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Motivating example for bi-continuous semigroups
For n ∈ N we consider on Cb(Rn) the following operator

Au(x) :=
n∑

i,j=1
qij(x) ∂2

∂xi∂xj
u(x) +

n∑
i=1

bi (x) ∂

∂xi
u(x),

D(A) :=

u ∈
⋂

1≤p<∞
W2,p

loc(Rn) ∩ Cb(Rn) : Au ∈ Cb(Rn)

 .

and the corresponding abstract Cauchy problem
∂

∂t u(t, x) = Au(t, x), t ≥ 0,
u(0, x) = f (x) ∈ Cb(Rn).

For each f ∈ Cb(Rn) there exists a solution u(t, x) for t ≥ 0
There exists an operator semigroup (T (t))t≥0 on Cb(Rn) such that
u(t, x) = (T (t)f )(x)
(T (t))t≥0 is not strongly continuous on Cb(Rn)
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The Setting

We start with a Banach space (X , ‖·‖)

, together with a locally convex topology τ
(generated by a family P of seminorms).

Assumptions (F. Kühnemund)
The norm topology is finer than the locally convex topology τ .
X is sequentially complete on norm-bounded sets.
(X , τ)′ is norming for X, i.e., for all x ∈ X:

‖x‖ = sup
ϕ∈(X ,τ)′

‖ϕ‖≤1

|ϕ(x)|

Examples: Cb(R) with compact-open topology, L (E ) with strong operator
topology, X ′ with weak∗-topology
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Bi-Continuous Semigroups

Definition
A semigroup (T (t))t≥0 of bounded operators on a Banach space (X , ‖·‖) is called
bi-continuous with respect to the locally convex topology τ if the following
conditions hold:

(i) (T (t))t≥0 is strongly τ -continuous, i.e., t 7→ T (t)x is τ -continuous for each
x ∈ X .

(ii) ∃M ≥ 1, ω ∈ R ∀t ≥ 0 : ‖T (t)‖ ≤ Meωt

(iii) (T (t))t≥0 is locally bi-equicontinuous, i.e., for every ‖·‖-bounded sequence
(xn)n∈N with xn

τ→ 0 we have T (t)xn
τ→ 0 uniformly on bounded intervals.
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Examples

Left-translation semigroup on X = Cb(R) defined by (T (t)f )(x) := f (x + t),
t ≥ 0, f ∈ Cb(R), x ∈ R.

Dual semigroup on the dual Banach space X ′.
Implemented semigroup on X = L (E ) defined by U(t)L := T (t)LS(t),
t ≥ 0, L ∈ L (E ).
Semigroups induced by flows
Ornstein–Uhlenbeck semigroup on Cb(H)

C. Budde (University of the Free State) 6 / 21
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The Generator

Definition
The generator (A,D(A)) of a bi-continuous semigroup is defined by:

Ax := τ lim
t→0

T (t)x − x
t

D(A) :=
{
x ∈ X : ∃ τ lim

t→0

T (t)x − x
t , sup

t∈(0,1]

‖T (t)x − x‖
t <∞

}
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The classical Lumer–Phillips theorem

Definition

A linear operator (A,D(A)) on a Banach space X is called dissipative if

‖(λ− A)x‖ ≥ λ ‖x‖ ,

for all λ > 0 and x ∈ D(A).

As a consequence of the Hille–Yosida theorem one obtains the Lumer–Phillips
theorem.

Theorem (Lumer, Phillips 1961)
For a densely defined, dissipative operator (A,D(A)) on a Banach space X the
following statements are equivalent:

(a) The closure A of A generates a contraction semigroup.
(b) Ran(λ− A) is dense in X for some (hence all) λ > 0.
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Preperations for the bi-continuous case – I

Theorem (F. Kühnemund)
Let (X , ‖ · ‖, τ) be a bi-admissible space, and let (A,D(A)) be a linear operator on
the Banach space X. The following are equivalent:

(a) The operator (A,D(A)) is the generator of a bi-continuous contraction
semigroup (T (t))t≥0.

(b) The operator (A,D(A)) satisfies (0,∞) ⊆ ρ(A) and

‖R(λ,A)n‖ ≤ 1
λn (1)

for all n ∈ N and for all λ > 0. Moreover, A is bi-densely defined and the
family {

λnR(λ,A)n : n ∈ N, λ > 0
}

(2)

is bi-equicontinuous, meaning that for each norm bounded τ -null sequence
(xm)m∈N one has λnR(λ,A)nxm → 0 in τ uniformly for n ∈ N and λ > 0 as
n→∞.

C. Budde (University of the Free State) 10 / 21
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Preperations for the bi-continuous case – II

The following definition is inspired by the work of A. Albanese and D. Jornet.

Definition
Let (A,D(A)) be an operator on a bi-admissible space (X , ‖ · ‖, τ). We call this
operator bi-dissipative if there exists a fundamental system of seminorms Γ
generating the topology τ such that

p((λ− A)x) ≥ λp(x), λ > 0, p ∈ Γ, x ∈ D(A) (3)

and

‖x‖ = sup
p∈Γ

p(x), x ∈ X . (4)
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Preparations for the bi-continuous case – III

Proposition
Let (A,D(A)) be a bi-dissipative operator on a bi-admissible space (X , ‖ · ‖, τ).
Then the following assertions are true:

(i) λ− A is injective for all λ > 0. Moreover, one has that

p(R(λ,A)x) ≤ 1
λ
p(x), (5)

for all λ > 0, p ∈Pτ and x ∈ Ran(λ− A).
(ii) λ− A is surjective for some λ > 0 if and only if it is surjective for all λ > 0.

In addition, one has that (0,∞) ⊆ ρ(A).
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A first result

Theorem
Let (A,D(A)) be a bi-dissipative, bi-densely defined and closed operator on a
bi-admissible space (X , ‖ · ‖, τ)

. Then the following statements are equivalent:
(a) (A,D(A)) generates a bi-continuous contraction semigroup on X.
(b) λ− A is surjective for some λ > 0.
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The translation semigroup on Cb ([0,∞))
Let us consider the space X := Cb ([0,∞)) equipped with the supremum norm as
well as the compact-open topology τco

. We consider the operator (A,D(A))
defined by

Af := −f ′, D(A) :=
{
f ∈ C1

b ([0,∞)) : f (0) = 0
}
.

The resolvent of (A,D(A)) can be determined explicitly by

(R(λ,A)f )(x) =
∫ x

0
eλ(t−x)f (t) dt = e−λx

∫ x

0
eλt f (t) dt, λ > 0,

showing that λ− A is surjective. Consider the fundamental system of seminorms
(pn)n∈N with pn(f ) := supx∈[0,n] |f (x)|. Let n ∈ N be arbitrary and observe that
for x ∈ [0, n] one has

λ |(R(λ,A)f )(x)| ≤ λeλx
∫ x

0
eλs |f (s)| ds ≤ λeλx

∫ x

0
eλspn(f ) ds = (1−e−λx )pn(f ).

Hence, (A,D(A)) is a bi-dissipative operator.
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Closeable operators - Banach space vs. locally convex
space

Definition

Let (A,D(A)) be a linear operator on a Banach space X . We call the operator
closeable if for every sequence (xn)n∈N in D(A) with xn → 0 and Axn → y one has
y = 0.

Definition
Let (A,D(A)) be a linear operator on a locally convex space (X , τ). We call the
operator τ -closeable if for every net (xα)α∈A in D(A) with xα → 0 and Axα → y
one has y = 0.

C. Budde (University of the Free State) 17 / 21



Closeable operators - Banach space vs. locally convex
space

Definition
Let (A,D(A)) be a linear operator on a Banach space X . We call the operator
closeable if for every sequence (xn)n∈N in D(A) with xn → 0 and Axn → y one has
y = 0.

Definition
Let (A,D(A)) be a linear operator on a locally convex space (X , τ)

. We call the
operator τ -closeable if for every net (xα)α∈A in D(A) with xα → 0 and Axα → y
one has y = 0.

C. Budde (University of the Free State) 17 / 21



Closeable operators - Banach space vs. locally convex
space

Definition
Let (A,D(A)) be a linear operator on a Banach space X . We call the operator
closeable if for every sequence (xn)n∈N in D(A) with xn → 0 and Axn → y one has
y = 0.

Definition
Let (A,D(A)) be a linear operator on a locally convex space (X , τ). We call the
operator τ -closeable if for every net (xα)α∈A in D(A) with xα → 0 and Axα → y
one has y = 0.

C. Budde (University of the Free State) 17 / 21



The mixed topology

Definition
Let (X , ‖ · ‖, τ) be a bi-admissible space

. The mixed topology γ := γ(‖·‖ , τ) is
the locally convex topology generated by the family of seminorms

Γ̃ :=
{
p̃(an),(pn) : (pn)n∈N ⊆ Γ, (an)n∈N ∈ c0, an ≥ 0

}
where

p̃(an),(pn)(x) := sup
n∈N

anpn(x), x ∈ X ,

Remark
(i) τ ⊆ γ ⊆ ‖·‖
(ii) A sequence converges with respect to the mixed topology if and only if it is
‖·‖-bounded and τ -convergent.

(iii) The classes of bi-continuous semigroups and γ(τ, ‖·‖)-strongly continuous
and locally sequentially γ(τ, ‖·‖)-equicontinuous semigroups coincide
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A second Lumer–Phillips result

Theorem
Let (A,D(A)) be a bi-dissipative and bi-densely defined operator on a bi-admissible
space (X , ‖ · ‖, τ)

. Assume that X is complete with respect to the mixed topology
γ. If Ran(λ− A) is bi-dense in X for some λ > 0, then the γ-closure (A,D(A)) of
(A,D(A)) generates a bi-continuous contraction semigroup on X.

Remark
(i) Equip the space Cb(R) of bounded continuous functions on the real line with

the sup-norm ‖·‖∞ and the compact-open topology τco. Then Cb(R) is
complete with respect to the associated mixed topology γ(τco, ‖·‖∞).

(ii) The space L (E ) of bounded linear operators on a Banach space E together
with the operator norm ‖·‖L (E) and the strong operator topology τsot is also
complete with respect to the mixed topology γ(τsot, ‖·‖L (E)).
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Thank you for listening!
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