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Preamble

We study the generalized bi-dimensional nonlinear wave equation

βuxxxx + αuxt + 2γu2
x + 2γuuxx − γuyy = 0

(1) We compute the Lie point symmetries

(3) We then obtain symmetry reduction and exact solutions

(4) We derive Conservation laws

(5) Concluding remarks.
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Introduction

Nonlinear partial differential equations (NLPDEs) model physical

phenomena in the fields of mathematics, physics and engineering.

Such phenomena occur in oceanography, aerospace industry,

meteorology, nonlinear mechanics, biology, population ecology,

plasma physics, fluid mechanics to mention but a few.

In order to really understand these physical phenomena it is of

immense importance to solve these NLPDEs which govern these

aforementioned phenomena.

Therefore, in the subsequent part of this talk, we consider one of

these equations.
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Literature review

The Yu-Toda-Sasa-Fukuyama system expresssed as

Y. Hu, H. Chen, Z. Dai, New kink multi-soliton solutions for the (3+1)-dimensional

potential-Yu-Toda-Sasa-Fukuyama equation, Appl. Math. Comput., 234 (2014) 548–556,

(−4vt + Φ(v)vz )x + 3vyy = 0,

Φ(v) = ∂2
x + 4v + 2vx∂

−1
x ,

transforms to

uxxxz − 4uxt + 4uxuxz + 2uxxuz + 3uyy = 0, (1)

for v : Rx × Ry × Rz × Rt → R such that potential v = ux .
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Equation (1) is referred to as the (3+1)-dimensional

Yu-Toda-Sasa-Fukuyama equation which in turn is regarded as

an adjunct of the Bogoyavlenskii-Schiff equation. Predominantly,

Hu et al. in the previously given reference, exploited transformation

of unspecified functions to alter (1) into an incorporated equation of

distinctively two bilinear structures.

Besides, the authors by utilizing Darvishi’s scheme procured some modish

kink multi-soliton solutions due to the engagement of homoclinic test

technique and three-wave approach respectively. It is noteworthy to assert

here that equation (1) is never an integrable system

J. Schff, Painlevé Transendent, Their Asymptotics and Physical Applications, Plenum, New

York, NY, USA, 1992.
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Moreover, the non-travelling wave solution was achieved by way of

auto-Bäcklund transformation as well as the generalized projective

Riccati equation techniques

Z. Yan, New families of nontravelling wave solutions to a new (3+1)-dimensional

potential-YTSF equation, Phys. Lett. A, 318 (2003) 78–83,

X. Zeng, Z. Dai, D. Li, New periodic soliton solutions for the (3+1)-dimensional potential-YTSF

equation, Chaos Soliton Fract., 42 (2009) 657–661,

J. Schff, Painlevé Transendent, Their Asymptotics and Physical Applications, Plenum, New

York, NY, USA, 1992.

Furthermore, some periodic solutions along with soliton-like solutions for
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equation (1) were gained via Hirota bilinear, tanh-coth, exp-function,

homoclinic test, as well as the extended homoclinic test techniques. See

A. Wazwaz, Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and

YTSF equations, Appl. Math. Comput., 203 (2008) 592–597,

A. Borhanifar, M.M. Kabir, New periodic and soliton solutions by application of exp-function

method for nonlinear evolution equations, J. Comput. Appl. Math., 229 (2009) 158–167,

Z. Guo, J. Yu, Multiplicity results on period solutions to higher dimensional differential

equations with multiple delays, J. Dyn. Differ. Equ., 23 (2011) 1029–1052

and the ealier given references.
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Lately, some closed-form solutions to the (3+1)-dimensional potential

Yu-Toda-Sasa-Fukuyama (1) were secured by Darvishi and Najafi

M.T. Darvishi, M. Najafi, A modification of EHTA to solve the (3+1)-dimensional

potential-YTFS equation, Chin. Phys. Lett., 28 (2011) 040202

through the engagement of the modified extended homoclinic test

technique. In the same vein, some solutions to (1) were constructed

via the exploitation of the modified simple equation technique

E.M.E. Zayed, A.H. Arnous, Exact solutions of the nonlinear ZK-MEW and the potential YTSF

equations using the modified simple equation method. AIP Conference Proceedings, 1479,

American Institute of Physics, 2012.

In addition, some analytic travelling wave solutions to (1) were obtained

by invoking the (G ′/G , 1/G )−expansion, tan-hyperbolic and symmetry
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methods

E.M.E. Zayed, S.A. Hoda Ibrahim, The two variable (G ′/G , 1/G)- expansion method for finding

exact traveling wave solutions of the (3+1)-dimensional nonlinear potential

Yu-Toda-Sasa-Fukuyama equation: International Conference on Advanced Computer Science

and Electronics Information (ICACSEI 2013), Atlantis Press, (2013) 388–392,

S. Sahoo, S.S. Ray, Lie symmetry analysis and exact solutions of (3+1)-dimensional

Yu-Toda-Sasa-Fukuyama equation in mathematical physics, Comput. Math. Appl., 73 (2017)

253–260.

In

S.J. Chen, Y.H. Yin, W.X. Ma, X, Lü, Abundant exact solutions and interaction phenomena of

the (2+1)-dimensional YTSF equation, Anal. Math. Phys., 9 (2019) 2329–2344,

Oke Davies Adeyemo, Chaudry Masood Khalique (NWU)Solitary wave and classical symmetry solutions of a generalized bi-dimensional nonlinear wave equation in engineering physics.12 / 70



Chen et al. introduced (1) in their work as

wxxxz − 4wxt + 4wxwxz + 2wxxwz + 3wyy = 0. (2)

The authors employed the transformation x − z → x , y → y along

with t → t, and so equation (2) is transformed into

− 4wxt − wxxxx − 6wxwxx + 3wyy = 0. (3)

Instigating u(t, x , y) = ∂w(t,x ,y)
∂x as a potential function, the induction

of (3) with respect to x recasts it to
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− 4uxt − uxxxx − 6u2
x − 6uuxx + 3uyy = 0, (4)

which is called the (2+1)-dimensional YTSFe. They further enunciated

the interconnectivity between some notable equations, viz., KP and BS

equations can be obtained from KdV equation. Also they can equally be

expanded to the (3+1)-dimensional YTSFe and conclusively, equation (1)

can be transmuted to (4).

Furthermore, in their investigation the authors examined copious

closed-form solutions of (4) via the infusement of symbolic computation

hinged on Hirota bilinear formulation to achieve lump solutions as well as

interraction solutions of (4).

Oke Davies Adeyemo, Chaudry Masood Khalique (NWU)Solitary wave and classical symmetry solutions of a generalized bi-dimensional nonlinear wave equation in engineering physics.14 / 70



− 4uxt − uxxxx − 6u2
x − 6uuxx + 3uyy = 0, (4)

which is called the (2+1)-dimensional YTSFe. They further enunciated

the interconnectivity between some notable equations, viz., KP and BS

equations can be obtained from KdV equation. Also they can equally be

expanded to the (3+1)-dimensional YTSFe and conclusively, equation (1)

can be transmuted to (4).

Furthermore, in their investigation the authors examined copious

closed-form solutions of (4) via the infusement of symbolic computation

hinged on Hirota bilinear formulation to achieve lump solutions as well as

interraction solutions of (4).

Oke Davies Adeyemo, Chaudry Masood Khalique (NWU)Solitary wave and classical symmetry solutions of a generalized bi-dimensional nonlinear wave equation in engineering physics.14 / 70



Our work here investigates a generalized version of (4) which we call

the generalized bi-dimensional nonlinear wave equation (2D-gNLWE)

Q ≡ βuxxxx + αuxt + 2γu2
x + 2γuuxx − γuyy = 0, (5)

with α, γ and β regarded as nonzero real constants where α = 4, γ = 3

and β = 1 relative to (4).
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Lie group analysis
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Lie point symmetries of 2D-gNLWE

The commensurating Lie algebra of infinitesimal generators of the

2D-gNLWE (5) is spanned by the vector field G recounted as

G = ξ1(t, x , y , u)
∂

∂x
+ ξ2(t, x , y , u)

∂

∂y
+ ξ3(t, x , y , u)

∂

∂t
+φ(t, x , y , u)

∂

∂u

in which the coefficient functions ξ1(t, x , y , u), ξ2(t, x , y , u), ξ3(t, x , y , u)

alongside φ(t, x , y , u) are to be decided.

The attributed formula for the prolongation of a fourth-order

2D-gNLWE (5) prescribed as Pr (4)G is conveyed as
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Pr (4)G = G +φx ∂

∂ux
+φxx ∂

∂uxx
+φxt ∂

∂uxt
+φyy ∂

∂uyy
+φxxxx ∂

∂uxxxx
. (6)

Envisaging invariance condition to (5), we obtain

Pr (4)G
(
βuxxxx + αuxt + 2γu2

x + 2γuuxx − γuyy

) ∣∣∣
Q=0

= 0, (7)

which gives

{
αφxt − 2γ((φx )2 − uφxx − φuxx )− γφyy + βφxxxx

}
|Q=0= 0, (8)

where φx , φxx , φxt , φyy , and φxxxx are regarded as coefficient functions

of Pr (4)G in equation (6).
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The coefficient functions are explicated as

φx = Dx (φ)− utDx (ξ1)− uxDx (ξ2)− uyDx (ξ3),

φy = Dy (φ)− utDy (ξ1)− uxDy (ξ2)− uyDy (ξ3),

φt = Dt(φ)− utDt(ξ1)− uxDt(ξ2)− uyDt(ξ3),

φxx = Dx (φx )− utxDx (ξ1)− uxxDx (ξ2)− uxyDx (ξ3),

φyy = Dy (φy )− utyDy (ξ1)− uxyDy (ξ2)− uyyDy (ξ3),

φxt = Dt(φx )− utxDt(ξ1)− uxxDt(ξ2)− uxyDt(ξ3),

φxxxx = Dx (φxxx )− utxxxDx (ξ1)− uxxxxDx (ξ2)− uxxxyDx (ξ3), (9)

where Dt , Dx , Dy are the total derivatives with respect to

t, x and y , accordingly.
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The total derivatives involved are designated as

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ uty

∂

∂uy
+ · · · ,

Dx =
∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut
+ uxx

∂

∂ux
+ uxy

∂

∂uy
+ · · · ,

Dy =
∂

∂y
+ uy

∂

∂u
+ uty

∂

∂ut
+ uxy

∂

∂ux
+ uyy

∂

∂uy
+ · · · . (10)

We expand equation (8) with the help of relations in (9) and (10), and

thereafter equate the various coefficients of the partial derivatives of u

to zero.
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Consequently, the following twenty determining equations of

2D-gNLWE (5) are obtained:

ξ1
u = 0, ξ2

x = 0, ξ3
x = 0, ξ2

u = 0, ξ3
u = 0, ξ3

y = 0,

φxx = 0, φxy = 0, φux = 0, φuy = 0, φuu = 0,

2ξ1
x + φu = 0, ξ2

y + φu = 0, αφxt − γφyy = 0,

φyyy = 0, αφut + 4γφx = 0, ξ1
yy − 2φx = 0,

2ξ3
t + 3φu = 0, αξ2

t − 2γξ1
y = 0,

αξ1
t + 2γ(uφu − φu) = 0.
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The solution of the obtained system yields the following

ξ1 =
2γ

α
xF ′3(t)− 1

2
C1x + y2F ′′3 (t) +

2γ

α
yF2(t) +

α

2γ
yC2 +

2γ

α
F1(t) + C4,

ξ2 =
4γ

α
yF ′3(t)− C1y +

4γ2

α2

∫ ∫
F ′2(t)dtdt + C2t + C3,

ξ3 =
6γ

α
F3(t)− 3

2
C1t + C5,

φ = xF ′′3 (t) +

(
−4γ

α
F ′3(t) + C1

)
u +

α

2γ
y2F ′′′3 (t) + yF ′2(t) + F ′1(t)

with F1,F2 and F3 arbitrary functions depending on t.
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Hence, the solution occasioned an eight-dimensional Lie algebra L8

admitted by 2D-gNLWE (5) and are spanned by the succeeding

vector fields, namely:

G1 =
∂

∂t
,

G2 =
∂

∂x
,

G3 =
∂

∂y
,

G4 =αy
∂

∂x
+ 2γt

∂

∂y
,

G5 = 3t
∂

∂t
+ x

∂

∂x
+ 2y

∂

∂y
− 2u

∂

∂u
,
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G6 = 2γF1(t)
∂

∂x
+ αF ′1(t)

∂

∂u
,

G7 = 2γαyF2(t)
∂

∂x
+ 4γ2F̃2(t)

∂

∂y
+ α2yF ′2(t)

∂

∂u
, (11)

G8 = 12γ2F3(t)
∂

∂t
+ 2γ(αy2F ′′3 (t) + 2γxF ′3(t))

∂

∂x
+ 8γ2yF ′3(t)

∂

∂y

+ (α2y2F ′′′3 (t) + 2αγxF ′′3 (t)− 8γ2uF ′3(t))
∂

∂u
,

where F̃2(t) =
∫
F2(t)dt.
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Symmetry reductions and
exact solutions
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Symmetry reductions and exact solution

Next, we put the symmetries to use in the reduction process for

2D-gNLWE (5). We start by considering the symmetry generator

G = G1 + G2 + νG3 with nonzero constant ν and convert the

2D-gNLWE (5) to a NLPDE whose dependency is on two independent

variables. In consequence, solving the related Lagrangian system of G ,

one thereby procures the invariants

f = t − νy , g = x − y , θ = u. (12)

Endorsing θ in (12) as the contemporary dependent variable as well as

f , g as independent variables, 2D-gNLWE (5) then alters to the NLPDE
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obtained as

γν2θff + 2γνθfg − αθfg − 2γθ2
g − 2γθθgg + γθgg − βθgggg = 0. (13)

Next we entrench the Lie point symmetries of (13) and engage them

to alter it to an ordinary differential equation (ODEQ). Equation (13) has
the following symmetries:

Υ1 =
∂

∂g
,

Υ2 =
∂

∂f
,

Υ3 = 2γ(2γν2g + 2γνf − αf )
∂

∂g
+ 8γ2ν2f

∂

∂f

− (8γ2ν2θ − 4γαν + α2)
∂

∂θ
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and the linear combination Υ = Υ1 + ξΥ2, with ξ, a nonzero constant

yields the two invariants: ζ = f − ξg , Φ = θ, which produces a group

invariant solution Φ, with the dependency of Φ on ζ.

Utilization of the computed invariants converts 2D-gNLWE (5)

to the fourth-order nonlinear ordinary differential equation (NODE)

(αξ+γν2−2γνξ+γξ2)Φ′′(ζ)−2γξ2Φ′2(ζ)−2γξ2Φ(ζ)Φ′′(ζ)−βξ4Φ′′′′(ζ) = 0.
(14)

Next, we secure periodic and non-topological 1-soliton solutions of

2D-gNLWE (5) by direct integration of the found equation.
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Periodic solution of (5)

Carrying out integration of (14) once with respect to ζ we achieve

(αξ+γν2−2γνξ+γξ2)Φ′(ζ)−2γξ2(Φ(ζ)Φ′(ζ))−βξ4Φ′′′(ζ)+C0 = 0, (15)

with C0, an integration constant.

To compute Jacobi elliptic cosine solutions of 2D-gNLWE (5),

we assume C0 = 0 and integrate (15) with respect to ζ to get

(αξ + γν2 − 2γνξ + γξ2)Φ(ζ)− γξ2Φ2(ζ)− βξ4Φ′′(ζ) + C1 = 0, (16)

where C1 is taken as a constant of integration.
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To compute Jacobi elliptic cosine solutions of 2D-gNLWE (5),

we assume C0 = 0 and integrate (15) with respect to ζ to get

(αξ + γν2 − 2γνξ + γξ2)Φ(ζ)− γξ2Φ2(ζ)− βξ4Φ′′(ζ) + C1 = 0, (16)

where C1 is taken as a constant of integration.
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Multiplying equation (16) by Φ′(ζ) and integrating the resulting equation

with respect to ζ, we gain

1

2
(αξ + γν2 − 2γνξ + γξ2)Φ2(ζ)− 1

3
γξ2Φ3(ζ)− 1

2
βξ4Φ′2(ζ)

+ C1Φ(ζ) + C2 = 0. (17)

In this case we observe equation (17) with C1 = C2 6= 0, thus we achieve

Φ′2(ζ)+
2γ

3βξ2
Φ3(ζ)+(2γνξ−αξ−γν2−γξ2)Φ2(ζ)− 2C1

βξ4
Φ(ζ)− 2C2

βξ4
= 0.

(18)
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We note here that the solutions of equation (18) can be conveyed via
Jacobi elliptic function

N.A. Kudryashov, Analytical theory of nonlinear differential equations. Moskow-Igevsk: Institute

of Computer Investigations; 2004.

Thus, suppose that the cubic equation

Φ3(ζ) +
3βξ2(2γνξ − αξ − γν2 − γξ2)

2γ
Φ2(ζ)− 3C1

γξ2
Φ(ζ)− 3C2

γξ2
= 0 (19)

has s1, s2 and s3 as its roots such that s1 > s2 > s3, then equation (18)

can be written as

Φ′2(ζ) +
2γ

3βξ2
(Φ− s1)(Φ− s2)(Φ− s3) = 0. (20)
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Thus, the general solution to equation (14) in terms of Jacobi elliptic

cosine amplitude function is

Φ(ζ) = s2 + (s1 − s2)cn2

(√
γ

6βξ2
(s1 − s3) ζ;S2

)
, S2 =

s1 − s2

s1 − s3
, (21)

where 0 ≤ S2 ≤ 1. The function (cn) in equation (21) denotes the cosine

amplitude elliptic function. Now reverting to the basic variables, one

secures the solution of the 2D-gNLWE (5) as

u(t, x , y) = s2 +(s1−s2)cn2

(√
γ

6βξ2
(s1 − s3) ζ; S2

)
, S2 =

s1 − s2

s1 − s3
(22)

with ζ = t − ξx + (ξ − ν)y .
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It is well known that taking special limits of the Jacobi elliptic function

degenerates it into some other mathematical functions including hyperbolic

and trigonometric functions. We engage that notion in this regard to gain

more solutions of (5) from the established Jacobi elliptic solution (22).

In consequence, having known that 0 ≤ S2 ≤ 1, we first consider the case

of S2 approaching 1 (S2 → 1) and so, we secure a bright soliton solution

u(t, x , y) = s2 + (s1 − s2) sech2

(√
γ

6βξ2
(s1 − s3) ζ

)
. (23)

where ζ = t − ξx + (ξ − ν)y .
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Further, we examine the elliptic solution as S2 approaches 0. In doing so,

we achieve a trigonometric solution of (5) as

u(t, x , y) = s2 + (s1 − s2) cos2

(√
γ

6βξ2
(s1 − s3) ζ

)
, (24)

with ζ = t − ξx + (ξ − ν)y . Thus, we establish for equation (5)

elementary function solutions from Jacobi elliptic solution (22) via

special limits of the elliptic function.

Next, we present group-invariant solutions of 2D-gNLWE (5) using

the listed generators in (11).
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Group-invariant solution via generator G1

Lie symmetry G1 = ∂/∂t gives the Lagrangian system structured as

dt

1
=

dx

0
=

dy

0
=

du

0
, (25)

whose invariants are calculated as X = x and Y = y with group-invariant

u = Q(X ,Y ).

Substituting the function assigned to u into (5) gives its reduced form as

γQYY − 2γQ2
X − 2γQQXX − βQXXXX = 0. (26)

Hence, the solution of (26) yields a dark soliton solution presented as

Q(X ,Y ) =
1

2γA2
1

(
γA2

2 + 8βA4
1

)
− 6βA2

1

γ
tanh (A1X + A2Y + A0)2 , (27)
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where A0,A1 and A2 are arbitrary constants. On retrograding to the

fundamental variables, we secure a hyperbolic solution of (5) as

u(t, x , y) =
1

2γA2
1

(
γA2

2 + 8βA4
1

)
− 6βA2

1

γ
tanh (A1x + A2y + A0)2 . (28)

Examining equation (26) using Lie theoretic approach furnishes symmetries

S1 =
∂

∂X
, S2 =

∂

∂Y
, S3 =

1

2
X

∂

∂X
+ Y

∂

∂Y
− Q

∂

∂Q
. (29)

Engaging S1, we obtain the solution Q(X ,Y ) = Φ(ζ), with ζ = Y , which

transforms (5) to ODEQ Φ′′(ζ) = 0.
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Solving the equation gives

u(t, x , y) = A0y + A1, (30)

with integration constants A0 and A1. In the same vein, for S2, we have

the solution calculated as Q(X ,Y ) = Φ(ζ), with ζ = X .

Using the function reduces (5) to NODE

2γΦ′(ζ)2 + 2γΦ(ζ)Φ′′(ζ) + βΦ′′′′(ζ) = 0. (31)

Integration of equation (31) twice, yields second order ODEQ obtained as

A1ζ + A2 + γΦ(ζ)2 + βΦ′′(ζ) = 0. (32)
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Letting A1 = A2 = 0, integrating the product of the resulting equation

and Φ′(ζ) and then retrogading to the basic variables yields

u(t, x , y) = − 3

√
2

γ
℘

6−1/2

√
22/3γ4/3

21/3γ2/3β
x + C0, g1, g2

 , (33)

where ℘ is a Weierstrass elliptic function solution

N.I. Akhiezer, Elements of The Theory of Elliptic Functions, American Mathematical Soc.,

Providence, Rhode Island, USA, 1990

of 2D-gNLWE (5) with elliptic invariants g1 = g2 = 0 and integration

constant C0.
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Besides, on letting A1 = 0,A2 6= 0, adopting the same steps earlier

given and solving the resultant equation, we have

u(t, x , y) = − 3

√
2

γ
℘

6−1/2

√
22/3γ4/3

21/3γ2/3β
x + C0, g1, g2

 , (34)

where g1 = −6 3
√

2/γA2 and g2 = 0. We notice that elliptic functions

(33) as well as (34) are both steady-state Weierstrass elliptic solution

of (5).

Next, we contemplate the linear combination of S1 and S2 as

S = c0∂/∂X + c1∂/∂Y , solution of related characteristic equation is

ζ = c0Y − c1X , where function Q(X ,Y ) = Φ(ζ). (35)
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Inserting the variables acquired in (35) into (5), one gets NODE

γc2
0 Φ′′(r)− 2γc2

1 Φ(r)Φ′′(r)− 2γc2
1 Φ′(r)2 − βc4

1 Φ′′′′(r) = 0. (36)

On integrating (36) thrice, with the constants of integration assumed to

be zero gives a first-order NODE. Thus, solution to the secured differential

equation then furnishes

u(t, x , y) =
3

2c2
1

{
c2

0 − c2
0 tanh2

[
1

2

(√
3γ c0A0 −

√
γc0 (c0y − c1x)
√
βc2

1

)]}
(37)

with constant of integration A0. Now, we consider the third generator S3.
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Thus, solution of S3 gives related invariant along with group-invariant

accordingly as

ζ =
Y

X 2
, and Q(X ,Y ) = X−2Φ(ζ). (38)

Engaging the function and variables in (38) reduces (5) to NODE

γΦ′′(ζ)− 20γΦ′(ζ)2 − 44γζΦ(ζ)Φ′(ζ)− 120βΦ(ζ)− 8γζ2Φ′(ζ)2

− 720βζΦ′(ζ)− 8γζ2Φ(ζ)Φ′′(ζ)− 732βζ2Φ′′(ζ)− 208βζ3Φ′′′(ζ)

− 16βζ4Φ′′′′(ζ) = 0. (39)
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Group-invariant solution via generator G2

Generator G2 = ∂/∂x secures the solution u = Q(T ,Y ), where T = t

and Y = y . In consequence, we transform (5) to linear partial differential

equation (LPDEQ) QYY (T ,Y ) = 0. Therefore, solving the LPDEQ gives

Q(T ,Y ) = f1(T )Y + f2(T ). (40)

Back-substitution to the fundamental variables gives the solution of (5) as

u(t, x , y) = f1(t)y + f2(t), (41)

where arbitrary functions f1(t) as well as f2(t) are both dependent on t.
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Group-invariant solution via generator G3

We transform equation (5) to a NLPDE through G3 = ∂/∂y that reads

αQTX + 2γQ2
X + 2γQQXX + βQXXXX = 0, (42)

which is accomplished through the use of group-invariant u = Q(T ,X )

where T = t and X = x .

Hence, we secure a solution of (5) here as a complex bright soliton

u(t, x , y) =
1

2γA2

(
8A3

2β − A1α
)

+
6A2

2β cosh
(

1
2 iπ − A2x − A1t − A0

)2

γ cosh (A2x + A1t + A0)2
,

(43)
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where A0, A1 and A2 are arbitrary constant. Further investigation of (43)

reveals that it admits two symmetries obtained as S1 = ∂/∂X and

S2 = ∂/∂T . On invoking S1, one obviously gets a trivial solution. We

then use S2 which produces Q(X ,Y ) = Φ(ζ), with ζ = X and so reduces

(5) to NODE obtained as

4γΦ(ζ)Φ′(ζ) + 2γΦ(ζ)Φ′′(ζ) + βΦ′′′′(ζ) = 0. (44)

Now, we contemplate the linear combination of the two generators as

S = c1S1 + c2S2. Similarity solution of S then gives Q(T ,X ) = Φ(ζ)

with ζ = c2X − c1T . On utilizing the invariants, we further reduce (5) to

2γc2
0 Φ(ζ)Φ′′(ζ) + 4γc0Φ(ζ)Φ′(ζ)− αc0c1Φ′′(ζ) + βc4

0 Φ′′′′(ζ) = 0. (45)
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Group-invariant solution via generator G5

Lie symmetry generator G5 furnishes the group-invariant alongside

its invariants as

u = t−2/3Q(X ,Y ), where X =
x

t1/3
and Y =

y

t2/3
. (46)

Using the group-invariant in (5) transforms it to the PDE

3αQX −6γQ2
X −6γQQXX + 2αYQXY +αXQXX + 3γQYY −3βQXXXX = 0.

(47)

Oke Davies Adeyemo, Chaudry Masood Khalique (NWU)Solitary wave and classical symmetry solutions of a generalized bi-dimensional nonlinear wave equation in engineering physics.45 / 70



Performing symmetry analysis on equation (47) yields three generators

S1 =
∂

∂X
+

α

6γ

∂

∂Q
, S2 =

α

3γ
Y

∂

∂X
+

∂

∂Y
− α2

18γ2
Y

∂

∂Q
,

S3 =

(
1

2
X +

α

4γ
Y 2

)
∂

∂X
+ Y

∂

∂Y
+

1

8γ2

(
2αγX − α2Y 2 − 8γ2Q

) ∂

∂Q
.

(48)

Next, on involving S1 and taking the usual steps, we obtain

Q(X ,Y ) = Φ(ζ) + α/6γX with ζ = Y . Using the obtained function,

we reduce (5) to the ODEQ presented as

9γ2Φ′′(ζ) + α2 = 0. (49)
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Solving equation (49) and reverting to basic variables gives the solution

u(t, x , y) = t−2/3

{
αx

6γt1/3
− α2y2

18γ2t4/3
+ A0

y

t2/3
+ A1

}
, (50)

where A0 and A1 are integration constants. We explore generator S2

and solving the corresponding Lagrangian system we obtain

Q(X ,Y ) = Φ(ζ)− α

6γ
X , where ζ = αY 2 − 6γX . (51)

On utilizing (51), we further reduce equation (5) to NODE expressed as

72αγ2Φ′(ζ) + 36αγ2Φ′′(ζ) + 648γ4Φ(ζ)Φ′′(ζ) + 648γ4Φ′(ζ)2

+ 11664βγ5Φ′′′′(ζ) + 2α2 = 0. (52)
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We now contemplate generator S3 and so we have the similarity solution

Q(X ,Y ) = Y−1Φ(ζ)+
α

6γ
X− α2

18γ2
Y 2, where ζ =

1

6γ
√
Y

(
6γX − αY 2

)
.

(53)

Engaging the function achieved from (53) in (5), then one obtains

γζΦ′′(ζ)− 48γΦ′(ζ)2− 48γΦ(ζ)Φ′′(ζ) + 7γζΦ(ζ)− 24βΦ′′′′(ζ) = 0. (54)
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Group-invariant solution via generator G6

We consider Lie point symmetries G6 = 2γF (t)∂/∂x + αF ′(t)∂/∂u.

Solving

dt

0
=

dx

2γF (t)
=

dy

0
=

du

αF ′(t)
, (55)

we achieve the group-invariant together with the involved invariants as

u = Q(T ,Y ) +
αF ′(t)x

2γF (t)
with T = t as well as Y = y . (56)
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Inserting the expression of u in equation (5), then we have

γQYY −
α2F ′′(t)x

2γF (t)
= 0. (57)

Solving equation (57), we secure a solution of (5) in this regard as

u(t, x , y) =
αF ′(t)x

2γF (t)
+
α2F ′′(t)

4γ2F (t)
y2 + f1(t)y + f2(t), (58)

where arbitrary functions f1(t) and f2(t) are depending on t. Now, we

want to contemplate some certain solutions of (5) by assigning specific

functions to F (t).
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Case a. F (t) = at2 + bt + c

Considering the quadratic function F (t) = at2 + bt + c , we have

u = Q(T ,Y ) +
αx(2at + b)

2γ(at2 + bt + c)
with T = t and Y = y . (59)

which is the group-invariant. Utilizing the function in (5), we achieve

aγ2X 2QYY + bγ2XQYY + γ2cQYY − aα2 = 0. (60)

The outcome of (60) gives an algebraic solution of (5) in this instance as

u(t, x , y) =
aα2y2

2(aγ2t2 + bγ2t + cγ2)
+

αx(2at + b)

2γ(at2 + bt + c)
+ f1(t)y + f2(t).

(61)
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We plot the algebraic function solution (61) taking f1(t) = sech(t) and

f2(t) = Si(t) with the arbitrary choice of constants a = 5, α = 0.1, b = 1.

γ = 2, c = 10. Thus, we have the Figure
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5

Figure: Wave depiction of algebraic function solution (61).
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Case b. F (t) = a sin(t) + b cos(t) + c

We contemplate trigonometric function F (t) = a sin(t) + b cos(t) + c.

In consequence, we secure a group-invariant of generator G6 which is

presented in this case as

u = Q(T ,Y )+
αx {a cos(t)− b sin(t)}

2γ {a sin(t) + b cos(t) + c}
where T = t alongside Y = y .

(62)

Engaging function u presented at (62) in (5), then we get equation

2aγ2 sin(X )QYY + 2bγ2 cos(X )QYY + aα2 sin(X ) + α2b cos(X )

+ 2γ2cQYY = 0. (63)
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The solution to equation (63) produces a trigonometric result

that satisfies (5) as

u(t, x , y) =
αx {a cos(t)− b sin(t)}

2γ {a sin(t) + b cos(t) + c}
− α2 {b cos(t) + a sin(t)} y2

4 {aγ2 sin(t) + bγ2 cos(t) + cγ2}
+ f1(t)y + f2(t). (64)
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We make the same choice of the arbitrary functions as earlier revealed to

represent trigonometric solution (64), occasioned by imploring a suitable

selection of arbitrary constants a = 3, α = 0.1, b = 1, γ = 1, c = 10.

Therefore, we have the Figure

-20 -10 10 20

t

-5

5

Figure: Wave depiction of trigonometric function solution (64).
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Case c. F (t) = a sech(t) + b cosh(t) + c

Now, we consider hyperbolic function F (t) = a sech(t) + b cosh(t) + c .

Similarity solution related to G6 furnishes the function calculated as

u = Q(T ,Y )+
αx {b sinh(3t)− 4a sinh(t) + b sinh(t)}

2γ {2c cosh(2t) + b cosh(3t) + 4a cosh(t) + 3b cosh(t) + 2c}
,

(65)

where T = t as well as Y = y . On using the obtained function u in (65)

to replace that in (5), then we get a transformed structured of (5) as

2bγ2 cosh(X )4QYY − α2b cosh(X )4 + 2cγ2 cosh(X )3QYY

+ 2aγ2 cosh(X )2QYY − aα2 cosh(X )2 + 2aα2 = 0. (66)
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On solving equation (66), we gain hyperbolic function outcome

satisfying (5) as

u(t, x , y) =
αx {b sinh(3t)− 4a sinh(t) + b sinh(t)}

2γ(2c cosh(2t) + b cosh(3t) + 4a cosh(t) + 3b cosh(t) + 2c)

+

{
α2b cosh(t)4 + aα2 cosh(t)2 − 2aα2

}
4γ2 {b cosh(t)4 + c cosh(t)3 + a cosh(t)2}

y2

+ f1(t)y + f2(t). (67)

Remark

We notice that arbitrary function F (t) in generator G6 can assume various
mathematical functions ranging from polynomial of any order,
trigonometric to hyperbolic functions and give a solution of equation (5).
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Here, we let f1(t) = f2(t) = 0 and see the resultant wave deflection. On

imploring the constant values a = 1, α = 0.1, b = 1, γ = 0.1, c = 20.

We achieve a parabolic wave structure displayed as,

-20 -10 10 20

t

-1000

-500

500

Figure: Wave depiction of hyperbolic function solution (67).
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Conservation laws
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Conserved quantities of (5)

In

P.J. Olver, Application of Lie Groups to Differential Equations, Springer, New York, 1993

the author gave a summary of the general algorithmic strategy to secure

all conserved vectors accompanying differential equations including the

one under study. Besides, they bequeathed a general exploration of a

direct technique in gaining conserved vectors for differential equations.

The reader can visit the references for better understanding.
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In determining the conserved vectors of 2D-gNLWE (5), we aim at

securing the zeroth-order multiplier and so the governing equation reads

δ

δu
[Λ (t, x , y , u)

(
βuxxxx + αuxt + 2γu2

x + 2γuuxx − γuyy

)
] = 0. (68)

We define the Euler-Lagrange operator δ/δu in this regard as

δ

δu
=

∂

∂u
−Dx

∂

∂ux
+ D2

x

∂

∂uxx
+ DxDt

∂

∂uxt
+ D2

y

∂

∂uyy
+ D4

x

∂

∂uxxxx
, (69)

where Dt , Dx and Dy are known as total derivatives just as defined in (10).
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For 2D-gNLWE (5) a conserved vector can be demonstrated in a parallel

structure by a divergence specification which is

DtC
t +DxC

x +DyC
y = (βuxxxx +αuxt +2γu2

x +2γuuxx−γuyy )Λ(t, x , y , u).
(70)

This specification is referred to as the characteristic equation for the

prescribed conserved density C t as well as spatial fluxes C x and C y .

Enlarging (68) and following the algorithm used in obtaining Lie point

symmetries with the use of a Maple-based computer package,

A.F. Cheviakov, Computation of fluxes of conservation laws, J. Eng. math., 66 ( 2010) 153–173,
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we get a system of PDE which solves to give the value of Λ = Λ(t, x , y , u)

as

Λ =
1

6γ

(
αy3f ′4(t)+3αy2f ′3(t)+6γ(xyf4(t)+xf3(t))+yf2(t)+f1(t)

)
, (71)

where arbitrary functions f4(t), f3(t), f2(t), f1(t) are all depending on t.

Relative to the above multiplier we achieve the following conserved

vectors of (5) preserved by the conserved densities alongside fluxes

presented in the Case a to Case d. They are:
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Case a. Λ1 = f1(t).

C t
1 = −1

2
αf1(t)ux ,

C x
1 =

1

2

{
αuf ′1(t)− αut f1(t)− 4γuux f1(t)− 2βuxxx f1(t)

}
,

C y
1 = γuy f1(t);

Case b. Λ2 = yf2(t).

C t
2 = −1

2
αyux f2(t),

C x
2 = −1

2
y

{
4γuux f2(t)− αuf ′2(t) + αut f2(t) + 2βuxxx f2(t)

}
,

C y
2 = −γf2(t)

(
u − yuy

)
;
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Case c. Λ3 =
1

6γ

(
αy3f ′3(t) + 6γxyf3(t)

)
C t

3 =
α

2γ
y

{
γ(u − xux )f3(t)− α

6
y2ux f

′
3(t)

}
,

C x
3 = − 1

12γ
y

{
− α2y2uf ′′3 (t)− 6α

[
γu

(
x − 2

3
y2ux

)
− 1

6
y2(αut

+ 2βuxxx )

]
f ′3(t) + 6γ(2γ(2xuux − u2) + αxut

+ 2β(xuxxx − uxx ))f3(t)

}
,

C y
3 = − 1

4

{
2αy2

(
u − 1

3
yuy

)
f ′3(t) + 4γx(u − yuy )f3(t)

}
;
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Case d. Λ4 =
1

γ

(α
2
y2f ′4(t) + γxf4(t)

)
C t

4 =
α

2γ

{
γuf4(t)− 1

2
αy2ux f

′
4(t)− γxux f4(t)

}
,

C x
4 =

1

4γ

{
α2y2uf ′′4 (t)− α(−2γu(x − 2y2ux ) + y2(αut + 2βuxxx ))f ′4(t)

− 2γ(2γ(2xuux − u2) + αxut + 2β(xuxxx − uxx ))f4(t)

}
,

C y
4 = −1

2

{
αy(2u − yuy )f ′4(t)− 2γxuy f4(t)

}
.
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Concluding remarks
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Conclusion

In this talk we presented the solutions of the 2D-gNLWE (5). On

imploring the Lie group technique, we have been able to successfully

obtain the associated group-invariant solutions to the generated point

symmetries of (5) through the reduction process.

A unique observation from an arbitrary-function-containing-symmetry of a

nonlinear partial differential equation was presented in this study, whereby

upon reduction, the arbitrary functions involved, assumed various

mathematical functions whose final solutions satisfy (5). The obtained
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solutions are highly important. They contain mathematical functions

with the inclusion of elliptic (Jacobi and Weierstrass), trigonometric,

hyperbolic, algebraic along with solutions with arbitrary functions.

Besides, we established a known fact that considering the special limits of

a cnoidal solution, it disintegrates to elementary functions. Several of the

solution achieved, appear as solitons of different kinds ranging from

trigonometric, non-topological 1-soliton, complex, dark and bright to

topological kink soliton. Finally, the conserved quantities of (5) are

established by utilizing the general multiplier technique.
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Thank you so much for your attention
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