological?

It is convenient to use filter convergence here.

For a convergence space (E , λ), we define the neighbourhood
filter of x ∈ E by

Nλ(x) = ∩{F ∈ Fil(E) : F ∈ λ(x)},

i.e. Nλ(x) is the intersection of all filters λ-converging to x .

A vector convergence space (E , λ) is topological iff
Nλ(0) ∈ λ(0) (i.e. Nλ(0) converges to 0).
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When is a mixed convergence topological?

λA is topological ⇔ NλA(0) ∈ λA(0)

⇔ NλA(0) ∈ λ(0) and NλA(0) ∩ A 6= ∅

Since NλA(0) ⊆ Nλ(0), it follows that a necessary condition for
λA to be topological is that λ be topological.
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Topological in, topological out?

If we start with a topological vector convergence→ on a vector
space E , a vector bornology A on E and look at a
corresponding mixed convergence→A, will the result be a
topological convergence as well?
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Not necessarily

Let E be Riesz space and consider unbounded order
convergence uo−→ on E . As bornology A we take the set of
order-bounded sets in E .

We have seen that in this case the mixed convergence uo−→A is
order convergence o−→.

It can be shown that uo−→ is topological iff the Riesz space is
atomic (in which case it corresponds to pointwise convergence).

However, uo−→A=
o−→ is topological iff E is finite-dimensional.

Thus the mixed convergence uo−→A is topological iff E is both
atomic and finite-dimensional (and so lattice isomorphic to Rn,
for some n).
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What about continuous convergence?

E be a topological vector space.

L(E) be the vector space of all continuous linear functionals on
E .

Let A be the vector bornology of all equicontinuous subsets of
L(E).

Let w∗−−→ denote convergence with respect to the weak*-topology
on L(E).

The mixed convergence w∗−−→A is continuous convergence ( c−→)
on L(E).

The mixed convergence is topological iff E is locally compact.

This is the case iff E is finite-dimensional, and in this case L(E)
is finite-dimensional as well.



Prologue Convergences Vector lattices Mixed convergences When are mixed convergences topological? Epilogue

What about continuous convergence?

E be a topological vector space.

L(E) be the vector space of all continuous linear functionals on
E .

Let A be the vector bornology of all equicontinuous subsets of
L(E).

Let w∗−−→ denote convergence with respect to the weak*-topology
on L(E).

The mixed convergence w∗−−→A is continuous convergence ( c−→)
on L(E).

The mixed convergence is topological iff E is locally compact.

This is the case iff E is finite-dimensional, and in this case L(E)
is finite-dimensional as well.



Prologue Convergences Vector lattices Mixed convergences When are mixed convergences topological? Epilogue

What about continuous convergence?

E be a topological vector space.

L(E) be the vector space of all continuous linear functionals on
E .

Let A be the vector bornology of all equicontinuous subsets of
L(E).

Let w∗−−→ denote convergence with respect to the weak*-topology
on L(E).

The mixed convergence w∗−−→A is continuous convergence ( c−→)
on L(E).

The mixed convergence is topological iff E is locally compact.

This is the case iff E is finite-dimensional, and in this case L(E)
is finite-dimensional as well.



Prologue Convergences Vector lattices Mixed convergences When are mixed convergences topological? Epilogue

What about continuous convergence?

E be a topological vector space.

L(E) be the vector space of all continuous linear functionals on
E .

Let A be the vector bornology of all equicontinuous subsets of
L(E).

Let w∗−−→ denote convergence with respect to the weak*-topology
on L(E).

The mixed convergence w∗−−→A is continuous convergence ( c−→)
on L(E).

The mixed convergence is topological iff E is locally compact.

This is the case iff E is finite-dimensional, and in this case L(E)
is finite-dimensional as well.



Prologue Convergences Vector lattices Mixed convergences When are mixed convergences topological? Epilogue

What about continuous convergence?

E be a topological vector space.

L(E) be the vector space of all continuous linear functionals on
E .

Let A be the vector bornology of all equicontinuous subsets of
L(E).

Let w∗−−→ denote convergence with respect to the weak*-topology
on L(E).

The mixed convergence w∗−−→A is continuous convergence ( c−→)
on L(E).

The mixed convergence is topological iff E is locally compact.

This is the case iff E is finite-dimensional, and in this case L(E)
is finite-dimensional as well.



Prologue Convergences Vector lattices Mixed convergences When are mixed convergences topological? Epilogue

What about continuous convergence?

E be a topological vector space.

L(E) be the vector space of all continuous linear functionals on
E .

Let A be the vector bornology of all equicontinuous subsets of
L(E).

Let w∗−−→ denote convergence with respect to the weak*-topology
on L(E).

The mixed convergence w∗−−→A is continuous convergence ( c−→)
on L(E).

The mixed convergence is topological iff E is locally compact.

This is the case iff E is finite-dimensional, and in this case L(E)
is finite-dimensional as well.



Prologue Convergences Vector lattices Mixed convergences When are mixed convergences topological? Epilogue

What about continuous convergence?

E be a topological vector space.

L(E) be the vector space of all continuous linear functionals on
E .

Let A be the vector bornology of all equicontinuous subsets of
L(E).

Let w∗−−→ denote convergence with respect to the weak*-topology
on L(E).

The mixed convergence w∗−−→A is continuous convergence ( c−→)
on L(E).

The mixed convergence is topological iff E is locally compact.

This is the case iff E is finite-dimensional, and in this case L(E)
is finite-dimensional as well.



Prologue Convergences Vector lattices Mixed convergences When are mixed convergences topological? Epilogue

Lebesque’s dominated convergence theorem

Let (Ω,Σ, µ) be a measure space and
f1, f2, f3, . . . , f ∈ L1(Ω,Σ, µ). Then if

(a) there is a 0 ≤ g ∈ L1(Ω,Σ, µ) such that |fn(x)| ≤ g(x) for all
n ∈ N and |f (x)| ≤ g(x) almost everywhere,

(b) and either
(fn) convergences almost everywhere to f , or
(fn) convergences to f in measure on sets of finite measure,

then
∫
|fn − f |dµ→ 0, i.e. (fn) converges to f in the L1-norm.
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