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Introduction



Deep Learning – Success Stories

▶ Neural networks/deep learning revolutionized Machine Learning

Self-Driving Cars



Deep Learning – Success Stories

▶ Neural networks/deep learning revolutionized Machine Learning

Machine Translation



Deep Learning – Success Stories

▶ Neural networks/deep learning revolutionized Machine Learning

Medical Diagnostics



Deep Learning – Challenges

DL presents many opportunities but it is confronted with many challenges
▶ Absence of Mathematics: Ingrid Daubechies (Duke University) writes in

a recent article that “Machine learning works spectacularly well, but
mathematicians aren’t quite sure why”

▶ High-dimensionality: “High-dimensional Data Analysis: The Curses and
Blessings of Dimensionality”

▶ Heterogeneity and Incompleteness: structured and unstructured data:
numeric; pictures; videos; text, etc. Missing data points.

▶ Scale: massive datasets instead of small samples that statisticians
normally deal with.

▶ Timeliness: an elegant theorem which takes a longer time to prove might
be less useful than a medium-quality (“quick-and-dirty”) solution to a
pressing problem that requires instantaneous decision-making.

▶ Ethics: privacy, security, bias & many other ethical issues of concern.
▶ · · ·



Deep Learning – Challenges

▶ Explainability: DL algorithms (ML algorithms in general) are black boxes

http : nautil.usissue40learningis−artificial−intelligence−permanently−inscrutable

▶ This work attempts to find a solution to this problem



Deep Learning – Challenges

▶ Robustness: DL algorithms are not robust to perturbations/noise

Courtesy: Gitta Kutyniok

▶ This work attempts to find a solution to this problem too



Supervised Learning

▶ Data D =
{

xi, yi
}m

i=1
: features xi ∈ RN , targets/labels yi ∈ R

▶ Model (function/map/hypothesis) hθ(x) satisfying

yi = hθ(xi) + ϵi, ⇒ predictions ŷi = hθ(xi)

parameter vector θ = (θ0, θ1, . . . , θn), noise ϵi

▶ Linear model (example)

hθ(x) = θ0 + θ1x1 + · · · + θnxn = θT x = ⟨θ, x⟩, (x0 = 1)

▶ Metric/distance (loss function ℓ(·)), e.g. ℓ(z) = ∥z∥p
p =

∑n

j=1 |zj |p

L(θ) = 1
m

m∑
i=1

ℓ
(
hθ

(
xi

)
, yi

)



Deep Neural Networks (DNN)



Deep Neural Networks

▶ Neural networks (NN) are (non-linear) ML models/algorithms

▶ Neural networks inspired by how brain process information

McCulloch and Pitts Neuron [1943]



Deep Neural Networks

▶ Deep learning is done by solving for the optimal parameters in

min
θ

L(θ) = 1
m

m∑
i=1

ℓ
(
yi, ŷi

)
▶ DNN are trained through forward propagation and back propagation

▶ Typically, the crucial back propagation is done via Gradient Descent

θt+1 = θt − η∇θL (θt) , t = 0, 1, . . .



Deep Neural Networks

Non-linear model

ŷ = hθ(x) = σK
(
W KσK−1 (

W K−1 · · · W 2σ1 (
W 1x

)))
▶ Data point x ∈ RN

▶ Number of layers K

▶ Weight matrices W k ∈ Rdk×dk−1

▶ Width of the k-th layer is dk

▶ Parameter set θ =
{

W i
}K

i=1

▶ Activation function σk : R → R (applied componentwise)



Supervised Deep Learning

Mathematical framework

min
m∑

i=1

ℓ
(
yi, ŷi

)
s.t. ŷi = σK

(
W KσK−1 (

W K−1 · · · W 2σ1 (
W 1xi

)))
i ∈ [m]

W k ∈ Rdk×dk−1 ∀k ∈ [K]

In the classification setting for example
▶ Labelled training data

(
x1, y1)

, . . . , (xm, ym) ∈ RN × {0, 1}

▶ Loss function ℓ : {0, 1} × RdK → R

loss function examples

1. ℓp-norms ∥yi − ŷi∥p

2. Cross entropy −
(
yi log

(
ŷi

)
+

(
1 − yi

)
log

(
1 − ŷi

))



Activation Function

▶ There a many types of activation function including the following

(a) sigmoid (b) tanh (c) ReLU

σ(α) = 1
1+e(−α) σ(α) = e(α)−e(−α)

e(α)+e(−α) σ(α) = max{0, α}



Binary Deep Neural Networks(BDNN)



Binary Deep Neural Networks(BDNN)

BDNN

▶ Activation function: σk(α) =
{

0 if α < 0
1 otherwise

▶ W k ∈ {0, 1}dk×dk−1
(
or W k ∈ Rdk×dk−1

)
Properties of BDNN

▶ consume less memory
▶ be more robust against noise/adversarial attacks
▶ be less accurate / less complex



Training BDNN



Training BDNN

Gradient-based Methods
▶ Forward propagation: stochastic binarization of weights
▶ Back propagation: approximate the binary activation function by

continuous function, e.g.

σ(α) = max {−1, min{1, α}}

Mixed-integer Programming Methods
▶ Evaluation of trained DNN with ReLU activation using MILP

[Fischetti, Jo (2018)]

▶ Calculate adversarial samples for trained DNN / BDNN using MILP
[Khalil et al. (2019)]

▶ Train BDNN using MILP
[Icarte et al. (2019)]



Mixed-Integer Programming Formulation

Theorem (B. & Kurtz (2020))

Training a BDNN, i.e. solving the following problem

min
m∑

i=1

I{yi ̸=ŷi}

s.t. ŷi = σK
(
W KσK−1 (

W K−1 · · · W 2σ1 (
W 1xi

)))
i ∈ [m] (1)

W k ∈ Rdk×dk−1 ∀k ∈ [K]

can be done by solving a mixed-integer linear programming (MILP) formulation
of polynomial size.

Remark
The weights can be chosen real or binary.



Proof I

Problem (1) is equivalent to

min
∑

i:yi=0

ui,K +
∑

i:yi=1

(
1 − ui,K

)
s.t. W 1xi < M1ui,1

W 1xi ≥ M1
(
ui,1 − 1

)
W kxi < Mkui,k ∀k ∈ [K] \ {1}

W kxi ≥ Mk

(
ui,k − 1

)
∀k ∈ [K] \ {1}

W k ∈ [−1, 1]dk×dk−1 ∀k ∈ [K]

ui,k ∈ {0, 1}dk ∀k ∈ [K], i ∈ [m]

where M1 := d0r + 1 and Mk := dk−1 + 1



Proof II

The quadratic terms wk
ℓjui,k−1

j can be replaced by a new variable
si,k

ℓj ∈ [−1, 1] and the equality

wk
ℓjui,k−1

j = si,k
ℓj

is ensured by adding the constraints

si,k
ℓj ≤ ui,k

j

si,k
ℓj ≥ −ui,k

j

si,k
ℓj ≤ wk

ℓj +
(
1 − ui,k

j

)
si,k

ℓj ≥ wk
ℓj −

(
1 − ui,k

j

)
This concludes the proof.



MILP Solution Methods

Algorithms
The MILP formulation can be solved as follows:
▶ to global optimality by classical IP solvers as CPLEX or Gurobi
▶ using exact methods: branch & bound method or cutting

plane/decomposition methods
▶ using heuristics like the mountain-climbing procedure: iteratively optimize

over the u- and the W -variables in the quadratic formulation

Algorithmic Details
▶ Data points can iteratively be added to the formulation
▶ Integer programming methods often provide optimality gaps
▶ Number of integer variables bounded by O(dKm) (linear in the number of

data points)
▶ Integer programming formulations are hard to solve!
▶ Especially with Big-M constraints!



Variants of BDNN Model



Model Variants

Variants of the MILP Model
▶ regression variants
▶ quadratic loss functions
▶ add regularizers
▶ multiclass classification
▶ more general binary activation functions

σk(α) =
{

βk if α < λk

γk otherwise

where λk can be trained.
▶ more general discrete activation functions can be used:

σk(α) = v if λv
k ≤ α ≤ λv

k, v ∈ V ⊂ Z

▶ sparsity constraints can be added
▶ robust optimization approaches to model uncertainty in the data



Robust Optimization
Enforce robustness during training
▶ Given an uncertainty set U := U1 × · · · × Um where

U i =
{

δ ∈ RN | ∥δ∥ ≤ ri

}
,

▶ the two-stage robust counterpart of the BDNN formulation is

min
W k

max
δ∈U

min
ui,k

{
m∑

i=1

ℓ
(
yi, ui,K

)
: W 1, . . . , W K , u1,1, . . . , um,K ∈ P (X, δ)

}
where P (X, δ) is the set of feasible solutions of the inequality system

W 1 (
xi + δi

)
< M1ui,1

W 1 (
xi + δi

)
≥ M1

(
ui,1 − 1

)
W kxi < Mkui,k ∀k ∈ [K] \ {1}

W kxi ≥ Mk

(
ui,k − 1

)
∀k ∈ [K] \ {1}

W k ∈ [−1, 1]dk×dk−1 ∀k ∈ [K]

ui,k ∈ {0, 1}dk ∀k ∈ [K], i ∈ [m]



Computations



Details of Neural Networks

DNN

BDNN – same architecture as DNN

1. Direct solvers (Gurobi) - BDNN
2. Heuristic (mountain-climbing) – BDNN Heuristic



Random Data

▶ Data points: vectors of dimension N = 100 with entries drawn uniformly
at random from 2 overlapping regions of R

▶ Size of dataset: m = 200 with 2 classes with size ≈ 100 each.
▶ Train-test split: of 80% and 20%.



Wisconsin Breast Cancer Dataset

▶ Performance on the Breast Cancer Wisconsin
dataset.

▶ Accuracy over 10 random shuffles of the data.

Dataset:
▶ N = 9
▶ m = 699
▶ 2 classes

(Malignant &
Benign)

BDNN:

σk(α) =
{

βk if α < λk

γk otherwise

▶ BDNN
– λk learned

▶ BDNN0
– λk = 0



Conclusion



Conclusion

Results
▶ Mixed-integer programming formulation to train BDNN
▶ Heuristic variant has high accuracy on real dataset
▶ Robust optimization model to enforce robustness during training

Open Problems
▶ Derivation of more tractable reformulations. (Get rid of the Big-M

constraints!)
▶ Use more general discrete activation functions to increase complexity of

the network.
▶ Can integer programming formulations be used to understand expressivity

of neural networks?



For more details:
B. Bah and J. Kurtz, An Integer Programming Approach to Deep Neural
Networks with Binary Activation Functions, ICML 2020 Workshop on “Beyond
First Order Methods in Machine Learning”

T HAN K YOU


	Outline
	Introduction
	Deep Neural Networks (DNN)
	Binary Deep Neural Networks (BDNN)
	Training BDNN
	Variants of BDNN Model
	Computations
	Conclusion

