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An Integer Programming Approach to Deep Neural Networks
with Binary Activation Functions

Jannis Kurtz! Bubacarr Bah?

Abstract

We study deep neural networks with binary ac-
tivation functions (BDNN), i.e. the activation
function only has two states. We show that the
BDNN can be reformulated as a mixed-integer
linear program which can be solved to global op-
timality by classical integer programming solvers.
Additionally, a heuristic solution algorithm is pre-
sented and we study the model under data uncer-
tainty, applying a two-stage robust optimization
approach. We implemented our methods on ran-
dom and real datasets and show that the heuristic
version of the BDNN outperforms classical deep
neural networks on the Breast Cancer Wisconsin
dataset while performing worse on random data.

to be more robust to adversarial perturbations than the con-
tinuous activation networks (Qin et al., 2020). Furthermore
low-powered computations may benefit from discrete ac-
tivations as a form of coarse quantizations (Plagianakos
et al., 2001; Bengio et al., 2013; Courbariaux et al., 2015;
Rastegari et al., 2016). Nevertheless, gradient descent-based
training behaves like a black box, raising a lot of questions
regarding the explainability and interpretability of inter-
nal representations (Hampson & Volper, 1990; Plagianakos
et al., 2001; Bengio et al., 2013).

On the other hand, integer programming (IP) is known as a
powerful tool to model a huge class of real-world optimiza-
tion problems (Wolsey, 1998). Recently it was successfully
applied to machine learning problems involving sparsity
constraints and to evaluate trained neural networks (Bertsi-
mas et al., 2017; 2019b; Fischetti & Jo, 2018).
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Deep Learning — Success Stories

» Neural networks/deep learning revolutionized Machine Learning

Self-Driving Cars



Deep Learning — Success Stories

» Neural networks/deep learning revolutionized Machine Learning
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Speech
Recognition
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A deep neural network
analyzes Lydia's speech
against audio snippets
from millions of previously
recorded samples and

Correction

“s-so excited, ah...”

5o excited, /...

“so excited...”

Speech disfluencies—those
“ums,” “ahs," stutters and
repetitions—are removed,
and the top choice amang
the sound-alike words is

English ‘
t Espaiiol

Skype Translator has leamed
how dozens of languages
align with one another by
reviewing millions of pieces
of previously translated
content, Using Microsoft
Translator, the same tool
used in numerous Microsoft
products, it applies this
knawledae to auickl

Machine Translation

“iHola, abuelit
muy emociong
hablar con ustf




Deep Learning — Success Stories

» Neural networks/deep learning revolutionized Machine Learning

Medical Diagnostics



Deep Learning — Challenges

DL presents many opportunities but it is confronted with many challenges

> Absence of Mathematics: Ingrid Daubechies (Duke University) writes in
a recent article that “Machine learning works spectacularly well, but
mathematicians aren'’t quite sure why"

» High-dimensionality: “High-dimensional Data Analysis: The Curses and
Blessings of Dimensionality”

» Heterogeneity and Incompleteness: structured and unstructured data:
numeric; pictures; videos; text, etc. Missing data points.

» Scale: massive datasets instead of small samples that statisticians
normally deal with.

» Timeliness: an elegant theorem which takes a longer time to prove might
be less useful than a medium-quality (“quick-and-dirty”) solution to a
pressing problem that requires instantaneous decision-making.

» Ethics: privacy, security, bias & many other ethical issues of concern.



Deep Learning — Challenges

> Explainability: DL algorithms (ML algorithms in general) are black boxes

Learning Techniques (today) Explainability
(notional)
Neural Nets
Graphical B T
Models  — ©
P e Ensemble é ﬁ
S EyERE Methods &1 e
BeliefNets | | ———= p=
SRL Randorm 2 i
CRFs  HBNs /- Forests ©
Statistical "0C® M’L_Hs»"'(.f{ o E
Models Vo D?f;?fn o
SVMs Models o Explainability

http : nautil.usissuedOlearningis—artificial —intelligence—permanently—inscrutable

» This work attempts to find a solution to this problem



Deep Learning — Challenges

» Robustness: DL algorithms are not robust to perturbations/noise

By Linda Geddes 5th December 2018

Computers can be made to see a sea turtle as a gun or hear
aconcerto as someone’s voice, which is raising concerns
about using artificial intelligence in the real world.

macHiNg miNDs | ariFiciaineLcenes ) Y@

Courtesy: Gitta Kutyniok

» This work attempts to find a solution to this problem too



Supervised Learning

» Data D = {xi,yi}il: features z' € RY, targets/labels ' € R
» Model (function/map/hypothesis) hg(x) satisfying
y' = he(z') + €, = predictions §* = hg(z")
parameter vector 6 = (6o, 61,...,0,), noise €
» Linear model (example)

ho(z) =00 + 6121 + -+ - + Oy, = 0T x = 0,z), (ro=1)

> Metric/distance (loss function £(-)), e.g. £(z) = ||z||} = ;L:l |z; P

m

£O) = > (ha (+) )

i=1



Deep Neural Networks (DNN)



Deep Neural Networks

» Neural networks (NN) are (non-linear) ML models/algorithms

» Neural networks inspired by how brain process information

Dendrite Axon terminal

\&’(J /L Cell body

! /Node of Ranvie

xon Schwann cell
Myelin sheath

Nucleus

McCulloch and Pitts Neuron [1943]



Deep Neural Networks

hidden layer 1 hidden layer 2 hidden layer 3

input layer

min £(0) = -3¢ (4 1)

» DNN are trained through forward propagation and back propagation
» Typically, the crucial back propagation is done via Gradient Descent

Oi41 =60 — VoL (0:), t=0,1,...



Deep Neural Networks

Non-linear model

§=ho(x) =0 (WKUK_l (WK_1 S Wi! (Wlx)))

Data point z € RY
Number of layers K
Weight matrices W* € R *dk-1

Width of the k-th layer is dj

vV v v VY

K

v

Parameter set 6 = {W’}

=1

> Activation function o® : R — R (applied componentwise)



Supervised Deep Learning

Mathematical framework

min Zf(yz,gjz)
i=1
st. g =0 (W (WHT w20t (Wa'))) i€ [m]
W* e R%**%-1 vk ¢ [K]

In the classification setting for example
» Labelled training data (xl,yl) oo, (™ y™) € RY x {0,1}
> Loss function £ : {0,1} x R** — R

loss function examples

1. £p-norms ||y* — 7|,

2. Cross entropy — (yi log (3}1) 4 (1 = yi) log (1 - 171))



Activation Function

» There a many types of activation function including the following

(a) sigmoid (b) tanh (c) ReLU

/N .

(@) _o(—a)

O'(Of) = m O'(CY) = max{(), Ot}



Binary Deep Neural Networks(BDNN)



Binary Deep Neural Networks(BDNN)

BDNN

0 if 0
» Activation function: ak(a) = o< )
1 otherwise

> W e {0,1}%*%-1 (or W* € R¥*k-1)

Properties of BDNN
» consume less memory
» be more robust against noise/adversarial attacks

> be less accurate / less complex



Training BDNN



Training BDNN

Gradient-based Methods
» Forward propagation: stochastic binarization of weights

» Back propagation: approximate the binary activation function by
continuous function, e.g.

o(a) = max {—1, min{1l,a}}

Mixed-integer Programming Methods

» Evaluation of trained DNN with RelLU activation using MILP
[Fischetti, Jo (2018)]

» Calculate adversarial samples for trained DNN / BDNN using MILP
[Khalil et al. (2019)]

» Train BDNN using MILP
[lcarte et al. (2019)]



Mixed-Integer Programming Formulation

Theorem (B. & Kurtz (2020))

Training a BDNN, i.e. solving the following problem

min Zﬂ{yi;éﬁi}
i=1
st.g =o" (W (WETL WPt (Wha'))) iem] (1)
Wk e R%X%-1 v ¢ [K]

can be done by solving a mixed-integer linear programming (MILP) formulation
of polynomial size.

Remark

The weights can be chosen real or binary.



Proof |

Problem (1) is equivalent to

min Zu +Z 17u

yt= yt=
s.t. Wlx’ < Myu™t
Wha' > My (u"' —1)
Wkzt < Myu® vk e [K]\ {1}
W > My (u"* —1)  Vk € [K]\ {1}
Wk e [—1,1]%* %=1 vk e [K]
e {0,1}" Vke|K], ie[m]

where My :=dor +1 and My :=djp_1 +1



Proof 1l

k—1

The quadratic terms wfjué can be replaced by a new variable

szf € [-1,1] and the equality

k  ik—1 _ ik
= Séj

SZ’J.k < ubk

sz,Jk Z _uz,k

szjk < wfj + (1 — u;k)
sif > wiy = (1= 5")

This concludes the proof.



MILP Solution Methods

Algorithms

The MILP formulation can be solved as follows:
» to global optimality by classical IP solvers as CPLEX or Gurobi

» using exact methods: branch & bound method or cutting
plane/decomposition methods

» using heuristics like the mountain-climbing procedure: iteratively optimize
over the u- and the W-variables in the quadratic formulation

Algorithmic Details
» Data points can iteratively be added to the formulation
» Integer programming methods often provide optimality gaps

» Number of integer variables bounded by O(dKm) (linear in the number of
data points)

» Integer programming formulations are hard to solve!

» Especially with Big-M constraints!



Variants of BDNN Model



Model Variants

Variants of the MILP Model

> regression variants
quadratic loss functions
add regularizers

multiclass classification

vV v v Y

more general binary activation functions

k
0" (a) = :
Y, otherwise

{Bk ifa<)\k

where A\, can be trained.

» more general discrete activation functions can be used:

cFla)y=v ifA\p<a<Al, veVCZ

>c

» sparsity constraints can be added

» robust optimization approaches to model uncertainty in the data



Robust Optimization
Enforce robustness during training

» Given an uncertainty set U := U? x --- x U™ where
Ut = {6€RN | 119]| Sm},

» the two-stage robust counterpart of the BDNN formulation is

Wk S€U  yisk

m
min max min{ZZ(yi,ui’K) : Wl,...,WK,ul’l,...,um’K EP(X,5)}
i=1

where P(X,§) is the set of feasible solutions of the inequality system
W (2 +6) < My
wi (azl + 5i) > My (ui’l — 1)
Wrzh < Myu™* vk e [K]\ {1}
Wha' > My (u"* 1) Vk € [K]\ {1}
Wk e [-1,1]%>%=1 vk e [K]
u"? e {0,1}" Vk e [K], i € [m]



Computations



Details of Neural Networks

DNN

model = Sequential()
model.add(Dense(units=shape[1], activation='relu', input dim=N, use bias=False))
model.add(Dense(units=n_classes, activation='softmax', use bias=False})

opt = Adam(lr=LR)

model.compile(loss="binary crossentropy", optimizer=opt, metrics=metric)
model.summary ()

Model: "sequential 2"

Layer (type) Output Shape Param #
dense_1 (Dense) (None, 100) 10000
dense_2 (Dense) (None, 2) 200

Total params: 10,200
Trainable params: 10,200
Non-trainable params: @

BDNN — same architecture as DNN

1. Direct solvers (Gurobi) - BDNN
2. Heuristic (mountain-climbing) — BDNN Heuristic



Random Data

» Data points: vectors of dimension N = 100 with entries drawn uniformly
at random from 2 overlapping regions of R

Size of dataset: m = 200 with 2 classes with size ~ 100 each.

» Train-test split: of 80% and 20%.

Runtime in s

0.2 — DNN — DNN
—-- BDNN —-- BDNN
~~- BDNN Heuristic ~=- BDNN Heuristic
0.0
20 40 60 80 100 120 140 160 20 20 60 80 100 120 140 160



Wisconsin Breast Cancer Dataset

» Performance on the Breast Cancer Wisconsin
dataset.

Method di | Acc. (%) Opt. Gap (%)
BDNN 25 69.3 0.0
BDNNg 25 83.6 0.0
BDNN heur. 25 95.0 0.0
BDNNg heur. 25 30.0 0.0
DNN 25 91.4 -
BDNN 50 69.3 0.0
BDNNg 50 84.3 0.51
BDNN heur. 50 89.3 0.0
BDNNg heur. 50 71.4 0.0
DNN 50 91.4 -

» Accuracy over 10 random shuffles of the data.

Method d | Avg. (%) Max (%) Min (%)
BDNN heur. 25 93.2 97.1 85.0
DNN 25 89.1 91.4 85.7

Dataset:
» N=09
> m =699

> 2 classes
(Malignant &
Benign)

BDNN:

k {ﬁk if a < Ak
o () = .
Y, otherwise

» BDNN

— A\i learned
» BDNNg

- =0



Conclusion



Conclusion

Results
» Mixed-integer programming formulation to train BDNN
» Heuristic variant has high accuracy on real dataset

» Robust optimization model to enforce robustness during training

Open Problems

» Derivation of more tractable reformulations. (Get rid of the Big-M
constraints!)

» Use more general discrete activation functions to increase complexity of
the network.

» Can integer programming formulations be used to understand expressivity
of neural networks?



For more details:

B. Bah and J. Kurtz, An Integer Programming Approach to Deep Neural
Networks with Binary Activation Functions, ICML 2020 Workshop on “Beyond
First Order Methods in Machine Learning”

THANK YOUu
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