A Lumer–Phillips type generation theorem for bi-continuous semigroups

65th SAMS Congress – 2022

Christian Budde

(joint work with Sven-Ake Wegner (Hamburg))

University of the Free State

06 - 08. December 2022

Funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - $468736785 \ \text{is acknowledged}.$

Outline

- Bi-continuous semigroups
- 2 The Lumer-Phillips generation theorem
- A first example
- 4 The mixed topology and closeable operators

For $n \in \mathbb{N}$ we consider on $\mathrm{C_b}(\mathbb{R}^n)$ the following operator

For $n \in \mathbb{N}$ we consider on $C_b(\mathbb{R}^n)$ the following operator

$$\begin{split} \mathcal{A}u(x) &:= \sum_{i,j=1}^n q_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} u(x) + \sum_{i=1}^n b_i(x) \frac{\partial}{\partial x_i} u(x), \\ \mathrm{D}(\mathcal{A}) &:= \left\{ u \in \bigcap_{1 \leq p < \infty} \mathrm{W}^{2,p}_{\mathrm{loc}}(\mathbb{R}^n) \cap \mathrm{C_b}(\mathbb{R}^n) : \ \mathcal{A}u \in \mathrm{C_b}(\mathbb{R}^n) \right\}. \end{split}$$

For $n \in \mathbb{N}$ we consider on $C_b(\mathbb{R}^n)$ the following operator

$$\begin{split} \mathcal{A} u(x) &:= \sum_{i,j=1}^n q_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} u(x) + \sum_{i=1}^n b_i(x) \frac{\partial}{\partial x_i} u(x), \\ \mathrm{D}(\mathcal{A}) &:= \left\{ u \in \bigcap_{1 \leq p < \infty} \mathrm{W}^{2,p}_{\mathrm{loc}}(\mathbb{R}^n) \cap \mathrm{C_b}(\mathbb{R}^n) : \ \mathcal{A} u \in \mathrm{C_b}(\mathbb{R}^n) \right\}. \end{split}$$

and the corresponding abstract Cauchy problem

$$\begin{cases} \frac{\partial}{\partial t} u(t,x) = \mathcal{A}u(t,x), & t \geq 0, \\ u(0,x) = f(x) \in C_{\mathrm{b}}(\mathbb{R}^n). \end{cases}$$

For $n \in \mathbb{N}$ we consider on $C_b(\mathbb{R}^n)$ the following operator

$$\begin{split} \mathcal{A} u(x) &:= \sum_{i,j=1}^n q_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} u(x) + \sum_{i=1}^n b_i(x) \frac{\partial}{\partial x_i} u(x), \\ \mathrm{D}(\mathcal{A}) &:= \left\{ u \in \bigcap_{1 \leq p < \infty} \mathrm{W}^{2,p}_{\mathrm{loc}}(\mathbb{R}^n) \cap \mathrm{C_b}(\mathbb{R}^n) : \ \mathcal{A} u \in \mathrm{C_b}(\mathbb{R}^n) \right\}. \end{split}$$

and the corresponding abstract Cauchy problem

$$\begin{cases} \frac{\partial}{\partial t} u(t,x) = \mathcal{A} u(t,x), & t \geq 0, \\ u(0,x) = f(x) \in \mathrm{C_b}(\mathbb{R}^n). \end{cases}$$

• For each $f \in \mathrm{C_b}(\mathbb{R}^n)$ there exists a solution u(t,x) for $t \geq 0$

For $n \in \mathbb{N}$ we consider on $C_b(\mathbb{R}^n)$ the following operator

$$\begin{split} \mathcal{A} u(x) &:= \sum_{i,j=1}^n q_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} u(x) + \sum_{i=1}^n b_i(x) \frac{\partial}{\partial x_i} u(x), \\ D(\mathcal{A}) &:= \left\{ u \in \bigcap_{1 \leq p < \infty} \mathrm{W}^{2,p}_{\mathrm{loc}}(\mathbb{R}^n) \cap \mathrm{C_b}(\mathbb{R}^n) : \ \mathcal{A} u \in \mathrm{C_b}(\mathbb{R}^n) \right\}. \end{split}$$

and the corresponding abstract Cauchy problem

$$\begin{cases} \frac{\partial}{\partial t} u(t,x) = \mathcal{A} u(t,x), & t \geq 0, \\ u(0,x) = f(x) \in \mathrm{C_b}(\mathbb{R}^n). \end{cases}$$

- For each $f \in C_b(\mathbb{R}^n)$ there exists a solution u(t,x) for $t \geq 0$
- There exists an operator semigroup $(T(t))_{t\geq 0}$ on $C_b(\mathbb{R}^n)$ such that u(t,x)=(T(t)f)(x)

For $n \in \mathbb{N}$ we consider on $C_b(\mathbb{R}^n)$ the following operator

$$\begin{split} \mathcal{A} u(x) &:= \sum_{i,j=1}^n q_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} u(x) + \sum_{i=1}^n b_i(x) \frac{\partial}{\partial x_i} u(x), \\ \mathrm{D}(\mathcal{A}) &:= \left\{ u \in \bigcap_{1 \leq p < \infty} \mathrm{W}^{2,p}_{\mathrm{loc}}(\mathbb{R}^n) \cap \mathrm{C_b}(\mathbb{R}^n) : \ \mathcal{A} u \in \mathrm{C_b}(\mathbb{R}^n) \right\}. \end{split}$$

and the corresponding abstract Cauchy problem

$$\begin{cases} \frac{\partial}{\partial t} u(t,x) = \mathcal{A} u(t,x), & t \geq 0, \\ u(0,x) = f(x) \in \mathrm{C_b}(\mathbb{R}^n). \end{cases}$$

- ullet For each $f\in \mathrm{C_b}(\mathbb{R}^n)$ there exists a solution u(t,x) for $t\geq 0$
- There exists an operator semigroup $(T(t))_{t\geq 0}$ on $C_b(\mathbb{R}^n)$ such that u(t,x)=(T(t)f)(x)
- $(T(t))_{t\geq 0}$ is not strongly continuous on $C_b(\mathbb{R}^n)$

We start with a Banach space $(X, \|\cdot\|)$

We start with a Banach space $(X, \|\cdot\|)$, together with a locally convex topology τ (generated by a family $\mathscr P$ of seminorms).

We start with a Banach space $(X, \|\cdot\|)$, together with a locally convex topology τ (generated by a family $\mathscr P$ of seminorms).

Assumptions (F. Kühnemund)

ullet The norm topology is finer than the locally convex topology au.

We start with a Banach space $(X, \|\cdot\|)$, together with a locally convex topology τ (generated by a family $\mathscr P$ of seminorms).

- The norm topology is finer than the locally convex topology τ .
- X is sequentially complete on norm-bounded sets.

We start with a Banach space $(X, \|\cdot\|)$, together with a locally convex topology τ (generated by a family $\mathscr P$ of seminorms).

- The norm topology is finer than the locally convex topology τ .
- X is sequentially complete on norm-bounded sets.
- $(X, \tau)'$ is norming for X

We start with a Banach space $(X, \|\cdot\|)$, together with a locally convex topology τ (generated by a family $\mathscr P$ of seminorms).

- ullet The norm topology is finer than the locally convex topology au.
- X is sequentially complete on norm-bounded sets.
- $(X, \tau)'$ is norming for X, i.e., for all $x \in X$:

$$||x|| = \sup_{\substack{\varphi \in (X,\tau)' \\ ||\varphi|| \le 1}} |\varphi(x)|$$

We start with a Banach space $(X, \|\cdot\|)$, together with a locally convex topology τ (generated by a family $\mathscr P$ of seminorms).

Assumptions (F. Kühnemund)

- ullet The norm topology is finer than the locally convex topology au.
- X is sequentially complete on norm-bounded sets.
- $(X, \tau)'$ is norming for X, i.e., for all $x \in X$:

$$||x|| = \sup_{\substack{\varphi \in (X,\tau)' \\ ||\varphi|| \le 1}} |\varphi(x)|$$

Examples: $C_b(\mathbb{R})$ with compact-open topology, $\mathscr{L}(E)$ with strong operator topology, X' with weak*-topology

Definition

A semigroup $(T(t))_{t\geq 0}$ of bounded operators on a Banach space $(X,\|\cdot\|)$ is called **bi-continuous** with respect to the locally convex topology τ if the following conditions hold:

Definition

A semigroup $(T(t))_{t\geq 0}$ of bounded operators on a Banach space $(X, \|\cdot\|)$ is called **bi-continuous** with respect to the locally convex topology τ if the following conditions hold:

(i) $(T(t))_{t\geq 0}$ is strongly τ -continuous

Definition

A semigroup $(T(t))_{t\geq 0}$ of bounded operators on a Banach space $(X, \|\cdot\|)$ is called **bi-continuous** with respect to the locally convex topology τ if the following conditions hold:

(i) $(T(t))_{t\geq 0}$ is strongly τ -continuous, i.e., $t\mapsto T(t)x$ is τ -continuous for each $x\in X$.

Definition

A semigroup $(T(t))_{t\geq 0}$ of bounded operators on a Banach space $(X, \|\cdot\|)$ is called **bi-continuous** with respect to the locally convex topology τ if the following conditions hold:

- (i) $(T(t))_{t\geq 0}$ is strongly τ -continuous, i.e., $t\mapsto T(t)x$ is τ -continuous for each $x\in X$.
- (ii) $\exists M \geq 1, \ \omega \in \mathbb{R} \ \forall t \geq 0: \ \|T(t)\| \leq Me^{\omega t}$

Definition

A semigroup $(T(t))_{t\geq 0}$ of bounded operators on a Banach space $(X, \|\cdot\|)$ is called **bi-continuous** with respect to the locally convex topology τ if the following conditions hold:

- (i) $(T(t))_{t\geq 0}$ is strongly τ -continuous, i.e., $t\mapsto T(t)x$ is τ -continuous for each $x\in X$.
- (ii) $\exists M \geq 1, \ \omega \in \mathbb{R} \ \forall t \geq 0: \ \|T(t)\| \leq Me^{\omega t}$
- (iii) $(T(t))_{t\geq 0}$ is locally bi-equicontinuous

Definition

A semigroup $(T(t))_{t\geq 0}$ of bounded operators on a Banach space $(X, \|\cdot\|)$ is called **bi-continuous** with respect to the locally convex topology τ if the following conditions hold:

- (i) $(T(t))_{t\geq 0}$ is strongly τ -continuous, i.e., $t\mapsto T(t)x$ is τ -continuous for each $x\in X$.
- (ii) $\exists M \geq 1, \ \omega \in \mathbb{R} \ \forall t \geq 0: \ \|T(t)\| \leq Me^{\omega t}$
- (iii) $(T(t))_{t\geq 0}$ is locally bi-equicontinuous, i.e., for every $\|\cdot\|$ -bounded sequence $(x_n)_{n\in\mathbb{N}}$ with $x_n\stackrel{\tau}{\to} 0$ we have $T(t)x_n\stackrel{\tau}{\to} 0$ uniformly on bounded intervals.

• Left-translation semigroup on $X = C_b(\mathbb{R})$ defined by (T(t)f)(x) := f(x+t), $t \geq 0$, $f \in C_b(\mathbb{R})$, $x \in \mathbb{R}$.

- Left-translation semigroup on $X = C_b(\mathbb{R})$ defined by (T(t)f)(x) := f(x+t), $t \ge 0$, $f \in C_b(\mathbb{R})$, $x \in \mathbb{R}$.
- Dual semigroup on the dual Banach space X'.

- Left-translation semigroup on $X = C_b(\mathbb{R})$ defined by (T(t)f)(x) := f(x+t), $t \ge 0$, $f \in C_b(\mathbb{R})$, $x \in \mathbb{R}$.
- Dual semigroup on the dual Banach space X'.
- Implemented semigroup on $X = \mathcal{L}(E)$ defined by $\mathcal{U}(t)L := T(t)LS(t)$, $t \geq 0$, $L \in \mathcal{L}(E)$.

- Left-translation semigroup on $X = C_b(\mathbb{R})$ defined by (T(t)f)(x) := f(x+t), $t \ge 0$, $f \in C_b(\mathbb{R})$, $x \in \mathbb{R}$.
- Dual semigroup on the dual Banach space X'.
- Implemented semigroup on $X = \mathcal{L}(E)$ defined by $\mathcal{U}(t)L := T(t)LS(t)$, $t \ge 0$, $L \in \mathcal{L}(E)$.
- Semigroups induced by flows

- Left-translation semigroup on $X = C_b(\mathbb{R})$ defined by (T(t)f)(x) := f(x+t), $t \ge 0$, $f \in C_b(\mathbb{R})$, $x \in \mathbb{R}$.
- Dual semigroup on the dual Banach space X'.
- Implemented semigroup on $X = \mathcal{L}(E)$ defined by $\mathcal{U}(t)L := T(t)LS(t)$, $t \ge 0$, $L \in \mathcal{L}(E)$.
- Semigroups induced by flows
- ullet Ornstein-Uhlenbeck semigroup on $C_b(\mathcal{H})$

The Generator

Definition

The generator (A, D(A)) of a bi-continuous semigroup is defined by:

The Generator

Definition

The generator (A, D(A)) of a bi-continuous semigroup is defined by:

$$Ax := \tau \lim_{t \to 0} \frac{T(t)x - x}{t}$$

$$\mathrm{D}(A) := \left\{ x \in X : \ \exists \ \tau \lim_{t \to 0} \frac{T(t)x - x}{t}, \ \sup_{t \in (0,1]} \frac{\|T(t)x - x\|}{t} < \infty \right\}$$

Outline

- Bi-continuous semigroups
- 2 The Lumer–Phillips generation theorem
- A first example
- The mixed topology and closeable operators

The classical Lumer–Phillips theorem

Definition

The classical Lumer–Phillips theorem

Definition

A linear operator (A, D(A)) on a Banach space X is called *dissipative* if

$$\|(\lambda - A)x\| \ge \lambda \|x\|,$$

for all $\lambda > 0$ and $x \in D(A)$.

The classical Lumer-Phillips theorem

Definition

A linear operator (A, D(A)) on a Banach space X is called *dissipative* if

$$\|(\lambda - A)x\| \ge \lambda \|x\|,$$

for all $\lambda > 0$ and $x \in D(A)$.

As a consequence of the Hille–Yosida theorem one obtains the Lumer–Phillips theorem.

Theorem (Lumer, Phillips 1961)

For a densely defined, dissipative operator (A, D(A)) on a Banach space X the following statements are equivalent:

The classical Lumer-Phillips theorem

Definition

A linear operator (A, D(A)) on a Banach space X is called *dissipative* if

$$\|(\lambda - A)x\| \ge \lambda \|x\|,$$

for all $\lambda > 0$ and $x \in D(A)$.

As a consequence of the Hille–Yosida theorem one obtains the Lumer–Phillips theorem.

Theorem (Lumer, Phillips 1961)

For a densely defined, dissipative operator (A, D(A)) on a Banach space X the following statements are equivalent:

1 The closure \overline{A} of A generates a contraction semigroup.

The classical Lumer-Phillips theorem

Definition

A linear operator (A, D(A)) on a Banach space X is called *dissipative* if

$$\|(\lambda - A)x\| \ge \lambda \|x\|,$$

for all $\lambda > 0$ and $x \in D(A)$.

As a consequence of the Hille–Yosida theorem one obtains the Lumer–Phillips theorem.

Theorem (Lumer, Phillips 1961)

For a densely defined, dissipative operator (A, D(A)) on a Banach space X the following statements are equivalent:

- **1** The closure \overline{A} of A generates a contraction semigroup.
- **Q** Ran(λA) is dense in X for some (hence all) $\lambda > 0$.

Preperations for the bi-continuous case – I

Theorem (F. Kühnemund)

Let $(X, \|\cdot\|, \tau)$ be a bi-admissible space, and let (A, D(A)) be a linear operator on the Banach space X. The following are equivalent:

Preperations for the bi-continuous case – I

Theorem (F. Kühnemund)

Let $(X, \|\cdot\|, \tau)$ be a bi-admissible space, and let (A, D(A)) be a linear operator on the Banach space X. The following are equivalent:

• The operator (A, D(A)) is the generator of a bi-continuous contraction semigroup $(T(t))_{t\geq 0}$.

Theorem (F. Kühnemund)

Let $(X, \|\cdot\|, \tau)$ be a bi-admissible space, and let (A, D(A)) be a linear operator on the Banach space X. The following are equivalent:

- The operator (A, D(A)) is the generator of a bi-continuous contraction semigroup $(T(t))_{t\geq 0}$.
- **1** The operator $(A, \mathrm{D}(A))$ satisfies $(0, \infty) \subseteq \rho(A)$ and

$$||R(\lambda, A)^n|| \le \frac{1}{\lambda^n} \tag{1}$$

for all $n \in \mathbb{N}$ and for all $\lambda > 0$

Theorem (F. Kühnemund)

Let $(X, \|\cdot\|, \tau)$ be a bi-admissible space, and let (A, D(A)) be a linear operator on the Banach space X. The following are equivalent:

- The operator (A, D(A)) is the generator of a bi-continuous contraction semigroup $(T(t))_{t\geq 0}$.
- The operator (A, D(A)) satisfies $(0, \infty) \subseteq \rho(A)$ and

$$||R(\lambda, A)^n|| \le \frac{1}{\lambda^n} \tag{1}$$

for all $n \in \mathbb{N}$ and for all $\lambda > 0$. Moreover, A is bi-densely defined

Theorem (F. Kühnemund)

Let $(X, \|\cdot\|, \tau)$ be a bi-admissible space, and let (A, D(A)) be a linear operator on the Banach space X. The following are equivalent:

- The operator (A, D(A)) is the generator of a bi-continuous contraction semigroup $(T(t))_{t\geq 0}$.
- **1** The operator (A, D(A)) satisfies $(0, \infty) \subseteq \rho(A)$ and

$$||R(\lambda, A)^n|| \le \frac{1}{\lambda^n} \tag{1}$$

for all $n \in \mathbb{N}$ and for all $\lambda > 0$. Moreover, A is bi-densely defined and the family

$$\left\{\lambda^n R(\lambda, A)^n: \ n \in \mathbb{N}, \ \lambda > 0\right\} \tag{2}$$

is bi-equicontinuous

Theorem (F. Kühnemund)

Let $(X, \|\cdot\|, \tau)$ be a bi-admissible space, and let (A, D(A)) be a linear operator on the Banach space X. The following are equivalent:

- The operator (A, D(A)) is the generator of a bi-continuous contraction semigroup $(T(t))_{t\geq 0}$.
- **1** The operator (A, D(A)) satisfies $(0, \infty) \subseteq \rho(A)$ and

$$||R(\lambda, A)^n|| \le \frac{1}{\lambda^n} \tag{1}$$

for all $n \in \mathbb{N}$ and for all $\lambda > 0$. Moreover, A is bi-densely defined and the family

$$\left\{\lambda^n R(\lambda, A)^n: \ n \in \mathbb{N}, \ \lambda > 0\right\} \tag{2}$$

is bi-equicontinuous, meaning that for each norm bounded τ -null sequence $(x_m)_{m\in\mathbb{N}}$ one has $\lambda^n R(\lambda,A)^n x_m\to 0$ in τ uniformly for $n\in\mathbb{N}$ and $\lambda>0$ as $n\to\infty$.

The following definition is inspired by the work of A. Albanese and D. Jornet.

The following definition is inspired by the work of A. Albanese and D. Jornet.

Definition

Let (A, D(A)) be an operator on a bi-admissible space $(X, \|\cdot\|, \tau)$

The following definition is inspired by the work of A. Albanese and D. Jornet.

Definition

Let (A, D(A)) be an operator on a bi-admissible space $(X, \|\cdot\|, \tau)$. We call this operator *bi-dissipative* if there exists a fundamental system of seminorms Γ generating the topology τ such that

$$p((\lambda - A)x) \ge \lambda p(x), \quad \lambda > 0, \ p \in \Gamma, \ x \in D(A)$$
 (3)

The following definition is inspired by the work of A. Albanese and D. Jornet.

Definition

Let (A, D(A)) be an operator on a bi-admissible space $(X, \|\cdot\|, \tau)$. We call this operator *bi-dissipative* if there exists a fundamental system of seminorms Γ generating the topology τ such that

$$p((\lambda - A)x) \ge \lambda p(x), \quad \lambda > 0, \ p \in \Gamma, \ x \in D(A)$$
 (3)

and

$$||x|| = \sup_{p \in \Gamma} p(x), \quad x \in X. \tag{4}$$

Proposition

Let (A, D(A)) be a bi-dissipative operator on a bi-admissible space $(X, \|\cdot\|, \tau)$. Then the following assertions are true:

 \bullet $\lambda - A$ is injective for all $\lambda > 0$. Moreover, one has that

$$p(R(\lambda, A)x) \le \frac{1}{\lambda}p(x),$$
 (5)

for all $\lambda > 0$, $p \in \mathscr{P}_{\tau}$ and $x \in \operatorname{Ran}(\lambda - A)$.

① $\lambda - A$ is surjective for some $\lambda > 0$ if and only if it is surjective for all $\lambda > 0$. In addition, one has that $(0, \infty) \subseteq \rho(A)$.

A first result

Theorem

Let (A, D(A)) be a bi-dissipative, bi-densely defined and closed operator on a bi-admissible space $(X, \|\cdot\|, \tau)$

A first result

Theorem

Let (A, D(A)) be a bi-dissipative, bi-densely defined and closed operator on a bi-admissible space $(X, \|\cdot\|, \tau)$. Then the following statements are equivalent:

(A, D(A)) generates a bi-continuous contraction semigroup on X.

A first result

Theorem

Let (A, D(A)) be a bi-dissipative, bi-densely defined and closed operator on a bi-admissible space $(X, \|\cdot\|, \tau)$. Then the following statements are equivalent:

- (A, D(A)) generates a bi-continuous contraction semigroup on X.
- \bullet λA is surjective for some $\lambda > 0$.

Outline

- Bi-continuous semigroups
- 2 The Lumer–Phillips generation theorem
- 3 A first example
- The mixed topology and closeable operators

Let us consider the space $X:=\mathrm{C_b}\left([0,\infty)\right)$ equipped with the supremum norm as well as the compact-open topology au_{co}

Let us consider the space $X:=\mathrm{C_b}\left([0,\infty)\right)$ equipped with the supremum norm as well as the compact-open topology τ_co . We consider the operator $(A,\mathrm{D}(A))$ defined by

$$Af := -f', \quad D(A) := \{ f \in C^1_b([0, \infty)) : f(0) = 0 \}.$$

Let us consider the space $X:=\mathrm{C_b}\left([0,\infty)\right)$ equipped with the supremum norm as well as the compact-open topology τ_co . We consider the operator $(A,\mathrm{D}(A))$ defined by

$$Af := -f', \quad \mathrm{D}(A) := \left\{ f \in \mathrm{C}^1_\mathrm{b}\left([0,\infty)\right) : \ f(0) = 0 \right\}.$$

The resolvent of (A, D(A)) can be determined explicitly by

$$(R(\lambda, A)f)(x) = \int_0^x e^{\lambda(t-x)} f(t) dt = e^{-\lambda x} \int_0^x e^{\lambda t} f(t) dt, \quad \lambda > 0,$$

showing that $\lambda - A$ is surjective

Let us consider the space $X:=\mathrm{C_b}\left([0,\infty)\right)$ equipped with the supremum norm as well as the compact-open topology τ_co . We consider the operator $(A,\mathrm{D}(A))$ defined by

$$Af := -f', \quad D(A) := \{ f \in C^1_b([0,\infty)) : f(0) = 0 \}.$$

The resolvent of (A, D(A)) can be determined explicitly by

$$(R(\lambda, A)f)(x) = \int_0^x e^{\lambda(t-x)} f(t) dt = e^{-\lambda x} \int_0^x e^{\lambda t} f(t) dt, \quad \lambda > 0,$$

showing that $\lambda-A$ is surjective. Consider the fundamental system of seminorms $(p_n)_{n\in\mathbb{N}}$ with $p_n(f):=\sup_{x\in[0,n]}|f(x)|$. Let $n\in\mathbb{N}$ be arbitrary and observe that for $x\in[0,n]$ one has

$$\lambda \left| (R(\lambda, A)f)(x) \right| \leq \lambda e^{\lambda x} \int_0^x e^{\lambda s} \left| f(s) \right| ds \leq \lambda e^{\lambda x} \int_0^x e^{\lambda s} \rho_n(f) ds = (1 - e^{-\lambda x}) \rho_n(f) ds$$

Let us consider the space $X:=\mathrm{C_b}\left([0,\infty)\right)$ equipped with the supremum norm as well as the compact-open topology τ_co . We consider the operator $(A,\mathrm{D}(A))$ defined by

$$Af := -f', \quad D(A) := \left\{ f \in C^1_b([0,\infty)) : \ f(0) = 0 \right\}.$$

The resolvent of (A, D(A)) can be determined explicitly by

$$(R(\lambda, A)f)(x) = \int_0^x e^{\lambda(t-x)} f(t) dt = e^{-\lambda x} \int_0^x e^{\lambda t} f(t) dt, \quad \lambda > 0,$$

showing that $\lambda-A$ is surjective. Consider the fundamental system of seminorms $(p_n)_{n\in\mathbb{N}}$ with $p_n(f):=\sup_{x\in[0,n]}|f(x)|$. Let $n\in\mathbb{N}$ be arbitrary and observe that for $x\in[0,n]$ one has

$$|\lambda|(R(\lambda,A)f)(x)| \leq \lambda e^{\lambda x} \int_0^x e^{\lambda s} |f(s)| ds \leq \lambda e^{\lambda x} \int_0^x e^{\lambda s} p_n(f) ds = (1-e^{-\lambda x})p_n(f)$$

Hence, (A, D(A)) is a bi-dissipative operator.

Outline

- Bi-continuous semigroups
- 2 The Lumer–Phillips generation theorem
- A first example
- 4 The mixed topology and closeable operators

Closeable operators - Banach space vs. locally convex space

Definition

Closeable operators - Banach space vs. locally convex space

Definition

Let (A, D(A)) be a linear operator on a Banach space X. We call the operator *closeable* if for every sequence $(x_n)_{n\in\mathbb{N}}$ in D(A) with $x_n\to 0$ and $Ax_n\to y$ one has y=0.

Definition

Let (A, D(A)) be a linear operator on a locally convex space (X, τ)

Closeable operators - Banach space vs. locally convex space

Definition

Let (A, D(A)) be a linear operator on a Banach space X. We call the operator *closeable* if for every sequence $(x_n)_{n\in\mathbb{N}}$ in D(A) with $x_n\to 0$ and $Ax_n\to y$ one has y=0.

Definition

Let $(A, \mathrm{D}(A))$ be a linear operator on a locally convex space (X, τ) . We call the operator τ -closeable if for every net $(x_\alpha)_{\alpha \in A}$ in $\mathrm{D}(A)$ with $x_\alpha \to 0$ and $Ax_\alpha \to y$ one has y=0.

Definition

Let $(X, \|\cdot\|, \tau)$ be a bi-admissible space

Definition

Let $(X, \|\cdot\|, \tau)$ be a bi-admissible space. The *mixed topology* $\gamma := \gamma(\|\cdot\|, \tau)$ is the locally convex topology generated by the family of seminorms

$$\widetilde{\Gamma}:=\left\{\widetilde{p}_{(a_n),(p_n)}:\;(p_n)_{n\in\mathbb{N}}\subseteq\Gamma,\;(a_n)_{n\in\mathbb{N}}\in\mathrm{c}_0,\;a_n\geq0\right\}$$

Definition

Let $(X, \|\cdot\|, \tau)$ be a bi-admissible space. The mixed topology $\gamma := \gamma(\|\cdot\|, \tau)$ is the locally convex topology generated by the family of seminorms

$$\widetilde{\Gamma}:=\left\{\widetilde{p}_{(a_n),(p_n)}:\; (p_n)_{n\in\mathbb{N}}\subseteq\Gamma,\; (a_n)_{n\in\mathbb{N}}\in\mathrm{c}_0,\; a_n\geq 0\right\}$$

where

$$\widetilde{p}_{(a_n),(p_n)}(x) := \sup_{n \in \mathbb{N}} a_n p_n(x), \quad x \in X,$$

Definition

Let $(X, \|\cdot\|, \tau)$ be a bi-admissible space. The *mixed topology* $\gamma := \gamma(\|\cdot\|, \tau)$ is the locally convex topology generated by the family of seminorms

$$\widetilde{\Gamma}:=\left\{\widetilde{p}_{(a_n),(p_n)}:\; (p_n)_{n\in\mathbb{N}}\subseteq\Gamma,\; (a_n)_{n\in\mathbb{N}}\in\mathrm{c}_0,\; a_n\geq0\right\}$$

where

$$\widetilde{p}_{(a_n),(p_n)}(x) := \sup_{n \in \mathbb{N}} a_n p_n(x), \quad x \in X,$$

- **①** A sequence converges with respect to the mixed topology if and only if it is $\|\cdot\|$ -bounded and τ -convergent.

Definition

Let $(X, \|\cdot\|, \tau)$ be a bi-admissible space. The *mixed topology* $\gamma := \gamma(\|\cdot\|, \tau)$ is the locally convex topology generated by the family of seminorms

$$\widetilde{\Gamma}:=\left\{\widetilde{p}_{(a_n),(p_n)}:\; (p_n)_{n\in\mathbb{N}}\subseteq\Gamma,\; (a_n)_{n\in\mathbb{N}}\in\mathrm{c}_0,\; a_n\geq0\right\}$$

where

$$\widetilde{p}_{(a_n),(p_n)}(x) := \sup_{n \in \mathbb{N}} a_n p_n(x), \quad x \in X,$$

- $\bullet \quad \tau \subseteq \gamma \subseteq \|\cdot\|$
- **a** A sequence converges with respect to the mixed topology if and only if it is $\|\cdot\|$ -bounded and τ -convergent.
- The classes of bi-continuous semigroups and $\gamma(\tau,\|\cdot\|)$ -strongly continuous and locally sequentially $\gamma(\tau,\|\cdot\|)$ -equicontinuous semigroups coincide

Theorem

Let (A, D(A)) be a bi-dissipative and bi-densely defined operator on a bi-admissible space $(X, \|\cdot\|, \tau)$

Theorem

Let (A, D(A)) be a bi-dissipative and bi-densely defined operator on a bi-admissible space $(X, \|\cdot\|, \tau)$. Assume that X is complete with respect to the mixed topology γ

Theorem

Let (A, D(A)) be a bi-dissipative and bi-densely defined operator on a bi-admissible space $(X, \|\cdot\|, \tau)$. Assume that X is complete with respect to the mixed topology γ . If $\operatorname{Ran}(\lambda - A)$ is bi-dense in X for some $\lambda > 0$, then the γ -closure $(\overline{A}, D(\overline{A}))$ of (A, D(A)) generates a bi-continuous contraction semigroup on X.

Remark

Q Equip the space $C_b(\mathbb{R})$ of bounded continuous functions on the real line with the sup-norm $\|\cdot\|_{\infty}$ and the compact-open topology τ_{co} . Then $C_b(\mathbb{R})$ is complete with respect to the associated mixed topology $\gamma(\tau_{co},\|\cdot\|_{\infty})$.

Theorem

Let (A, D(A)) be a bi-dissipative and bi-densely defined operator on a bi-admissible space $(X, \|\cdot\|, \tau)$. Assume that X is complete with respect to the mixed topology γ . If $\operatorname{Ran}(\lambda - A)$ is bi-dense in X for some $\lambda > 0$, then the γ -closure $(\overline{A}, D(\overline{A}))$ of (A, D(A)) generates a bi-continuous contraction semigroup on X.

- Equip the space $C_b(\mathbb{R})$ of bounded continuous functions on the real line with the sup-norm $\|\cdot\|_{\infty}$ and the compact-open topology τ_{co} . Then $C_b(\mathbb{R})$ is complete with respect to the associated mixed topology $\gamma(\tau_{co},\|\cdot\|_{\infty})$.
- ① The space $\mathscr{L}(E)$ of bounded linear operators on a Banach space E together with the operator norm $\|\cdot\|_{\mathscr{L}(E)}$ and the strong operator topology τ_{sot} is also complete with respect to the mixed topology $\gamma(\tau_{\mathrm{sot}},\|\cdot\|_{\mathscr{L}(E)})$.

Theorem

Let (A, D(A)) be a bi-dissipative and bi-densely defined operator on a bi-admissible space $(X, \|\cdot\|, \tau)$. Assume that X is complete with respect to the mixed topology γ . If $\operatorname{Ran}(\lambda - A)$ is bi-dense in X for some $\lambda > 0$, then the γ -closure $(\overline{A}, D(\overline{A}))$ of (A, D(A)) generates a bi-continuous contraction semigroup on X.

- Equip the space $C_b(\mathbb{R})$ of bounded continuous functions on the real line with the sup-norm $\|\cdot\|_{\infty}$ and the compact-open topology τ_{co} . Then $C_b(\mathbb{R})$ is complete with respect to the associated mixed topology $\gamma(\tau_{co},\|\cdot\|_{\infty})$.
- ① The space $\mathscr{L}(E)$ of bounded linear operators on a Banach space E together with the operator norm $\|\cdot\|_{\mathscr{L}(E)}$ and the strong operator topology τ_{sot} is also complete with respect to the mixed topology $\gamma(\tau_{\mathrm{sot}},\|\cdot\|_{\mathscr{L}(E)})$.

Thank you for listening!

References

A. A. Albanese and D. Jornet.

Dissipative operators and additive perturbations in locally convex spaces. Math. Nachr., 289(8-9):920-949, 2016.

C. Budde and S.-A. Wegner

A Lumer-Phillips type generation theorem for bi-continuous semigroups Z. Anal. Anwend., 40(1-2):65-80, 2022.

B. Goldys and M. Kocan.

Diffusion semigroups in spaces of continuous functions with mixed topology. J. Differential Equations, 173(1):17-39, 2001.

F. Kühnemund.

A Hille-Yosida theorem for bi-continuous semigroups. Semigroup Forum, 67(2):205-225, 2003.

A. Wiweger.

Linear spaces with mixed topology.

Studia Math., 20:47-68, 1961,