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We consider the Equilibrium Problem (denoted by EP) in the
framework of real reflexive Banach space. Let E be the real
reflexive Banach space and consider its subset C, which is
nonempty, closed and convex. Let the mapping g : C x C — R be
a bifunction. The task of the EP with respect to g is to find a
point x* € C such that

g(x*,y)>0, V yeC. (1)

We denote the set of solutions of (1) by EP(g).
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In the literature, it is well-known that numerous fascinating and
complicated problems in nonlinear analysis, like the

o Fixed Point problem
Nash Equilibria
Optimization problem (saddle points)

Variational Inequality
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Complementarity problems




let T: C — C be an operator, a point x € C is called a fixed point
of T if x = Tx. We denote the set of fixed point of T by F(T).
It has numerous applications both in pure and applied science :

o Control Theory

@ Optimization

o Game Theory

o Differential equations
o Economics

Different techniques have been presented for assessing and
estimating the fixed points of nonexpansive and quasi-nonexpansive
mappings, and for multi-valued Bregman nonexpansive mappin"nka
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Consider the following problem
Find x* € C suchthat x* € EP(g)NF(T), (2)

Problem (2) has become an important area of research due to its
possible applications in applied science. This happens mainly in
image processing, network distribution, signal processing, etc,
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Tada and Takahashi [1] presented the following hybrid technique
for finding the said element x* of the set of solutions of monotone
EP and the set of fixed points a nonexpansive mapping T in the
framework of Hilbert spaces;

(706 Co=Q = C,
1

z, € C  such that g(z,,,y)+/\—n(y—z,,,z,,—x,,>20, Vy € C,
Bn = anXp+ (1 — an) Ty,
Co={ve C: llwn—v] < xa— v},
Qn={veC:(m—xnVv—x, <0},

Xn+1 = Pc,nq,mo =
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Anh [3] proposed the following hybrid extragradient method for
finding a common element of the set of fixed points of a
nonexpansive mapping T and the set of solutions of EP involving a
pseudomonotone bifunction g in Hilbert spaces:

m € Go = Qo = C,

yn = argmin {0ng(pn ) + 3 o —yIP: v e C}

tn = argmin {ong(pn.y) + Iy —yI?: v € C}

Zn = tnpn + (1 = an) Tt, (3)
Co={ve C:lwa—vl| <llon—vI}

Qo ={v e C:(m—pnv—pa) <0}

Xnt1 = Pc,nq,mo0-

In order to establish the strong convergence of the sequences {p,,b
generated by (3) to x* = Pgp(g)nF(T)m0, the author required tha
the positive sequences {0, } of the stepsize satisfies a Lipschitz-
condition, i.e.
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0<cr,,§min{1 1}, (4)
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where ¢; and ¢, are the Lipschitz-like constants of g.

In 2016, Hieu [7] following a similar trend, introduced the following
Parallel Modified Extragradient Method (PMEM), for solving the
finite family of equilibrium problems and the common fixed point
of nonexpansive mappings in the framework of real Hilbert spaces:

yi = argmin { pgi(pn,y) + 3 lon — yII : yeC} i=1,..,N,
zjy = argmin < pgi(yh, y) + llon — yII - yeC} i=1...,N,
i,,GArgmax{Hz,’;—an: i:1,2,...,N}, Zn ::z,’;",
j,,GArgmax{‘u{;—p,, :j:1,2,...,M}

Co={ve C: g —vll < llpn— v}, §
Qn={v € C: (mo— pn,v—pn) <O}, #
pnt+1 = Pc,n@,mo-
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They also proved a strong convergence result for the sequence
{pn} generated by (5) provided the stepsize p satisfies the
following condition:

1 1
O0<p<mnig—,— 6
pemin{ (6

where ¢; = max{cy;:i=1,2,...,N} and
o =max{c;:i=1,2,...,N}, c1; and ¢ ; are the Lipschitz-like

constants for g; for i =1,2,... N.

In 2014, Shahzad and Zegeye [3], in the framework of real reflexive
Banach spaces and for multi-valued Bregman relatively
nonexpansive mappings, presented the following iterave scheme for
the common fixed points:

U77TO € X;ﬂn = PrO_]gi(U) + (1 - an)Vf(pn))a
pri1 = Vs (wn) + 31 BiVF(ujn)),
where u; , € Tiw,, C is a nonempty closed convex subset of int u

dom f. Under some mild conditions on the parameters, the
authors proved the strong convergence of the sequence {p,} to
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Projfu, where F = ﬂlNzl F(T;).

Very recently, Eskandani [5], using the Hybrid Parallel extragradient
method (HPA), introduced a Bregman-Lipschitz-type condition for
a pseudomonotone bifunction. For estimating this common point
X* for a finite family of multi-valued Bregman relatively
nonexpansive mappings in reflexive Banach spaces, the following
algorithm, called HPA, was presented:

81, = argmax {ongi(pm B) + Dr(Brpn) . weC) i=1,..N,
z) = argmin {0,gi(B},z) + Dr(z,pn): z€C} i=1,...,N,
Jn € argmax{Df(z,’;,p,,), j=12,..., N} S

Yo =V (BnoVE(Za) + M1 BriV(zny)),  zne € TrZn,
pr+1 = Proje(Vf(un)) + (1 — an)VF(yn))),

4
V.

_ A Parallel Hybrid Bregman Subgradient Extragradient Method




where Dr is the related Bregman distance of a function f. Under
specific suppositions, they established that the sequence {p,}
converges strongly to Projg'-czu, where

Q= ﬂf/’: F(T,)N ﬂlNzl EP(g;) # 0 provided that the stepsize o),
satisfies the condition:

{on} Cla,b] € (0,q), where g = min {(}1, (}2} , (1)

c1 = max {ci1}, o = max {c;1} and ¢;», ¢j» are the
1§i<N{ i} 1<i<N{ i} herh

Bregman-Lipschitz coefficients of bifunction g; for i = 1,2, ..., N.
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It is worthy to note that the results of Anh, Hieu, Eskandani,
mentioned above, and other similar ones in the literature involves
prior knowledge of the Lipschitz-like constants which have proven
to be very strenuous to approximate pratically. In fact, when it is
possible, the estimates are often too small which slows down the
rate of convergence of the algorithms. Thus, it becomes very
important to find an algorithm which does not depend on the prior
knowledge of the Lipschitz-like constants. Recently, many
researchers introduced some modified extragradient algorithms for
solving pseudomonotone EP (when N = 1) which does not involve
prior estimate of the Lipschitz-like constants ¢; and c;.
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Throughout this work, E and C be as defined in the beginning.
Denote the dual space of E by E*. Let f : E — (—00, 0] be a
proper convex and lower semicontinuous function. We denote the
domain of f by dom f, which is the set {x € E : f(x) < oo}.
Letting x € int domf, we define the subdifferential of the function
f at x as the convex set such that

If(x)={s€e E": f(x)+(y —x,5) <f(y), VyeE}. (8)
We also define the Fenchel conjugate of f, as the function
f* 1 E* — (—o0,00], suchthat f*(s)=sup{(c,x)—f(x):x € E}.
el
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In 1967, Bregman [2] introduced Bregman distances, and in so
doing he found an exquisite and efficacious tool for the utilization
of the Bregman distance in the time spent designing and dissecting
feasibility of optimization algorithms. Moving onwards, we presume
f:E — (—o0,00] is as also Legendre. The Bregman distance
defined as the bifunction Dy : domf x int domf — [0, +00), where

Dr(y,x) = f(y) — f(x) — (VF(x),y — x).

Looking at the Bregman distance through the lenses of a metric, it
does not satisfy symmetry and the triangle inequality, hence it is
not a metric. However, it generalizes the law of cosines, which we
call the three point identity, it is as follows: for any x € domf and
Y, Z € int domf

Df(va)+Df(Y7z)_Df(Xaz):<Vf( ) Vf( (1@
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Throughout this paper, we assume that the following assumptions
hold on g:

@ g is pseudomonotone, i.e., g(x,y) >0 and g(y,x) <0 for
all x,y € C,

@ g is Bregman - Lipschitz - type condition, i.e, there exist two
positive constants ¢, ¢p, such that

g(x,y)+g(y,z) > g(x,z)—caDs(y,x)—c2De(z,y), Vx,y,z € C.
(11)
@ g(x,x)=0forall x € C,
@ g(-,y) is continuous on C for every y € C,
@ g

x, ) is convex, lower semicontinuous, and subdifFerentia
on C for every fixed x € C. b
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(Pick xp € C,pue(0,1), X > 0,set n=0.

yi = argmin { gi(xn, y) + )\ian(x,,,y) Yy € C} ,

z}, = argmin < &i(¥, ¥) + 3= Dr(xn,y) 1 y € T,’;} ,

T = {z cE: <Vf(x,,) — Apwi — Vf(y,’;),z — y,’,> < O}
w,, € 0gi(Xn, ¥p)-

Ch={z € E: Df(z,0,) < Df(z,xn)}

| Qn ={z € E:(Vf(z) = Vf(xn),xn — x0) > 0}.
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Before we start with the proof of Algorithm 10, we discuss some
contributions of the algorithm compared with other methods in the
literature.

o Firstly, Algorithm 1 solves two strongly convex optimization
problems in parallel for i = 1,2,..., N, with the second convex
problem solving over the half-spaces T}, which is simpler than
the entire feasible set used in Eskandani et al. [19].

@ Moreover, the stepsize in Eskandami et al. [19] required
finding the prior estimates of the Lipschitz-like constants of
the finite bifunctions, which is very cumbersome for
computation. Meanwhile, in Algorithm 1, the stepsize is
chosen self-adaptively and does not require the prior estimates
of the Lipschitz-like constant of the finite bifunctions.

o Furthermore, when E is the real Hilbert space, our Algorithm
1 improves the algorithms of [18,47-50] in the setting of real

Hilbert spaces. u
o Furthermore, when E is a real Hilbert space and
N =1, M =1, our Algorithm improves and compliments '

many other results in the literature
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Let E be a real reflexive Banach space, C be a nonempty, closed
and convex subset of E and function f : E — R be a uniformly
Fréchet differentiable function, which is coercive, Legendre, totally
convex and bounded on subsets of E such that C C int(domf). For
i=1,2,...N,let gi: E x E — R be a finite family of bifunctions
satisfying Assumptions (A1)—(A5). Furthermore, for
Jj=12,...,M,let T;: E — E be a finite family of Bregman
relatively nonexpansive mappings. Suppose that

Sol = (NN, EP(g;)) N (ﬂj’\ilF(TJ)> # (. Let {an} be a sequence
in (0, 1) such that

0 < ap <liminf,00 ap < limsup,_,o an < b < 1. Then, the
sequences {x,}, {y/}, {2} generated by Algorithm 10 converge= =
strongly to a solution x*, where x* = Projgo,xo nﬁ
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PHBSEM with f* Iter. 15 15 15 16

Time (s) 1.0343 1.7926 4.7522 26533

PHBSEM with f2 Iter. 9 9 9 9
Time (s) 0.8500 1.1863 3.5812 24625

HPA with f! Iter. 21 32 77 37
Time (s) 11719 6.5847 38.7433 11.6689

HPA with f* Iter. 19 17 18 30
Time (s) 1.2669 3.7743 9.0533 9.3293

HPEM Iter. 2 27 28 29
Time (s) 1.4189 5.1728 125232 8.0773

o s 1w 18 2w 2 a @ 5 1w 15 2 25 3 35
Iteration numbes in) lteratien number (n}

2 40 60 10 20 20
eration aumbes (n) eration number (n}

Figure 1. Example 1. Top left: I; top right: Case II; bottom left: Case 111; bottom right: Case IV.



In this paper, we present a new parallel hybrid Bregman
subgradient extragradient method for finding a common solution of
a finite family of the pseudomonotone equilibrium problem and
common fixed point problem for Bregman relatively nonexpansive
mappings in real Hilbert spaces. The algorithm is designed such
that its convergence does not require prior estimates of the
Lipschitz-like constant of the pseudomonotone bifunctions.
Furthermore, a strong convergence result is proven under mild
conditions. Some numerical examples are presented to show the
efficiency and accuracy of the proposed method. This result
improves and extends the results of and many other results in the

literature. S
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