
Efficient and robust optimization methods for training
binarized deep neural networks

Bubacarr Bah
German Research Chair of Mathematics in Data Science, AIMS S. Africa
Associate Professor and Head of Data Science, MRC Unit The Gambia

65th Annual SAMS Congress
Stellenbosh University, South Africa

December 06 – 08, 2022

Sponsors:

Outline of talk

Introduction

Deep Neural Networks (DNN)

Binary Deep Neural Networks (BDNN)

Training BDNN

Variants of BDNN Model

Computations

Conclusion

▶ Joint work with Jannis Kurtz at Siegen University, Germany

Introduction

Deep Learning – Success Stories

▶ Neural networks/deep learning revolutionized Machine Learning

Self-Driving Cars

Deep Learning – Success Stories

▶ Neural networks/deep learning revolutionized Machine Learning

Machine Translation

Deep Learning – Success Stories

▶ Neural networks/deep learning revolutionized Machine Learning

Medical Diagnostics

Deep Learning – Challenges

DL presents many opportunities but it is confronted with many challenges
▶ Absence of Mathematics: Ingrid Daubechies (Duke University) writes in

a recent article that “Machine learning works spectacularly well, but
mathematicians aren’t quite sure why”

▶ High-dimensionality: “High-dimensional Data Analysis: The Curses and
Blessings of Dimensionality”

▶ Heterogeneity and Incompleteness: structured and unstructured data:
numeric; pictures; videos; text, etc. Missing data points.

▶ Scale: massive datasets instead of small samples that statisticians
normally deal with.

▶ Timeliness: an elegant theorem which takes a longer time to prove might
be less useful than a medium-quality (“quick-and-dirty”) solution to a
pressing problem that requires instantaneous decision-making.

▶ Ethics: privacy, security, bias & many other ethical issues of concern.
▶ · · ·

Deep Learning – Challenges

▶ Explainability: DL algorithms (ML algorithms in general) are black boxes

http : nautil.usissue40learningis−artificial−intelligence−permanently−inscrutable

▶ This work attempts to find a solution to this problem

Deep Learning – Challenges

▶ Robustness: DL algorithms are not robust to perturbations/noise

Courtesy: Gitta Kutyniok

▶ This work attempts to find a solution to this problem too

Supervised Learning

▶ Data D =
{

xi, yi
}m

i=1
: features xi ∈ RN , targets/labels yi ∈ R

▶ Model (function/map/hypothesis) hθ(x) satisfying

yi = hθ(xi) + ϵi, ⇒ predictions ŷi = hθ(xi)

parameter vector θ = (θ0, θ1, . . . , θn), noise ϵi

▶ Linear model (example)

hθ(x) = θ0 + θ1x1 + · · · + θnxn = θT x = ⟨θ, x⟩, (x0 = 1)

▶ Metric/distance (loss function ℓ(·)), e.g. ℓ(z) = ∥z∥p
p =

∑n

j=1 |zj |p

L(θ) = 1
m

m∑
i=1

ℓ
(
hθ

(
xi

)
, yi

)

Deep Neural Networks (DNN)

Deep Neural Networks

▶ Neural networks (NN) are (non-linear) ML models/algorithms

▶ Neural networks inspired by how brain process information

McCulloch and Pitts Neuron [1943]

Deep Neural Networks

▶ Deep learning is done by solving for the optimal parameters in

min
θ

L(θ) = 1
m

m∑
i=1

ℓ
(
yi, ŷi

)
▶ DNN are trained through forward propagation and back propagation

▶ Typically, the crucial back propagation is done via Gradient Descent

θt+1 = θt − η∇θL (θt) , t = 0, 1, . . .

Deep Neural Networks

Non-linear model

ŷ = hθ(x) = σK
(
W KσK−1 (

W K−1 · · · W 2σ1 (
W 1x

)))
▶ Data point x ∈ RN

▶ Number of layers K

▶ Weight matrices W k ∈ Rdk×dk−1

▶ Width of the k-th layer is dk

▶ Parameter set θ =
{

W i
}K

i=1

▶ Activation function σk : R → R (applied componentwise)

Supervised Deep Learning

Mathematical framework

min
m∑

i=1

ℓ
(
yi, ŷi

)
s.t. ŷi = σK

(
W KσK−1 (

W K−1 · · · W 2σ1 (
W 1xi

)))
i ∈ [m]

W k ∈ Rdk×dk−1 ∀k ∈ [K]

In the classification setting for example
▶ Labelled training data

(
x1, y1)

, . . . , (xm, ym) ∈ RN × {0, 1}

▶ Loss function ℓ : {0, 1} × RdK → R

loss function examples

1. ℓp-norms ∥yi − ŷi∥p

2. Cross entropy −
(
yi log

(
ŷi

)
+

(
1 − yi

)
log

(
1 − ŷi

))

Activation Function

▶ There a many types of activation function including the following

(a) sigmoid (b) tanh (c) ReLU

σ(α) = 1
1+e(−α) σ(α) = e(α)−e(−α)

e(α)+e(−α) σ(α) = max{0, α}

Binary Deep Neural Networks(BDNN)

Binary Deep Neural Networks(BDNN)

BDNN

▶ Activation function: σk(α) =
{

0 if α < 0
1 otherwise

▶ W k ∈ {0, 1}dk×dk−1
(
or W k ∈ Rdk×dk−1

)
Properties of BDNN

▶ consume less memory
▶ be more robust against noise/adversarial attacks
▶ be less accurate / less complex

Training BDNN

Training BDNN

Gradient-based Methods
▶ Forward propagation: stochastic binarization of weights
▶ Back propagation: approximate the binary activation function by

continuous function, e.g.

σ(α) = max {−1, min{1, α}}

Mixed-integer Programming Methods
▶ Evaluation of trained DNN with ReLU activation using MILP

[Fischetti, Jo (2018)]

▶ Calculate adversarial samples for trained DNN / BDNN using MILP
[Khalil et al. (2019)]

▶ Train BDNN using MILP
[Icarte et al. (2019)]

Mixed-Integer Programming Formulation

Theorem (B. & Kurtz (2020))

Training a BDNN, i.e. solving the following problem

min
m∑

i=1

I{yi ̸=ŷi}

s.t. ŷi = σK
(
W KσK−1 (

W K−1 · · · W 2σ1 (
W 1xi

)))
i ∈ [m] (1)

W k ∈ Rdk×dk−1 ∀k ∈ [K]

can be done by solving a mixed-integer linear programming (MILP) formulation
of polynomial size.

Remark
The weights can be chosen real or binary.

Proof I

Problem (1) is equivalent to

min
∑

i:yi=0

ui,K +
∑

i:yi=1

(
1 − ui,K

)
s.t. W 1xi < M1ui,1

W 1xi ≥ M1
(
ui,1 − 1

)
W kxi < Mkui,k ∀k ∈ [K] \ {1}

W kxi ≥ Mk

(
ui,k − 1

)
∀k ∈ [K] \ {1}

W k ∈ [−1, 1]dk×dk−1 ∀k ∈ [K]

ui,k ∈ {0, 1}dk ∀k ∈ [K], i ∈ [m]

where M1 := d0r + 1 and Mk := dk−1 + 1

Proof II

The quadratic terms wk
ℓjui,k−1

j can be replaced by a new variable
si,k

ℓj ∈ [−1, 1] and the equality

wk
ℓjui,k−1

j = si,k
ℓj

is ensured by adding the constraints

si,k
ℓj ≤ ui,k

j

si,k
ℓj ≥ −ui,k

j

si,k
ℓj ≤ wk

ℓj +
(
1 − ui,k

j

)
si,k

ℓj ≥ wk
ℓj −

(
1 − ui,k

j

)
This concludes the proof.

MILP Solution Methods

Algorithms
The MILP formulation can be solved as follows:
▶ to global optimality by classical IP solvers as CPLEX or Gurobi
▶ using exact methods: branch & bound method or cutting

plane/decomposition methods
▶ using heuristics like the mountain-climbing procedure: iteratively optimize

over the u- and the W -variables in the quadratic formulation

Algorithmic Details
▶ Data points can iteratively be added to the formulation
▶ Integer programming methods often provide optimality gaps
▶ Number of integer variables bounded by O(dKm) (linear in the number of

data points)
▶ Integer programming formulations are hard to solve!
▶ Especially with Big-M constraints!

Variants of BDNN Model

Model Variants

Variants of the MILP Model
▶ regression variants
▶ quadratic loss functions
▶ add regularizers
▶ multiclass classification
▶ more general binary activation functions

σk(α) =
{

βk if α < λk

γk otherwise

where λk can be trained.
▶ more general discrete activation functions can be used:

σk(α) = v if λv
k ≤ α ≤ λv

k, v ∈ V ⊂ Z

▶ sparsity constraints can be added
▶ robust optimization approaches to model uncertainty in the data

Robust Optimization
Enforce robustness during training
▶ Given an uncertainty set U := U1 × · · · × Um where

U i =
{

δ ∈ RN | ∥δ∥ ≤ ri

}
,

▶ the two-stage robust counterpart of the BDNN formulation is

min
W k

max
δ∈U

min
ui,k

{
m∑

i=1

ℓ
(
yi, ui,K

)
: W 1, . . . , W K , u1,1, . . . , um,K ∈ P (X, δ)

}
where P (X, δ) is the set of feasible solutions of the inequality system

W 1 (
xi + δi

)
< M1ui,1

W 1 (
xi + δi

)
≥ M1

(
ui,1 − 1

)
W kxi < Mkui,k ∀k ∈ [K] \ {1}

W kxi ≥ Mk

(
ui,k − 1

)
∀k ∈ [K] \ {1}

W k ∈ [−1, 1]dk×dk−1 ∀k ∈ [K]

ui,k ∈ {0, 1}dk ∀k ∈ [K], i ∈ [m]

Computations

Details of Neural Networks

DNN

BDNN – same architecture as DNN

1. Direct solvers (Gurobi) - BDNN
2. Heuristic (mountain-climbing) – BDNN Heuristic

Random Data

▶ Data points: vectors of dimension N = 100 with entries drawn uniformly
at random from 2 overlapping regions of R

▶ Size of dataset: m = 200 with 2 classes with size ≈ 100 each.
▶ Train-test split: of 80% and 20%.

Wisconsin Breast Cancer Dataset

▶ Performance on the Breast Cancer Wisconsin
dataset.

▶ Accuracy over 10 random shuffles of the data.

Dataset:
▶ N = 9
▶ m = 699
▶ 2 classes

(Malignant &
Benign)

BDNN:

σk(α) =
{

βk if α < λk

γk otherwise

▶ BDNN
– λk learned

▶ BDNN0
– λk = 0

Conclusion

Conclusion

Results
▶ Mixed-integer programming formulation to train BDNN
▶ Heuristic variant has high accuracy on real dataset
▶ Robust optimization model to enforce robustness during training

Open Problems
▶ Derivation of more tractable reformulations. (Get rid of the Big-M

constraints!)
▶ Use more general discrete activation functions to increase complexity of

the network.
▶ Can integer programming formulations be used to understand expressivity

of neural networks?

For more details:
B. Bah and J. Kurtz, An Integer Programming Approach to Deep Neural
Networks with Binary Activation Functions, ICML 2020 Workshop on “Beyond
First Order Methods in Machine Learning”

T HAN K YOU

	Outline
	Introduction
	Deep Neural Networks (DNN)
	Binary Deep Neural Networks (BDNN)
	Training BDNN
	Variants of BDNN Model
	Computations
	Conclusion

